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Abstract This paper generalises the work of [13], which showed that per-
fect simulation, in the form of dominated coupling from the past, is always
possible (though not necessarily practical) for geometrically ergodic Markov
chains. Here we consider the more general situation of positive recurrent
chains, and explore when it is possible to produce such a simulation algo-
rithm for these chains. We introduce a class of chains which we name tame,
for which we show that perfect simulation is possible.
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1. Introduction

Perfect simulation was first introduced by Propp and Wilson [19] as a method
for sampling from the exact stationary distribution of an ergodic Markov chain.
Foss and Tweedie [6] showed that this classic coupling from the past (CFTP)
algorithm is possible (in principle, if not in practice) if and only if the Markov
chain is uniformly ergodic.

More recently, Kendall [13] showed that all geometrically ergodic chains pos-
sess (again possibly impractical) dominated CFTP algorithms (as introduced
in [12, 15]). This suggests the questions: what if X is subgeometrically ergodic?
Might it be the case that all positive recurrent Markov chains possess (imprac-
tical) domCFTP algorithms?

In this paper we introduce a new class of positive-recurrent chains (tame
chains) for which domCFTP is possible in principle.

Note that the practicality of CFTP algorithms is subject to a number of
interesting constraints: methods using co-adapted coupling will deliver answers
at a slower exponential rate than ordinary Markov chain Monte Carlo for many
chains [1, 18]; in general the coalescence of paths from many different starting
states (an intrinsic feature of CFTP) may be expected to be slower than pair-
wise coupling; and finally the theory of randomized algorithms can be used to
demonstrate the existence of problems for which there will not even be any
fully-polynomial randomized approximation schemes (subject to the complexity
theory assumption RP 6= NP ; Jerrum [11] discusses results of this nature for
counting algorithms for independent sets).
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Considerations of practicality of CFTP raise many further interesting re-
search questions; however in this paper we focus on considering whether (for all
Markov chains with a specified property) there can exist domCFTP algorithms,
practical or not.

To make this a meaningful exercise, it is necessary to be clearer about what
one is allowed to do as part of an impractical algorithm. The Foss and Tweedie
[6] result for uniform ergodicity presumes that one is able to identify when
regeneration occurs for the target Markov chain sub-sampled every k time-steps
(where k is the order of the whole state-space considered as a small set of the
chain), and that one can then draw both from the regeneration distribution
and also from the k-step transition probability distribution conditioned on no
regeneration. One has to assume more in order to cover the geometrically ergodic
case [13]; namely that it is possible to couple the target chain and the dominating
chain when sub-sampled every k time-steps, preserving the domination while
so doing. Here k is the order of a small set for a particular Foster-Lyapunov
criterion for the geometric ergodicity property. In fact something more must
also be assumed; it must be possible to implement the coupling between target
chain and dominating process in a monotonic fashion even when conditioning
on small-set regeneration occurring or not occurring. In fact we do not need
to assume any more than this when dealing with the tame chains introduced
below, except that the sub-sampling order k is not now fixed for all time, but
can vary according to the current value of the dominating process.

The impracticability of these CFTP algorithms thus has two aspects. Firstly,
the question of expected run-time is not addressed at all. Secondly, for the most
part the assumptions described above amount to supposing that we can trans-
late into practice the theoretical possibility of implementing various stochastic
dominations as couplings (guaranteed by theory expounded in Lindvall [16, Ch
IV], for example). However it should be noted that practical and implemented
CFTP algorithms can correspond very closely to these general schemes. For
example, the CFTP algorithm resulting from the result of Foss and Tweedie
[6] is essentially the simplest case of the exact sampling algorithm proposed by
Green and Murdoch [8]; the scheme proposed in [13] is closely related to fast
domCFTP algorithms for perpetuities with sample step k = 1.

In this paper we investigate the problems that occur in the move from geo-
metric to subgeometric ergodicity. We begin by recalling some useful results
concerning rates of ergodicity. Section 2 then reviews the result of [13]. The bulk
of the new material in this paper is to be found in Section 3. Here we introduce
the notion of a tame chain (Definition 14) and demonstrate that domCFTP is
possible for such chains (Theorem 15). A description of the domCFTP algorithm
for tame chains is provided in Section 3.3; the reader is referred to Kendall et al.
[14] for an introduction to the classical form of domCFTP. We also prove some
sufficient conditions for a polynomially ergodic chain to be tame (Theorems 21
and 22). However these conditions are not necessary: Section 4.5 contains an
example of a polynomially ergodic chain which does not satisfy these conditions
and yet is still tame. The existence of a polynomially ergodic chain that is not
tame is currently an open question.



