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Abstract: It is shown how to construct a successful co-adapted coupling of two copies
of ann-dimensional Brownian motion(B1, . . . , Bn) while simultaneously coupling all
corresponding copies of Lévy stochastic areas

∫
Bi dBj−

∫
Bj dBi. It is conjectured

that successful co-adapted couplings still exist when the Lévy stochastic areas are re-
placed by a finite set of multiply-iterated path-and-time integrals, subject to algebraic
compatibility of the initial conditions.
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1 Introduction

A probabilisticcouplingof two random processes is a construction of both processes on
the same probability space, building in useful dependence between the two processes.
This paper discusses couplings of two Markov processes with the same law of evolu-
tion, begun at different points, and constructed so as to join together (tocouple) at some
random time; the coupling is said to besuccessfulif the two processes couple within fi-
nite time almost surely. There are other kinds of couplings relating to monotonicity, or
to approximation; successful couplings are useful for probabilistic gradient estimates,
for studying the rate of convergence to statistical equilibrium, for relating behaviour of
random processes to the geometry of the state-space, and (in more developed formula-
tions) as a key component in perfect simulation algorithms. The present paper focuses
on a particular question to do with coupling constructions for Euclidean Brownian mo-
tions: namely, whether one can couple successfully not only the Brownian motions
themselves, but also sets of path functionals. We shall show that one can couple suc-
cessfully not only two copies of a Brownian motion(B1, . . . , Bn), but at the same
time all the corresponding pairs of Lévy stochastic areas

∫
Bi dBj −

∫
Bj dBi of

the two copies. This appears quite remarkable to the author: one is able to couple so
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much despite controlling only the correlations between the two copies of the Brownian
motion.

Extensive treatments of probabilistic coupling can be found inLindvall (2002)and
Thorisson (2000), so a short summary of the relevant history will suffice.Lindvall
(1982)was the first to consider coupling for Brownian motion; he described the clas-
sic reflection coupling(couple twon-dimensional Brownian motions by making one
of them to be the reflection of the other until they meet). This was followed up by
Lindvall and Rogers (1986), who discussed generalizations to the case of diffusions.
There is a significant distinction to be drawn here. It is typically very much easier
to find explicit descriptions of couplings when the two processes in question are re-
quired both to beco-adaptedto the same filtration ofσ-algebras, in particular when
the driving Brownian motions have increments which are independent of their com-
mon past. InLindvall and Rogers (1986)(and throughout the present paper) the search
is for co-adapted couplings, and therefore stochastic calculus can be used to provide
very explicit descriptions.

Ben Arous et al. (1995)were the first to consider the possibility of what one might
call exotic couplings, in which one seeks to couple co-adaptively and simultaneously
certain path functionals as well as the processes. They described co-adapted couplings
for the single stochastic area of planar Brownian motion, and also for the time-integral
of scalar Brownian motion

∫
B d t. Price (1996)showed in her thesis how to extend

the second case to couple the twice-iterated time-integral
∫ ∫

B d sd t, andKendall and
Price (2004)use a different method to show the existence of a successful co-adapted
coupling forB and any finite set of iterated time-integrals

∫
. . .
∫

B d s . . . d t. The
present paper continues this theme by extending the first result ofBen Arous et al.
(1995) to n-dimensional Brownian motion. It now seems reasonable to formulate a
general conjecture that successful co-adapted exotic coupling is possible for any fi-
nite combination of multiply-iterated path- and time-integrals of Brownian motion (for
compatible initial conditions), though it is clear that new ideas will be required to
make further progress. The theory of Lie group symmetries of stochastic differential
equations support the expectation that resolution of the general conjecture would lead
quickly to coupling constructions for wide classes of hypoelliptic diffusions.

At present the main motivation for studying exotic coupling lies in the importance
of coupling as a general concept, and the consequent desirability of understanding how
far one can go in coupling large sets of path functionals. However it does seem not
unreasonable to hope for future useful interactions with rough path theory (Lyons and
Qian 2002), where stochastic areas play a central rôle, and conceivably also for help
in lifting restrictions on the new methods of exact simulation of stochastic differential
equations (Beskos and Roberts 2005).

It should be noted that there is significant theory concerning non-co-adapted cou-
plings. If the co-adapted constraint is lifted then one may constructmaximal couplings
(Griffeath 1975; Goldstein 1979; Pitman 1976) which couple at the maximum rate
permitted by the total variation bound of the coupling inequality. These couplings
have strong relationships with potential theory, and will in general be hard to construct
(but see the striking results ofRogers 1999on random walks).Hairer (2002)uses a
restricted kind of non-co-adapted coupling at time∞ to study hypoelliptic diffusions,
Hayes and Vigoda (2003)use finite look-ahead couplings to gain definite improvements



on coupling rate in an application to randomized algorithms, whileBurdzy and Kendall
(2000)study the cost of the co-adapted property. In our case it is a simple matter to
demonstrate the possibility of successful non-co-adapted coupling of Lévy stochastic
areas as a consequence of Hörmander regularity of the correspondingn + n(n− 1)/2-
dimensional hypoelliptic diffusion. The point of the present paper is to deliver an ex-
plicit successfulco-adaptedcoupling construction; the existence of this isnot implied
by regularity theory.