1.1. Definitions and notation

Let X = (X0, X1, . . .) be a discrete-time Markov chain on a Polish state space
X . The Markov transition kernel for X is denoted by P , and the n-step kernel
by Pn;

Pn(x,E) = Px [Xn ∈ E] ,

where Px is the conditional distribution of the chain given X0 = x. The corre-
sponding expectation operator will be denoted Ex. If g is a non-negative function
then we write Pg(x) for the function

∫
g(y)P (x,dy), and for a signed measure µ

we write µ(g) for
∫
g(y)µ(dy). The f -norm is defined as ‖µ‖f := supg:|g|≤f |µ(g)|;

taking f ≡ 1 yields the usual total variation norm, for which we will simply write
‖µ‖.

We assume throughout that X is aperiodic (in the sense of [17]) and Harris-
recurrent. The stationary distribution of X shall be denoted by π, and the first
hitting time of a measurable set A ⊆ X by τA = min {n ≥ 1 : Xn ∈ A}.

The notion of small sets will feature heavily throughout this paper:

Definition 1. A subset C ⊆ X is a small set (of order m) for the Markov
chain X if the following minorisation condition holds: for some ε ∈ (0, 1] and a
probability measure ν,

Px [Xm ∈ E] ≥ εν(E), for all x ∈ C and measurable E ⊂ X . (1)

In this case we say that C is m-small. Many results in the literature are
couched in terms of the more general idea of petite sets; however for aperiodic
φ-irreducible chains the two notions are equivalent ([17], Theorem 5.5.7). Small
sets allow the use of coupling constructions: specifically, if X hits the small set
C at time n there is a positive chance (ε) that it regenerates at time n + m
(using the measure ν). Furthermore, if regeneration occurs then a single draw
from ν may be used for any number of copies of X belonging to C at time
n, resulting in their coalescence at time n + m. Small sets belong to a larger
class of pseudo-small sets, as introduced in [21], but such sets only allow for the
coupling of pairs of chains. Implementation of domCFTP requires a positive
chance of a continuum of chains coalescing when belonging to a given set C,
and so henceforth we shall deal solely with small sets.

1.2. Geometric ergodicity

We first outline some relevant theory for geometrically ergodic chains.

Definition 2. The chain X is said to be geometrically ergodic if there exists a
constant γ ∈ (0, 1) and some function Λ : X → [0,∞) such that, for all x in a
full and absorbing set,

‖Pn(x, ·)− π(·)‖ ≤ Λ(x)γn. (2)

If Λ can be chosen to be bounded then X is said to be uniformly ergodic.



Uniform ergodicity of X can be shown to be equivalent to the whole state
space X being a small set, in which case at every Markov chain step there is
a positive chance of coalescence, whereby chains started at all elements of the
state space become equal simultaneously. Foss and Tweedie [6] use this to show
that uniform ergodicity is equivalent to the existence of a CFTP algorithm for
X in the sense of Propp and Wilson [19].

The most common way to establish geometric ergodicity of a chain X is to
check the following geometric Foster-Lyapunov condition [7]:

GE: There exist positive constants β < 1 and b < ∞, a small set C and a
scale function V : X → [1,∞), bounded on C, such that

E [V (Xn+1) | Xn = x] ≤ βV (x) + b1C(x). (3)

Inequality (3) will be referred to as GE(V, β, b, C) when we need to be explicit
about the scale function and constants. For simplicity we also often write in-
equality (3) as PV ≤ βV + b1C . Under our global assumptions on X, this drift
condition is actually equivalent to X being geometrically ergodic ([17], Theorem
15.0.1). Furthermore, if X satisfies (3) then we can take Λ = V in equation (2).

Condition GE quantifies the way in which the chain V (X) behaves as a
supermartingale before X hits C. When the chain hits C then it can increase
in expectation, but only by a bounded amount. The following result can be
extracted from [17], Theorems 15.0.1 and 16.0.1.

Theorem 3. Suppose X is φ-irreducible and aperiodic. Then X is geometrically
ergodic if and only if there exists κ > 1 such that the corresponding geometric
moment of the first return time to C is bounded:

sup
x∈C

Ex [κτC ] <∞. (4)

The first hitting time of C is related to drift conditions in the following way
(extracted from [17], Theorem 11.3.5):

Theorem 4. For an ergodic chain X, the function VC(x) = Ex [τC ] is the
pointwise minimal solution to the inequality

PV (x) ≤ V (x)− 1, x /∈ C. (5)

Equation (5) is clearly a weaker drift condition than GE and is equivalent to
positive recurrence of X [17]. It can be shown that (5) implies that all sub-level
sets are small [17], and since V is bounded on C we will always take C to be a
sub-level set of the form {x ∈ X : V (x) ≤ d}.

We now present a couple of easy results concerning geometrically ergodic
chains, which will prove to be of great importance later on. The first demon-
strates how the scale function V in (3) may be changed to obtain a new drift
condition using the same small set.



Lemma 5. If the chain X satisfies condition GE(V, β, b, C), then for any ξ ∈
(0, 1],

PV ξ ≤ (βV )ξ + bξ1C .

Thus GE(V, β, b, C) implies GE(V ξ, βξ, bξ, C).