The paper is organized as follows. Section2 addresses some general considera-
tions related to stochastic control, which help to focus the problem on specific cou-
pling strategies and to introduce notation. Section3 gives a new approach to the two-
dimensional problem treated byBen Arous et al. (1995): this prepares the way for
the main results of the paper which are stated and proved in Section4: namely that
successful co-adapted coupling is achievable forn-dimensional Brownian motion and
its n(n − 1)/2 associated Ĺevy stochastic areas. The concluding section5 considers
a couple of complementary issues, and formulates a general question concerning cou-
pling of sets of iterated path integrals, for which the answer is conjectured to be in the
affirmative.

2 Coupling, control and convexity

It is helpful to bear in mind a stochastic control-theoretic perspective for coupling prob-
lems concerning co-adapted Brownian motions (seeBorkar 2005for a useful survey on
stochastic control;Chen 1994elicits some connections between control and coupling,
while Jansons and Metcalfe 2005a; Jansons and Metcalfe 2005bcarry out some numer-
ical investigations). As remarked above, aco-adaptedcoupling of twon-dimensional
Brownian motionsA andB means thatA andB are both adaptedas Brownian motions
to the same filtration ofσ-algebras{Ft : t ≥ 0} (thus in particular both increments
At+s − As andBt+s − Bs are independent ofFt). The most general co-adapted
coupling can be specified using Itô stochastic calculus:

dA = JT dB + J̃
T

dC , (1)

whereJ, J̃ are predictable(n × n)-matrix-valued processes, andC is a furthern-
dimensional Brownian motion adapted to the filtration{Ft : t ≥ 0} and independent
of B.

Thus the coupling is specified by giving a control in the form of a pair of predictable
matrix-valued processesJ, J̃. These must satisfy certain conditions ifEquation (1) is
indeed to define ann-dimensional Brownian motionA: multiplying stochastic differ-
entials to obtain differentials of quadratic variation (followingItô 1975), and bearing
in mind the independence ofB andC, it follows thatA is a Brownian motion if and



only if the following matrix-valued random measure equation is satisfied:

Id t = (dA)× (dA)T =

=
(
JT (dB)× (dB)T J

)
+
(
J̃

T
(dC)× (dC)T J̃

)
=

=
(
JT J + J̃

T
J̃
)

d t , (2)

whereI is then× n identity matrix.
The matrix processJ expresses the infinitesimal correlation ofC with B: from

Equation (2) it follows that such matrix processes are characterized by lying (almost)
always in the convex compact set defined by

0 ≤ JT J ≤ I , (3)

where0 is the(n× n) zero matrix, and the inequalities are to be interpreted using the
usual spectrally-based partial ordering for symmetric matrices. An application of the
Cauchy-Schwartz inequality tovT JT Jv shows that the set of extreme points of this
compact convex set can be identified as the topological group of orthogonal matrices
O(n).

Our coupling problem will be solved by designing a predictable processJ such
thatA andB couple at some finite random time simultaneously with all their stochastic
areas (

∫
Ai dAj−

∫
Aj dAi coupling with

∫
Bi dBj−

∫
Bj dBi, et cetera). Suppose

that it is possible to arrange this in terms of a stochastic control problem which is
regular enough to possess an objective function leading to a bounded value function
V (t,A,B) (where perhapst is replaced by some other additive functional such as time
spent in a specified region). Being a value function,V (t,A,B) is a supermartingale
in general and is a martingale exactly when the controlJ is optimal. If V (t,A,B)
is appropriately smooth then Itô’s formula may be applied. This together with the
Brownian nature ofA andB shows

dV (t,A,B) = V0 d t + VT
1 dA + VT

2 dB+

+
1
2

tr
(
V

11

)
d t +

1
2

tr
(
V

22

)
d t + tr

(
JV

12

)
d t

(for a fixed orthonormal basisv1, . . . , vn, and first and second-order derivativesV0,
V1, V2, V

11
, V

12
, V

22
with dependence ont, A andB suppressed). Thus optimalJ

control processes for such a regular problem must maximize

tr
(
JV

12

)
,

which is linear inJ. It follows that smoothness of an appropriate value function implies
that optimal control processesJ must (almost surely, for almost all time) lie in the
region of extreme points of the convex compact region of controls, and so must satisfy
the orthogonality condition

JT J = I ; (4)

in brief,J(t) ∈ O(n) for almost all timest (and hencẽJ = 0).



The impact of these considerations for our coupling problem is entirely heuristic,
since we do not have any particular objective function in mind other than desiring to
show that it is possible to couple Brownian motions together with their stochastic ar-
eas. (Indeed we will not even check that our resulting coupling strategy isadmissible,
in the sense of being optimal for some objective function: it is nota priori at all clear
whether a successful coupling exists and therefore optimality with respect to some
arbitrary objective function is of less value than conceptual simplicity!) The above re-
marks encourage a search for simple couplings amongst those which useO(n)-valued
processesJ to constructA =

∫
JT dB in terms ofB, without any need of further

randomness fromC. SinceO(n) has two topological components, made up ofSO(n)
and the coset of rotated reflections, it also follows that we should expect to consider
coupling strategies which involve discontinuous transitions between one control and
another; and this is indeed what may be observed for the successful coupling strategies
described inTheorem4 (for the planar case) andCorollary 7 (for the general case)
below.