Proof. Calculus shows that (x+ y)ξ ≤ xξ + yξ for x, y ≥ 0 and 0 ≤ ξ ≤ 1. The
result follows by Jensen’s inequality for (PV )ξ, using (3).

The second result shows that a geometric drift condition persists if we sub-
sample the chain at some randomised stopping time.

Lemma 6. Suppose X satisfies condition GE(V, β, b, C). Then for any positive,
integer-valued stopping time σ (adapted to the natural filtration generated by X),
we have

Ex [V (Xσ)] ≤ βV (x) + b11C1(x),

where b1 = b/(1− β) and C1 =
{
x : V (x) ≤ b/(β(1− β)2)

}
∪ C.

The same β, b1 and C1 work for all values of σ, since the constant b1 swallows
up the higher order terms in β below.

Proof. Iterate the drift condition (3) and treat the cases {σ = 1} and {σ > 1}
separately:

Ex [V (Xσ)] ≤ Ex

βσV (x) + b
σ∑

j=1

βj−11C(Xσ−j)


≤ (βV (x) + b1C(x)) Px [σ = 1] +

(
β2V (x) +

b

1− β

)
Px [σ > 1]

≤ (βV (x) + b1C(x)) Px [σ = 1] + (βV (x) + b11C1(x)) Px [σ > 1]
≤ βV (x) + b11C1(x).

1.3. Polynomial ergodicity

We now turn to polynomially ergodic chains, and state some results which will
prove useful in Section 3.4.

Definition 7. The chain X is said to be polynomially ergodic if there exists
γ ≥ 0 such that, for all x in a full and absorbing set,

nγ ‖Pn(x, ·)− π(·)‖ → 0, as n→∞. (6)

As with geometric ergodicity there is a Foster-Lyapunov drift condition that
can be shown [10] to imply polynomial ergodicity (though the two are not equiv-
alent in this case):



PE: There exist constants α ∈ (0, 1) and b, c ∈ (0,∞), a small set C and a
scale function V : X → [1,∞), bounded on C, such that

E [V (Xn+1) | Xn = x] ≤ V (x)− cV α(x) + b1C(x). (7)

We will refer to (7) as PE(V, c, α, b, C) when we need to be explicit about the
scale function and constants.

This drift condition again tells us that V (X) behaves as a supermartingale
before X hits C, but that the drift towards the small set now occurs at a
subgeometric rate (and hence τC has no exponential moment). Note that if
α = 1 then we regain condition GE (for c ∈ (0, 1)) and that we do not include
the case α = 0 here, for which the drift condition is equivalent to X being simply
positive recurrent.

Polynomially ergodic chains satisfy a result analogous to Lemma 5, with a
similar proof ([10], Lemma 3.5):

Lemma 8. If the chain X satisfies condition PE, then for any ξ ∈ (0, 1], there
exists 0 < b1 <∞ such that,

PV ξ ≤ V ξ − cξV α+ξ−1 + b11C .

Note that, as in Lemma 5, the same small set C appears in the new drift
condition when we change scale function in this way.

Corollary 9. Suppose X satisfies condition PE. Then, for x /∈ C,

Ex [τC ] ≤ V 1−α(x)
c(1− α)

.

Proof. Set ξ = 1− α in Lemma 8 to obtain

PV 1−α(x) ≤ V 1−α(x)− c(1− α), for x /∈ C.

The result then follows from Theorem 4.

Note however, that there is no analogue to Lemma 6 (even if σ is determinis-
tic), since the geometric ergodicity case makes essential use of the convergence
of the series

∑
βj .

The drift condition (7) can actually be shown to imply much more than
the convergence in (6). From Proposition 2.6 of Douc et al. [4] we obtain the
following, which will be used in the proof of Theorem 22:

Proposition 10. Suppose X satisfies condition PE. Define for each 1 ≤ ρ ≤
1/(1− α),

Vρ(x) = V 1−ρ(1−α)(x), and rρ(n) = (n+ 1)ρ−1 . (8)

Then there exists a constant M <∞ such that

Ex

[
τC−1∑
n=0

rρ(n)Vρ(Xn)

]
≤MV (x). (9)

Furthermore, from [3] we see that an upper bound for M can be obtained
directly from the drift condition (7).



2. Geometric ergodicity implies domCFTP

We now give a brief overview of the proof that all geometrically ergodic chains
possess (not necessarily practical) domCFTP algorithms [13]. Recall that co-
adaptive coupling of Markov chains means that both chains have a common
past expressed by a fixed filtration of σ-algebras.