3 The planar case

We first review the planar case (dimensionn = 2), which permits a simpler treatment
than the generaln-dimensional case but introduces most of the key ideas. The planar
case was first dealt with inBen Arous et al. (1995), who used controlsJ not all lying
in O(2), though they noted in passing the possibility of coupling using only reflection
and synchronous coupling (as defined inDefinitions2 and3, J is a reflection matrix or
is an identity matrix). Ben Arous and Lyons have shown in unpublished work how to
implement reflection/synchronous coupling for the planar case in a rather direct way,
which resembles the low-dimensional case of theBen Arous et al.-Kendall and Price
treatment of Kolmogorov diffusions (time-integrals and twice-iterated time integrals
together with scalar Brownian motion). Here we show how reflection/synchronous
coupling may be set up using simple and largely state-dependent coupling rules.

First recall fromBen Arous et al. (1995)that it is sufficient to couple(B1, B2) and
(A1, A2) together with theinvariant difference of their stochastic areas,

A =
∫

(A1 dA2 −A2 dA1)−
∫

(B1 dB2 −B2 dB1) + A1B2 −A2B1 . (5)

In factA then has a geometric interpretation: it measures the stochastic area swept out
by moving first along theA path, then linearly from the end of theA path to the end
of theB path, and then back along theB path to its starting point. It turns out to be
natural to think ofA as the(1, 2) coordinate of an anti-symmetric matrix

A =
(

0 A
−A 0

)
.



Consider the summary quantities

V =
√

(A1 −B1)2 + (A2 −B2)2 ,

U = sgn(A)
√

tr
(
AT A

)
=
√

2 A . (6)

These are semimartingales at least until one of them vanishes. Stochastic calculus can
therefore be used to compute the stochastic differential driftsDrift d U andDrift d V
(the differentials of the locally bounded variation components of the Doob-Meyer semi-
martingale decompositions ofU , V ) and the products of differentials(dU)2, (dV )2

and(dV ) × (dU) (the differentials of the corresponding quadratic variation and co-
variation processes). In doing this, it is convenient to define the quantitiesS11, S22 and
A12 from the symmetrization and the anti-symmetrization of the controlJ: working in
orthonormal coordinates based on the vectorA−B and its perpendicular,

1
2

(
J + JT

)
=
(

S11 S12

S21 S22

)
,

1
2

(
J− JT

)
=
(

0 A12

−A12 0

)
. (7)

The results of these computations are summarized in the following lemma:

Lemma 1.

(dV )2 = 2(1− S11) d t , Drift d V =
(1− S22)

V
d t ,

(dV )× (dU) = −2
√

2A12V d t ,

(dU)2 = 4(1 + S22)V 2 d t , Drift d U = 2
√

2A12 d t (8)

Details of the calculations are left as an exercise for the reader, who may alterna-
tively view them as a special case of the multi-dimensional case treated in detail in
Lemma5.

Here are two important coupling strategies, defined by specifying the correspond-
ing controlJ.

Definition 2. Reflection coupling is defined by choosingJ to be the orthogonal matrix
giving reflection in the line normal to the vectorA − B: thusS11 = −1, S22 = 1,
A12 = 0.

UsingLemma1, reflection coupling yields

(dV )2 = 4 d t , Drift d V = 0 ,

(dV )× (dU) = 0

(dU)2 = 8V 2 d t , Drift d U = 0 (9)

so thatV moves as a scalar Brownian motion at least till it hits0, andU moves as a
scalar Brownian motion subject to aV -dependent time-change.

Definition 3. Synchronous coupling is defined by choosingJ to be the identity matrix:
thusS11 = S22 = 1, A12 = 0.



UsingLemma1, synchronous coupling yields

(dV )2 = 0 , Drift d V = 0 ,

(dV )× (dU) = 0 ,

(dU)2 = 8V 2 d t , Drift d U = 0 (10)

so thatV is held constant, whileU continues to move as a scalar Brownian motion
with rate dependent onV in the same way as for reflection coupling.

Under both these strategiesU andV remain semimartingales for all time.
It is possible to derive these results for both couplings without making explicit

use of stochastic calculus, simply by considering the geometry of the planar Brownian
paths and their invariant difference of areas.

The considerations ofSection2 suggest that if coupling is at all possible for the
planar case using only symmetricJ then it should be achievable by combining these
two controls, sinceEquation (8) shows that the other two extreme controls (S11 = ±1,
S22 = −1) lead to positive drifts forV without apparent gains forU .

SinceU scales asV 2, and since it is desirable for coupling purposes to reduce the
size ofU if ever it gets large relative toV , it is natural to consider coupling strategies
described loosely as follows: for fixedκ > 0,

while U2 < κ2V 4, use reflection coupling;

while U2 ≥ κ2V 4, use synchronous coupling.