Definition 11. Suppose that V is a scale function for a Harris-recurrent Markov
chain X. We say the stationary ergodic random process Y on [1,∞) is a dom-
inating process for X based on the scale function V (with threshold h and
coalescence probability ε) if it can be coupled co-adaptively to realisations of
Xx,−t (the Markov chain X begun at x at time −t) as follows:

(a) for all x ∈ X , n > 0, and −t ≤ 0, almost surely

V (Xx,−t
−t+n) ≤ Y−t+n ⇒ V (Xx,−t

−t+n+1) ≤ Y−t+n+1; (10)

(b) if Yn ≤ h then the probability of coalescence at time n + 1 is at least ε,
where coalescence at time n+ 1 means that the set{

Xx,−t
n+1 : −t ≤ n and V (Xx,−t

n ) ≤ Yn

}
(11)

is a singleton set;
(c) and finally, P [Yn ≤ h] must be positive.

The following theorem is the main result of [13]:

Theorem 12. If X satisfies the drift condition

PV ≤ βV + b1C

for 0 < β < 1, then there exists a domCFTP algorithm for X (possibly subject
to sub-sampling) using a dominating process based on the scale V .

We do not reproduce the whole proof here, but it is helpful to examine the
basis for the construction of a stationary process Y which satisfies equation (10).
Since we only have knowledge of the dynamics of V (X) through its moments,
it is natural to ask that

Pz [Y1 ≥ βzy] ≥ sup
x:V (x)≤z

Ex [V (X1)]
βzy

, (12)

and then Markov’s inequality provides the domination required in Definition 11(a)
(see [16, Ch IV], for example). It has already been remarked that it is no re-
striction to set C = {x : V (x) ≤ d}, and this yields

sup
x:V (x)≤z

Ex [V (X1)]
βzy

≤ sup
x:V (x)≤z

βV (x) + b1[V (x)≤d]

βzy

≤ 1
y

if z ≥ d+
b

β
.



Define U to be the system workload of a D/M/1 queue, sampled at arrivals,
with arrivals every log(1/β) units of time, and service times being independent
and of unit rate Exponential distribution. If Y = (d + b/β) exp(U) and y ≥ 1,
then

Pz [Y1 ≥ βzy] =
1
y
, if z ≥ d+

b

β
,

and so (12) is satisfied. U is positive recurrent only if β < e−1, but a new geo-
metric drift condition with β replaced by βk−1 can be produced by subsampling
X with a fixed subsampling period k: the proof uses the ideas of Lemma 6. If
k is chosen large enough to fix βk−1 < e−1 then the above argument produces
a stationary dominating process for the subsampled chain. There is, of course,
more to the proof of Theorem 12: an explicit coupling between Y and target
chains X which satisfies the regeneration requirement (11) must be constructed,
and Y must also be shown to satisfy part (c) of Definition 11. It must also be
explained why and how Definition 11 delivers a domCFTP algorithm. Details
are provided in [13].

Note that Y is easy both to sample from in equilibrium and to run in reversed-
time, which is essential for implementation of domCFTP. Note too that Y be-
longs to a family of universal dominating processes for geometrically ergodic
chains, although this dominator need not generally lead to a practical simula-
tion algorithm. As noted in the introduction, the main difficulties in application
are in implementing practical domination derived from (12), and in determining
whether or not regeneration has occurred when Y visits the set {Y ≤ h}. This
task is rendered even less practical if subsampling has taken place, since then
detailed knowledge of convolutions of the transition kernel for X is required.

3. domCFTP for suitable positive recurrent chains

Theorem 12 leads to an obvious question: does there exist a similar domCFTP
algorithm for chains not satisfying condition GE? (Note that if we try to use the
drift condition (7) as above, to produce a dominating process for polynomially
ergodic chains, then the resulting process is non-recurrent.) In this section we
introduce a class of chains which possess a domCFTP algorithm.

The principal idea behind the subsequent work is to investigate when it is
possible to subsample X to produce a geometrically ergodic chain. For non-
geometrically ergodic chains a fixed subsampling interval will not work and so
we seek an appropriate simple adaptive subsampling scheme. A similar scheme
can then be used to delay the dominating process Y constructed in Section 2,
and to show that this new process D dominates the chain V (X) at the times
when D moves.

Several issues must be addressed in order to derive a domCFTP algorithm
using this idea.

1. what is an appropriate adaptive subsampling scheme?
2. when does such a scheme exist?
3. how does the dominating process D dominate V (X) when D moves?



4. can we simulate D in equilibrium, and in reversed-time?

The answers to these questions are quite subtle.

3.1. Adaptive subsampling

We begin by defining more carefully what we mean by an adaptive subsampling
scheme.

Definition 13. An adaptive subsampling scheme for the chain X, with respect
to a scale function V , is a sequence of stopping times {θn} defined recursively
by

θ0 = 0; θn+1 = θn + F (V (Xθn
)), (13)

where F : [1,∞)→ {1, 2, . . .} is a deterministic function.