This involves a discontinuous change of regime as(U, V ) crosses over the boundary
U2 = κ2V 4. The discussion inSection2has prepared us to expect such discontinuities.
A precise description of a successful strategy of this kind is formulated in the following
theorem, which is the principal result of this section.

Theorem 4. Suppose that initiallyU0 = 0 but V0 > 0 (this can always be arranged
by first using reflection coupling to makeV positive, and then using a session of syn-
chronous coupling to reduceU to zero). Fix a smallε > 0; consider the control which
alternates between reflection and synchronous couplings using “down-crossings”:

if U2/V 4 has not yet visitedκ2 then use reflection coupling;

if U2/V 4 has attained the level(κ− ε)2 since most recently visitingκ2 then use
reflection coupling;

otherwise use synchronous coupling.

This coupling is almost surely successful in finite time:(U, V ) visits (0, 0) in finite
time.

Clearly one could consider the limiting caseε → 0 and use local time and excursion
theory; however it turns out to be simpler to analyze the process as given.

Proof of theorem.Define the indicator processN (ε) by N (ε) = 1 when eitherU2/V 4

has not yet visitedκ2, or U2/V 4 has attained the level(κ − ε)2 since most recently



visiting κ2, and otherwise setN (ε) = 0. Then the coupling strategy prescribed in the
theorem statement corresponds to the stochastic differential system

(dV )2 = 4N (ε) d t , Drift dV = 0 ,

(dV )× (dU) = 0 ,

(dU)2 = 8V 2 d t , Drift dU = 0 . (11)

This is solvable up to the time whenU andV both vanish: one may piece together so-
lutions of the smooth systems defined byEquations (9) and (10). Under this stochastic
differential system the processV evolves as a Brownian motion of rate4 interrupted
only whenU2/V 4 makes down-crossings fromκ2 to (κ − ε)2, and during these in-
terruptionsV is frozen. These down-crossings each take a finite amount of time, and
only finitely many occur in bounded closed time intervals beforeU andV both vanish;
consequentlyV either hits0 at a finite time or converges to0. SinceV is constant when
U2/V 4 ≥ κ2, continuity considerations show thatU/V 2 → 0 asV → 0, and therefore
coupling must occur whenV hits 0. Thus the crux of the matter is, willV → 0 at a
finite time?

To analyze this question, applyLamperti (1972)’s observation (as used to great
effect inYor 2001, for example) to thestochastic differential system (11). Consider a
random time-change under whichK = log(V ) behaves as an (interrupted) Brownian
motion with constant negative drift. The time-changeτ(t) is defined by

4 d t = V 2 d τ . (12)

Writing W = U/V 2, the stochastic system forK andW then follows by It̂o’s formula:

(dK)2 = N (ε) d τ , Drift d K = −1
2
N (ε) d τ ,

(dK)× (dW ) = 2N (ε)W d τ ,

(dW )2 = 2
(
1 + 2N (ε)W 2

)
d τ , Drift d W = 3N (ε)W d τ . (13)

It is required to show that elapsedt-time till K → −∞ (equivalentlyV = 0) is finite,
which is equivalent to showing∫ ∞

0

e2K d τ < ∞ . (14)

SinceV diffuses as Brownian motion of rate4 whenN (ε) = 1 and is otherwise frozen,
it follows that the integral

∫∞
0

N (ε)e2K d τ is a Brownian first-passage time and there-
fore is finite. Accordingly, it is enough to show∫ ∞

0

(1−N (ε))e2K d τ < ∞ . (15)

Let σs
n < σf

n be the start and finish times (inτ -time-scale) of thenth down-crossing
of W 2 = U2/V 4 from κ2 to (κ− ε)2. But N (ε)

τ = 0 exactly whenτ lies in the union



of the stopping-time intervals[σs
n, σf

n], so therefore∫ ∞
0

(1−N (ε))e2K d τ =
∞∑

n=1

e2Kσs
n (σf

n − σs
n) , (16)

sinceV = eK remains constant forτ ∈ [σs
n, σf

n].
Conditional onKσs

n
: n = 1, 2, . . ., the durationsσf

n − σs
n are independent Brown-

ian first-passage times of different rates. Consequently

E

[
exp

(
−
∞∑

n=1

e2Kσs
n (σf

n − σs
n)

) ∣∣∣ Kσs
n

: n = 1, 2, . . .

]

= exp

(
−
∞∑

n=1

eKσs
n × ε

)
, (17)

using the formula for the moment-generating function of a Brownian first-passage time.
Consider now the timesσs

2 − σf
1 , σs

3 − σf
2 , . . . between successive down-crossings.

These are independent, identically distributed, and of finite mean, since their common
distribution is theτ -time for the regular real-line diffusionW (with N (ε) = 1) to hit
one of±κ when started atκ − ε. Thus by the strong law of large numbers it follows
that almost surely

1
n

n∑
m=1

(
σs

m − σf
m−1

)
→ E

[
σs

2 − σf
1

]
> 0

(definingσf
0 = 0).

But equallyK is a Brownian motion with constant drift of− 1
2 on the interrupted

τ -time-scale
∫

N (ε) d τ , and therefore almost surely

Kσs
n∫ σs

n

0
N (ε) d τ

=
Kσs

n∑n
m=1

(
σs

m − σf
m−1

) → −1
2

.

It follows that almost surely

Kσs
n

n
→ −1

2
E
[
σs

2 − σf
1

]
< 0 , (18)

and hence
∑∞

n=1 eKσs
n is almost surely finite.

ConsequentlyEquation (17) shows that

E

[
exp

(
−
∞∑

n=1

e2Kσs
n (σf

n − σs
n)

) ∣∣∣ Kσs
n

: n = 1, 2, . . .

]
is almost surely positive, and so

∞∑
n=1

e2Kσs
n (σf

n − σs
n)



has a positive chance of being finite, even when conditioned onKσs
n

: n = 1, 2, . . ..
But thee2Kσs

n (σf
n − σs

n) are independent under this conditioning, and so by the Kol-
mogorov zero-one law andEquation (16) it follows that∫ ∞

0

(1−N (ε))e2K d τ < ∞ (19)

with probability one. It follows that coupling under this strategy almost surely succeeds
after a finite time.

Further development of this line of reasoning delivers an explicit construction of
the limiting caseε → 0 using local time and excursion theory, a single elliptic partial
differential equation for the moment generating function

E [exp (−pT )]

of the coupling timeT for all p using scaling, and estimates for exceedance probabili-
ties of the coupling time. We do not consider these topics here, but instead proceed to
the multidimensional case.

4 Then-dimensional case

The first step is to establish the stochastic differentialsystem (6) for Euclidean separa-
tion and invariant difference of stochastic areas, working in generaln-space (n > 2).
First introduce new coordinates based onX = A−B andY = A + B, whereA and
B are co-adaptedn-dimensional Brownian motions satisfyingEquation (1). Using It̂o
calculus for the vectorsdX anddY,

dX dXT = 2
(
I− S

)
d t , Drift dX = 0 ,

dY dXT = 2A d t ,

dY dYT = 2
(
I + S

)
d t , Drift dY = 0 , (20)

whereS = 1
2 (J+JT ) andA = 1

2 (J−JT ) are the symmetrized and anti-symmetrized
matrices corresponding toJ.

Applying the It̂o formula toV 2 = XT X (the square of the length ofX) it follows
that whileV remains positive

(dV )2 = 2
(
1− νT S ν

)
d t , Drift d V =

n− 1− (trS− νT S ν)
V

d t , (21)

whereν = X/V is a normalizedconfiguration vectordefined byX = A−B.
Now consider the anti-symmetric matrixA determined by invariant differences of

stochastic areas of the form ofEquation (5):

Aij =
∫

(Ai dAj −Aj dAi)−
∫

(Bi dBj −Bj dBi) + AiBj −AjBi .



SinceA = 1
2 (Y + X) andB = 1

2 (Y −X), calculation shows

dAij = Xi dYj −Xj dYi − 2Aij d t . (22)

Hence

dAij × dArs =
= XiXr dYj dYs −XjXr dYi dYs −XiXs dYj dYr + XjXs dYi dYr

= 2
(
XiXr

(
I + S

)
js
−XjXr

(
I + S

)
is
−XiXs

(
I + S

)
jr

+ XjXs

(
I + S

)
ir

)
d t .

(23)

SettingU = tr
(
AT A

)
, since

d
(
U2
)

= 2U dU + (dU)2 =
∑

i

∑
j

(
2Aij dAij + (dAij)

2
)

(24)

it follows

4U2 (dU)2 = 4
∑

i

∑
j

∑
r

∑
s

AijArs dAij dArs

= 32
∑

i

∑
j

∑
r

∑
s

AijArsXiXr

(
I + S

)
js

d t

= 32XT AT
(
I + S

)
AX d t = 32νT ZT

(
I + S

)
Zν U2V 2 d t . (25)

Here Z = A/U is a normalizedconfiguration matrix(with tr
(
ZT Z

)
= 1, anti-

symmetric soZT = −Z andνT Z ν = 0). The second line ofEquation (25) follows
from the first by applyingEquation (23) and then exploiting the symmetry ofI+S and
the anti-symmetry ofA.

On the other hand fromEquation (24)

2U Drift d U = Drift d
(
U2
)
− (dU)2

= Drift
∑

i

∑
j

(
2Aij dAij + (dAij)

2
)
− (dU)2

= 4 tr
(
AT A

)
d t−(dU)2+

∑
i

∑
j

(
X2

i (dYj)2 + X2
j (dYi)2 − 2XiXj dYj dYi

)
d t

= 4 tr
(
AT A

)
d t− (dU)2 + 2

∑
i

∑
j

(
2X2

i (I + S)jj − 2XiXj(I + S)ij

)
d t

= 4 tr
(
AT A

)
d t− (dU)2 + 4

(
tr
(
I + S

)
− νT (I + S)ν

)
V 2 d t

= 4 tr
(
AT A

)
d t + 4

(
n− 1 + trS− νT S ν − 2νT ZT

(
I + S

)
Zν
)

V 2 d t

(26)



where the last line is derived fromEquation (25), evaluatingtr I = n, νT I ν = 1.
FromEquation (25) andEquation (26) taken together,