Note that a set of stopping times {θn} such that {Xθn
} is uniformly ergodic

can be produced as follows. Using the Athreya-Nummelin split-chain construc-
tion [17] we may suppose there is a state ω with π(ω) > 0. Define

F (V (x)) = min
{
m > 0 : Px [Xm = ω] >

π(ω)
2

}
. (14)

Then the time until {Xθn
} hits ω from any starting state x is majorised by a

Geometric random variable with success probability π(ω)/2. This implies that
the subsampled chain is uniformly ergodic, as claimed. F as defined in (14) de-
pends upon knowledge of π however, and we obviously do not have this available
to us (it is the distribution from which we are trying to sample!). This exam-
ple shows that adaptive subsampling can have drastic effects on X. However,
construction of a domCFTP algorithm for X using this subsampling scheme (in
the manner to be described in Section 3.3) turns out to be impossible unless X
is itself uniformly ergodic.

Reverting to the previous discussion, suppose there is an explicit adaptive
subsampling scheme such that the chain X ′ = {Xθn} satisfies condition GE
with drift parameter β < e−1. Then a candidate dominating process D can
be produced for V (X) in the following way. Begin with an exponential queue
workload process Y that dominates V (X ′) (as in Section 2). Then slow down Y
by generating pauses using some convenient function S satisfying S(z) ≥ F (z′)
whenever z ≥ z′, to produce the process D. That is, given D0 = Y0 = z, pause
D by setting

D1 = D2 = . . . = DS(z)−1 = z.

Then define the law of DS(z) by L(DS(z) | DS(z)−1 = z) = L(Y1 | Y0 = z).
Iteration of this construction leads to a sequence of times {σn} at which D
moves, defined recursively by

σn+1 = σn + S(Dσn),

with D constant on each interval of the form [σn, σn+1).



Such a process D is a plausible candidate for a dominating process. To be
suitable for use in a domCFTP algorithm however, it must be possible to com-
pute its equilibrium distribution. Now, D as we have just defined it is only a
semi-Markov process: it is Markovian at the times {σn}, but not during the
delays between jumps. To remedy this, augment the chain by adding a second
coordinate N that measures the time until the next jump of D. This yields the
Markov chain {(Dn, Nn)} on [0,∞)× {1, 2, . . .} with transitions controlled by:

P [Dn+1 = Dn, Nn+1 = Nn − 1 | Dn, Nn] = 1 , if Nn ≥ 2;
P [Dn+1 ∈ E | Dn = z, Nn = 1] = P [Y1 ∈ E | Y0 = z] ,

for all measurable E ⊆ [1,∞);
P [Nn+1 = S(Dn+1) | Dn, Nn = 1, Dn+1] = 1.

Using the standard equilibrium equations, if π̃ is the equilibrium distribution of
(D,N) then

π̃(z, 1) = π̃(z, 2) = . . . = π̃(z, S(z)),

and thus πD(z) = π̃(z, ·) ∝ πY (z)S(z). Hence the equilibrium distribution of D
is the equilibrium of Y re-weighted using S. It is a classical probability result
[9] that under stationarity the number of people in the D/M/1 queue (used in
the construction of Y ) is Geometric with parameter η, where η is the smallest
positive root of

η = β1−η.

(Note that 0 < η < 1 since β < e−1.) Thus the equilibrium distribution of
the queue workload U is Exponential of rate (1 − η). Since Y ∝ exp(U), the
equilibrium density of Y , πY , satisfies

πY (z) ∝ z−(2−η). (15)

Re-weighting Y using S yields the equilibrium density of D:

πD(z) ∝ S(z)z−(2−η). (16)

A suitable pause function S must therefore satisfy S(z) < z1−η in order to
obtain a probability density in (16). The dominating process constructed in the
proof of Theorem 16 requires F ≤ S and hence this imposes the restriction
F (z) < z1−η: in particular, this means that F (z)/z → 0 as z →∞.

3.2. Tame and wild chains

The above discussion motivates the following definition of a tame chain. We
write dze to denote the smallest integer greater than or equal to z.

Definition 14. A Markov chain X is tame with respect to a scale function V
if the following two conditions hold:



(a) there exists a small set C ′ := {x : V (x) ≤ d′}, and a non-decreasing tam-
ing function F : [1,∞)→ {1, 2, . . .} of the form

F (z) =

{⌈
λ zδ

⌉
z > d′

1 z ≤ d′
(17)

for some constants λ > 0, δ ∈ [0, 1), such that the chain X ′ = {Xθn
}

possesses the drift condition

PV ≤ βV + b′1C′ , (18)

where {θn} is an adaptive sampling scheme defined using F , as in (13);
(b) the constant β in inequality (18) satisfies

log β < δ−1 log(1− δ). (19)

We say that X is tamed (with respect to V ) by the function F . We may simply
say that X is tame, without mention of a specific scale function. A chain that
is not tame is said to be wild.

Thus a tame chain is one for which we can exhibit an explicit adaptive sub-
sampling scheme using a power function F , and for which the subsampled chain
so produced is geometrically ergodic with sufficiently small β.