(dU)2 = 8νT ZT
(
I + S

)
Zν V 2 d t ,

Drift dU = 2 tr
(
ZT A

)
d t+

+ 2
(
n− 1 + trS− νT S ν − 2νT ZT

(
I + S

)
Zν
) V 2

U
d t . (27)

Finally, using the anti-symmetry ofA,

d(U2) d(V 2) = 4V U dV dU = 4
∑

i

Xi dXi

∑
r

∑
s

Ars dArs

= −16νT ZT Aν UV 2 d t

and so finally
dU dV = −4νT ZT Aν V d t . (28)

Following the procedure of theplanar case, now consider the behaviour ofK =
log(V ). As in Section3, defineW = U/V 2; however we will consider the behaviour
of K together with that ofH = log(U) rather than that ofW = exp(H − 2K). The
next lemma follows from the calculations in this section so far.

Lemma 5. For a general controlJ (with symmetric and anti-symmetric componentsS
andA), and defining a new (τ -)time-scale by4 d t = V 2 d τ as inSection3,

(dK)2 =
1
2
(
1− νT S ν

)
d τ ,

Drift d K =
1
4
(
n− trS− 2

(
1− νT S ν

))
d τ ,

(dK)× (dH) = −
(
νT ZT A ν

) 1
W

d τ ,

(dH)2 = 2νT ZT
(
I + S

)
Z ν

1
W 2

d τ ,

Drift d H =
1
2

tr
(
ZT A

) 1
W

d τ

+
1
2

(
n− 1 + trS− νT S ν − 4νT ZT

(
I + S

)
Z ν
) 1

W 2
d τ .

(29)

Proof. UseEquations (21), (27), and (28), and It̂o’s formula.

The special cases of reflection and synchronous coupling now follow directly. Re-
flection coupling is defined by

Jreflection = I− 2ν νT , (30)



which implies

S = Jreflection, A = 0 ,

trS = n− 2 , νT S ν = −1 , SZ ν = Z ν ,

and consequently

(dK)2 = d τ , Drift d K = −1
2

d τ ,

(dK)× (dH) = 0 ,

(dH)2 = 4‖Z ν‖2 d τ

W 2
, Drift d H =

(
n− 1− 4‖Z ν‖2

) d τ

W 2
.

(31)

Synchronous coupling is defined by

Jsynchronous = I , (32)

which implies

S = Jsynchronous, A = 0 ,

trS = n , νT S ν = 1 , SZ ν = Z ν ,

and consequently

(dK)2 = 0 , Drift d K = 0 ,

(dK)× (dH) = 0 ,

(dH)2 = 4‖Z ν‖2 d τ

W 2
, Drift d H =

(
n− 1− 4‖Z ν‖2

) d τ

W 2
.

(33)

Note that‖Zν‖2 is bounded above by1/2, since the non-zero eigenvalues of the anti-
symmetric matrixZ all have multiplicity 2 and the sum of squared eigenvalues is

tr(ZT Z) = 1. So ifn ≥ 3 thenH is a non-constant submartingale under both controls;
it follows that there is no hope of coupling higher-dimensional stochastic areas by using
only synchronous and reflection coupling. Instead we analyze the more complicated
case of general orthogonal-matrix controls.

Consider the case of arotation couplingdefined adaptively by a matrix exponential

Jrotation(θJ) = exp
(
θJ
)

. (34)

Here J is an anti-symmetric matrix satisfyingtr(JT J) = 1, so thatJrotation(θJ) is
indeed a rotation matrix, and moreover a finite Taylor series expansion produces an
approximation which can be bounded:

S = cosh
(
θJ
)

=
1
2

(
Jrotation(θJ) + Jrotation(−θJ)

)
= I− θ2

2
JT J +θ4O(1) ,

A = sinh
(
θJ
)

=
1
2

(
Jrotation(θJ)− Jrotation(−θJ)

)
= θJ +θ3O(1) .



Here theO(1) terms in the errors signify matrices which vary from line to line but
which can be bounded uniformly inθ andJ. Hence

trS = n− θ2

2
+ θ4O(1) , νT S ν = 1− θ2

2
‖J ν‖2 + θ4O(1) ,

tr
(
ZT A

)
= θ tr

(
ZT J

)
+ θ3O(1) , νT ZT Aν = θ

〈
Z ν, J ν

〉
+ θ3O(1) ,

νT ZT
(
I + S

)
Z ν = 2‖Z ν‖2 + θ2O(1) ,

where again theO(1) terms in the errors (both here and in the following exposition)
vary from line to line but are bounded uniformly inθ, J, and the configuration matrix
Z. For the sake of simplicity we chooseθ = −γ/W , J = Z, and consider the effects

of applying the adaptive rotational controlJ = Jrotation(−γZ/W ):

(dK)2 =
γ2

4
‖Z ν‖2 d τ

W 2
+

γ4

W 4
O(1) d τ ,

Drift d K =
γ2

8

(
1− 2‖Z ν‖2

) d τ

W 2
+

γ4

W 4
O(1) d τ ,

(dK)× (dH) = γ‖Z ν‖2 d τ

W 2
+

γ3

W 4
O(1) d τ ,

(dH)2 = 4‖Z ν‖2 d τ

W 2
+

γ2

W 4
O(1) d τ ,

Drift d H = −
(γ

2
−
(
n− 1− 4‖Z ν‖2

)) d τ

W 2
+

γ2 + γ3

W 4
O(1) d τ . (35)

The anti-symmetric component of the control contributes a crucial−γ d τ
2W 2 term to the

drift of H. This can be used to makeH a supermartingale. (Incidentally, the choice
J = Z maximizes this particular term.)

This motivates a direct construction of a successful coupling strategy, using a mix-
ture ofJreflectionandJrotation(−γZ/W ) with adaptive choices of parameters. This deliv-
ers a positive chance of successful coupling for large initial valuesW0 of W :

Theorem 6. Consider the adaptively mixed coupling

J =
δ

W 2
Jreflection+

(
1− δ

W 2

)
Jrotation

(
− γ

W
Z
)

,

δ = δ
(
Z, ν

)
= 2

(
µK +

γ2

8

(
1− 2‖Zν‖2

))
,

γ = γ
(
Z, ν

)
= 2

(
µH + n− 1− 4‖Zν‖2

)
, (36)

defined so long as

W 2 > δ0 = 2µK + (µH + n− 1)2 .

This coupling strategy has a positive probability of being successful within finite time
if W 2

0 > w(ε), a certain finite threshold defined by(39) below, so long as

0 < µK < µH < 2µK . (37)



Moreover the coupling strategy will succeed almost surely ifW stays above the thresh-
old w(ε) for all time.

Recall from the discussion afterEquation (33) that ‖Zν‖2 is bounded above by1/2.
Soδ − 2µK as given above is always non-negative (as isγ − 2µH if n ≥ 3).

Proof of theorem.The effect of the mixed control can be evaluated as a convex combi-
nation of the systems ofreflection coupling (30) and rotationcoupling (35):

(dK)2 =
(

2µK +
(
µH + n− 1− 4‖Zν‖2

)2 (
1− ‖Zν‖2

)) d τ

W 2
+

O(1)
W 4

d τ ,

Drift d K = −µK
d τ

W 2
+

O(1)
W 4

d τ ,

(dK)× (dH) = 2
(
µH + n− 1− 4‖Zν‖2

)
‖Z ν‖2 d τ

W 2
+

O(1)
W 4

d τ ,

(dH)2 = 4‖Z ν‖2 d τ

W 2
+

O(1)
W 4

d τ ,

Drift d H = −µH
d τ

W 2
+

O(1)
W 4

d τ .

(38)

TheO(1) terms here may be taken to be bounded uniformly in the configuration vector
ν and matrixZ, and inW . Chooseε so that2µK−µH > ε > 0 and setd τ̃ = d τ/W 2,

and use the bounds on theO(1) terms to definew(ε) < ∞ as the smallest levelw such
that ∣∣∣∣Drift d K

d τ̃
+ µK

∣∣∣∣ ≤ ε

3
,

∣∣∣∣Drift d H

d τ̃
+ µH

∣∣∣∣ ≤ ε

3
, (39)

wheneverW ≥ w. Recall thatln(W ) = H − 2K, so the calculations ofEquation (38)
show that(d lnW )2 / d τ̃ is bounded, while∣∣∣∣Drift d ln W

d τ̃
− (2µK − µH)

∣∣∣∣ ≤ ε (40)

wheneverW ≥ w(ε). Now ε was chosen so that2µK − µH > ε > 0, so it follows by
consideration of the law of the iterated logarithm that if initiallyW0 > w(ε) then there
is a positive chance thatW > w(ε) for all time; moreover this probability increases to
1 asW0 increases. In caseW > w(ε) for all time, W will grow at least linearly with
rate2µK − µH − ε > 0, and hence (by consideringw(ε) for progressively smallerε)

lnW

τ̃
→ 2µK − µH (41)

asτ̃ →∞.
On this event of linear growth ofW > w(ε) the approximations inEquation (38)

improve with time. Thus as̃τ → ∞ so the same application of the law of the iterated
logarithm leads to

K

τ̃
→ −µK ,

H

τ̃
→ −µH . (42)



In summary, there is a positive probability of bothEquations (41) and (42) holding
so long asW0 > w(ε) is sufficiently large; indeed this probability increases to1 as
W0 → ∞. If µK andµH are both positive then this ensures thatV = exp(H) and
U = exp(K) both hit zero (delivering coupling of both position and all stochastic
areas) at̃τ = ∞.

In principle the coupling might still happen att-time∞, in which case it would not
succeed at finite time. However

d τ̃ =
d τ

W 2
=

(
V

U

)2

d t = exp (2(K −H)) d t (43)

and therefore the coupling will occur att-time∫ ∞
0

exp(−2(K −H)) d τ̃ . (44)

This will be finite on the event of linear growth ofW if the positiveµK andµH are
chosen not only to satisfyEquation (42) but also so that so thatµK < µH .

Consequently there is positive probability of coupling occurring at finite time so
long as we have arranged forµK andµH to satisfyInequalities (37).

Corollary 7. The adaptive mixed coupling ofTheorem6 can be modified by adding
a synchronous coupling regime so as to ensure successful coupling in finite time with
probability one.