Note that all geometrically ergodic chains are trivially tame: if X satisfies
condition GE(V, β, b, C) then X is tamed by the function

F (z) = k for z > sup
y∈C

V (y),

for any integer k > 1 + 1/ log β.
Definition 14 is strongly motivated by the discussion in Section 3.1. From

(17) we see that F produces a simple adaptive subsampling scheme as in Defini-
tion 13. F is also a non-decreasing function, which accords with our intuition: if
V (X) is large then we expect to wait longer before subsampling again, to create
enough drift in the chain to produce a geometric Foster-Lyapunov condition.
Requirement (b) of Definition 14 is made for two reasons. Firstly, it ensures
that β < e−1, and so delivers ergodicity of the D/M/1 queue workload U used
in the construction of Y . Secondly, it ensures that the weighted equilibrium
distribution of Y using S (as described at the end of Section 3.1), is a proper
distribution; this will be shown in the proof of Theorem 16.

[13] shows that a dominating process exists for V (X ′) even if β > e−1, but
recall that this involves a further subsampling of X ′ with a fixed period k. Here
β < e−1 is made a requirement of the adaptive subsampling process to avoid
this situation, since further subsampling of X ′ would result in a composite non-
deterministic subsampling scheme.

The main theorem of this paper is the following:

Theorem 15. Suppose X is tame with respect to a scale function V . Then there
exists a domCFTP algorithm for X using a dominating process based on V .



Theorem 15 is true for all geometrically ergodic chains by the result of [13].
As with the results of [6] and [13], this algorithm may not be implementable
in practice. The proof of Theorem 15 results directly from Theorem 16 and the
discussion in Section 3.3 below, where a description of the domCFTP algorithm
is given.

Theorem 16. Suppose X satisfies the weak drift condition PV ≤ V +b1C , and
that X is tamed with respect to V by the function

F (z) =

{⌈
λ zδ

⌉
z > d′

1 z ≤ d′,

with the resulting subsampled chain X ′ satisfying a drift condition
PV ≤ βV +b′1[V≤d′], with log β < δ−1 log(1−δ). Then there exists a stationary
ergodic process D which dominates V (X) at the times {σn} when D moves.

Proof. We shall construct a Markov chain (D,N) by starting with a process Y
and pausing it using a function S, to be defined shortly. Before beginning the
main calculation of the proof we define some constants: these are determined
explicitly from the taming function F and the drift conditions satisfied by X
and X ′. First choose β∗ > β such that

log β < log β∗ < δ−1 log(1− δ). (20)

(That this is possible is a result of the definition of tameness.) Then set:

a =
b′

1− β
(1 + b(λ+ 1)) ;

d∗ = min
{
z ≥ d′ : (β∗ − β)z ≥ b(λ+ 1)zδ + a

}
;

b∗ = b(λ+ 1)d∗δ + a ;

h∗ = d∗ +
b∗

β∗
.

Finally, consider the set C∗ = {x : V (x) ≤ h∗}. As a sub-level set, C∗ is m-
small, for some integer m ≥ 1. We are now in a position to define the function
S:

S(z) =

{
(m ∨ F (h∗))

⌈
λ zδ

⌉
z ≥ h∗

(m ∨ F (h∗)) z < h∗.
(21)

Note that F (x) ≤ S(z) for all x ≤ z (since h∗ ≥ d′), and that

S(z) ≥ m ∨ F (h∗) ≥ m, for all z ≥ 0. (22)

Define the process Y = h∗ exp(U), where U is the system workload of a
D/M/1 queue with arrivals every log(1/β∗) time units and service times being
independent and of unit Exponential distribution. Positive recurrence of U fol-
lows from (20). Pause Y using S (as described on page 11) and call the resulting



process D. The stationary distribution of D, as shown at the end of Section 3.1,
is given by

πD(z) ∝ S(z)z−(2−η)

∝ z−(2−η−δ) (for z > h∗), (23)

where η < 1 is the smallest positive solution to the equation

η = β∗(1−η).

Now, by our choice of β∗ above,

(1− η)−1 log η = log β∗ < δ−1 log(1− δ),

and so η < 1 − δ. Hence 2 − η − δ > 1, and so we see from (23) that πD is a
proper density.

Suppose (Dσn
, Nσn

) = (z, S(z)), and that V (Xσn
) = V (x) ≤ z. We wish to

show that Dσn+1 dominates V (Xσn+1), where σn+1 = σn + S(z) is the time at
which D next moves. Domination at successive times {σj} at which D moves
then follows inductively. For simplicity in the calculations below we set σn = 0.

Let {θn} be the adaptive subsampling scheme for X defined recursively by
the taming function F . Define a region R(z) ⊂ X × Z+ to be the so-called
‘short-sampling’ region:

R(z) = {(y, t) : F (V (y)) + t > S(z)} .

In other words, once the chain {Xθn , θn} hits the (deterministic) region R(z)
(at time θj , say), the next subsampling time (θj+1 = θj + F (V (Xθj ))) will lie
beyond the time S(z) at which the dominating process moves (see Figure 1).
Define

T (z) = min {θn : (Xθn
, θn) ∈ R(z)} ,

and
T ′(z) = min {n : (Xθn , θn) ∈ R(z)}

to be the associated stopping time for X ′. (Note that T ′(z) ≥ 1 since V (x) ≤ z
implies F (V (x)) ≤ S(z).)

Our aim is to control Ex

[
V (XS(z))

]
, recalling that V ≥ 1 and S(z) is deter-

ministic:

Ex

[
V (XS(z))

]
= Ex

[
EXT (z)

[
V (XS(z))

]]
≤ Ex

V (XT (z)) + b

S(z)−1∑
j=T (z)

PXT (z) [Xj ∈ C]


using the weak drift condition of the Theorem,

≤ Ex

[
V (XT (z))

]
+ bEx [(S(z)− T (z))]

≤ Ex

[
V (XT (z))

]
+ bEx

[
F (V (XT (z)))

]
since S(z)− T (z) < F (V (XT (z))), by definition of R(z),

≤ Ex

[
V (XT (z))

]
+ b(λ+ 1) Ex

[
V (XT (z))δ

]
(24)

by the definition of F .



Figure 1. Depiction of the region R(z).

Now, the chain X ′ = {Xθn} is geometrically ergodic (since X is tamed by
F ), and so Lemma 6 tells us that

Ex

[
V (XT (z))

]
= Ex

[
V (X ′

T ′(z))
]
≤ βV (x) +

b′

1− β
. (25)

Furthermore, Lemma 5 yields

Ex

[
V (XT (z))δ

]
= Ex

[
V (X ′

T ′(z))
δ
]
≤ βδV δ(x) +

(
b′

1− β

)δ

1[V (x)≤d′]

≤ V δ(x) +
b′

1− β
. (26)

Combining equations (24), (25) and (26), and making use of the constants de-
fined at the start of this proof, we obtain,

Ex

[
V (XS(z))

]
≤ βV (x) + b(λ+ 1)V δ(x) + a

≤ β∗V (x) + b∗1[V (x)≤d∗]. (27)

Thus a geometric drift condition holds at time S(z) for all chains V (X) with
starting states x satisfying V (x) ≤ z. As in the proof of Theorem 12, it follows
from inequality (27) that V (XS(z)) can be dominated by DS(z) [16].

Note that questions 1 and 3 of page 10 have now been answered: we have
defined what is meant by an adaptive subsampling scheme and shown that,
if this takes a particular (power function) form, a stationary process D that
dominates V (X) at times {σn} can be produced.

3.3. The domCFTP algorithm for tame chains

In this section we describe the domCFTP algorithm for tame chains, and hence
complete the proof of Theorem 15. We begin this by answering question 4 of
page 11, by showing how to simulate (D,N) in equilibrium, and in reversed-time.



Figure 2. Construction of D in reversed-time.

Furthermore this simulation is quite simple to implement when the function S
is of the form (21).

The first point to make here is that one can simulate easily from πD using
rejection sampling [20]: using (16), for some constant γ > 0,

πD(z) = γ

(
1
2

⌈
λ zδ

⌉
λ zδ

)
1

z2−η−δ

= γ p(z)g(z),

where p(z) ∈ [1/2, 1], and g(z) is a Pareto density (since 2− η− δ > 1, as in the
proof of Theorem 16). Now, given D0 = z0 as a draw from πD, set N0 := n0,
where n0 ∼ Uniform {1, 2, . . . , S(z0)}. It follows from the construction of (D,N)
in Section 3.1 that (D0, N0) ∼ π̃, as required.

The chain (D,N) may then be run in reversed-time as follows (see Figure 2):

• set j = −1 ;
• for i = 0,−1,−2, . . . :

– if Ni < S(Di) :

∗ set Di−1 = Di ;
∗ set Ni−1 = Ni + 1 ;

– if Ni = S(Di) :

∗ define σj = i, and set j ← j − 1 ;
∗ draw Di−1 from the reverse kernel q(Di ; dz), where

q(z′ ; dz)πY (z′)dz′ = p(z ; dz′)πY (z)dz,

and where p(z ; d z′) is the transition kernel for Y = expU ;
∗ set Ni−1 = 1 ;

We now show that D is a dominating process for X (at the times when D
moves) based on the scale function V , with threshold h∗ (recall Definition 11).



Recall also from the proof of Theorem 16 that the set C∗ = {x : V (x) ≤ h∗}
is m-small.

Firstly, the proof of Theorem 16 shows that the link between stochastic dom-
ination and coupling [16] may be exploited to couple the various Xx, σ−M with
D such that for all n ≤M ,

V (Xx, σ−M
σ−n

) ≤ Dσ−n
⇒ V (Xx, σ−M

σ−(n−1)
) ≤ Dσ−(n−1) . (28)

We now turn to part (b) of Definition 11. Since C∗ is m-small, there exists
a probability measure ν and a scalar ε ∈ (0, 1) such that for all Borel sets
B ⊂ [1,∞), whenever V (x) ≤ h∗

P [V (Xm) ∈ B | X0 = x] ≥ εν(B).