Proof of corollary. If W falls beloww(ε), so that the above procedure breaks down,
then we can revert topure synchronous coupling (33) (which holdsK constant and
allowsH to evolve as a non-constant submartingale as noted afterEquation (33)) till W
does exceedw(ε), and restart the procedure. Consequently the above can be converted
into a strategy which produces coupling at finite time almost surely.

The coupling strategy described inCorollary 7 involves discontinuous transitions
between synchronous and mixture strategies, fulfilling the expectations of the heuristics
at the end ofSection2. Provided we resort to time-dependent strategies, we can of
course replace the mixed strategy by a time-dependent variation between reflection
and rotation strategies; hence coupling can be achieved using only orthogonal controls.

5 Complements and conclusion

It is natural to ask whether anything might be gained by considering the full coset of
coupling strategies alternate to the rotation strategies: what we might call therotated
reflection couplings

Jrot-refl
(
θJ
)

= (I− 2νT ν) exp
(
θJ
)

. (45)



Applying the same reasoning as led toEquation35, we find thatJrot-refl
(
− γ

W J
)

has

the following effect:

(dK)2 =
(

1− γ2

4W 2
‖J ν‖2

)
d τ +

γ4

W 4
O(1) d τ ,

Drift d K = −
(

1
2
− γ2

8W 2

)
d τ +

γ4

W 4
O(1) d τ ,

(dK)× (dH) =
γ

W
νT ZT J ν d τ +

γ3

W 4
O(1) d τ ,

(dH)2 = 4‖Z ν‖2 d τ

W 2
+

γ2

W 4
O(1) d τ ,

Drift d H = −
(γ

2
tr
(
ZT
(
I− 2ν νT

)
J
)

−
(
n− 1− 4‖Z ν‖2

)) d τ

W 2
+

γ2 + γ3

W 4
O(1) d τ . (46)

This analysis would lead to a rather transparent coupling strategy if we could ensure
that H was always a supermartingale under a suitable rotated reflection coupling for
smallγ/W ; however this is not possible forn > 3 since it can be shown that∣∣∣tr(ZT

(
I− 2ν νT

)
J
)∣∣∣ ≤

√
tr
(
ZT

0
Z

0

)
(47)

for Z
0

=
(
I− ν νT

)
Z
(
I− ν νT

)
with the maximum being achieved whenJ = Z

0
.

This maximum vanishes whenZ is of rank2 andν is a non-zero eigenvector ofZ, so
the evolution of the configuration(ν,Z) unavoidably affects whether or not the drift of
H is negative.

It is also natural to ask whether a more direct analysis can be made using the
Carnot-Caratheodory distancefor the relevant nilpotent Lie group. Recall that the
Carnot-Caratheodory distance between the origin0 and a pointx with specified sto-
chastic areasA is obtained by minimizing the Euclidean length of paths from0 to x
which produce the specified matrix of stochastic areas. A variational analysis shows
that in general these paths are Cartesian products of circular arcs. A direct but labo-
rious computation can be made of the stochastic calculus for the Carnot-Caratheodory
distance in the two-dimensional case: unfortunately no useful picture seems to emerge
from these computations.

There are various further questions to be addressed about stochastic area couplings.
Certainly it is possible to use the methods described here to derive estimates on cou-
pling rates; these are not pursued for reasons of space and also because there is a much
more substantial open question:

Can one co-adaptively couple not just the Brownian motions and their stochastic areas,
but also all possible iterated path-and-time integrals up to a fixed order of iteration?

Here of course it is necessary to suppose compatibility of the initial conditions, to
avoid obstructions caused by algebraic relationships between the various iterated in-
tegrals (see for example the algebraic remarks ofGaines 1994). Kendall and Price



(2004)answer this question affirmatively for the one-dimensional case by using an im-
plicit approach; the work of this paper shows that all singly-iterated path integrals can
be coupled co-adaptively, since these can all be expressed as linear combinations of
Lévy stochastic areas and quadratic functions of Brownian coordinates. The general
n-dimensional case is much more involved. We conjecture nevertheless that there is
an affirmative answer to the full multidimensional question given above. However it is
clear that new approaches will have to be tried here as in the one-dimensional case: the
structure which facilitates the matrix-based approach of Section4 is no longer available
for higher-order iterated integrals.
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366: J. Lund and E. Tḧonnes: Perfect Simulation for point processes given noisy observations.

If you want copies of any of these reports then please email your requests to the secretary using<statistics@warwick.ac.uk > (mail address: the Department of
Statistics, University of Warwick, Coventry CV4 7AL, UK).

http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/260.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/292.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/293.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/295.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/296.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/308.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/321.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/323.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/325.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/327.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/328.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/331.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/333.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/341.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/347.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/348.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/349.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/350.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/353.ps.gz
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/371.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/382.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/391.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/392.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/402.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/416.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/427.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/428.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/kendall/personal/ppt/445.pdf
http://www.warwick.ac.uk/go/stats/crism/research/working_papers/2005/paper05-2/
statistics@warwick.ac.uk

	Introduction
	Coupling, control and convexity
	The planar case
	The n-dimensional case
	Complements and conclusion
	References