Therefore, since S(h∗) ≥ m (as noted in equality (22)),

P
[
V (XS(h∗)) ∈ B | X0 = x

]
≥ εPS(h∗)−m

ν (B),

and so C∗ is S(h∗)-small. Furthermore, the stochastic domination which has
been arranged in the construction of D means that for all u ≥ 1, whenever
V (x) ≤ y,

P
[
V (XS(y)) > u | X0 = x

]
≤ P [Y1 > u | Y0 = y] .

We can couple in order to arrange for regeneration if a probability measure ν̃
can be identified, defined solely in terms of PS(h∗)−m

ν and the dominating jump
distribution P [Y1 ≥ u | Y0 = y], such that for all u ≥ 1, whenever V (x) ≤ y:

P
[
V (XS(y)) > u | X0 = x

]
− εPS(h∗)−m

ν ((u,∞)) ≤ P [Y1 > u | Y0 = y]− εν̃((u,∞));

PS(h∗)−m
ν ((u,∞)) ≤ ν̃((u,∞));

and P [Y1 ∈ E | Y0 = y] ≥ εν̃(E),

for all measurable E ⊆ [1,∞).
Recall the following result, a proof of which is provided in [13]:

Lemma 17. Suppose U , V are two random variables defined on [1,∞) such
that

(a) The distribution L(U) is stochastically dominated by the distribution L(V ):

P [U > u] ≤ P [V > u] for all u ≥ 1;

(b) U satisfies a minorisation condition: for some β ∈ (0, 1) and probability
measure ψ,

P [U ∈ E] ≥ βψ(E) for all Borel sets E ⊆ [1,∞).

Then there is a probability measure µ stochastically dominating ψ and such that
βµ is minorised by L(V ). Moreover, µ depends only on βψ and L(V ).



Therefore, using Lemma 17, L(Xσ−(n−1) | Xσ−n = x) may be coupled to
L(Dσ−(n−1) | Dσ−n

= y) whenever V (x) ≤ y, in a way that implements stochas-
tic domination and ensures that all the Xσ−(n−1) can regenerate simultaneously
whenever Dσ−n

≤ h∗.
Finally, it is easy to see that part (c) of Definition 11 is satisfied: the system

workload U of the queue will hit zero infinitely often and therefore D will hit
level h∗ infinitely often.

We can now describe a domCFTP algorithm based on X which yields a draw
from the equilibrium distribution.

Algorithm:

• Simulate D, as a component of the stationary process (D,N), backwards
in time till the most recent σ−M < 0 for which Dσ−M

≤ h∗ (using the
algorithm described on page 17);
• while coalescence does not occur at time σ−M :

– extend D backwards till the most recent σ−M ′ < σ−M for which
Dσ−M′ ≤ h∗;

– set M ←M ′;

• simulate the coupled X forwards at times σ−M , σ−(M−1), σ−(M−2), . . .,
starting with the unique state produced by the coalescence event at time
σ−M . Do this up to and including time σ−1;

• run the chain X forwards (from its unique state) from time σ−1 to 0 (see
Figure 3);
• return X0 as a perfect draw from equilibrium.

Figure 3. Final stage of the domCFTP algorithm: D (black circles •) dominates V (X) (red
triangles N) at times {σn}. To obtain the draw from equilibrium, X0, X can be run from
time σ−1 to 0 without reference to D after time σ−1.



Lemma 18. The output of the above algorithm is a draw from the stationary
distribution of the target chain X.

Proof. The stochastic domination of (28) and Theorem 2.4 of Lindvall [16, Ch
IV] guarantee the existence of a joint transition kernel P (n)

X, D that provides dom-
ination of X by D, and such that the marginal distributions of X and D are
correct. That is, for x ≤ y, with n = S(y), for all z ≥ 1:

P
(n)
X, D

(
x, y ; V −1((z,∞)), [1, z]

)
= 0 ;∫

V −1([1,z])

∫ ∞

1

P
(n)
X, D (x, y ; du, dv) = P

(n)
X

(
x ; V −1([1, z])

)
;∫

X

∫ z

1

P
(n)
X, D (x, y ; du, dv) = P

(n)
D (y ; [1, z]) .

The chains X and D (run forwards) may therefore be constructed in either of
two ways.

1. Given Dσ−m
and Xσ−m

≤ Dσ−m
, with n = S(Dσ−m

):

• draw Dσ−(m−1) from the probability kernel

P
(n)
D

(
Dσ−m ; ·

)
;

• draw Xσ−(m−1) from the regular conditional probability

P
(n)
X, D

(
Xσ−m , Dσ−m ; · , Dσ−(m−1)

)
P

(n)
D

(
Dσ−m

; Dσ−(m−1)

) ;

• draw Xσ−m+1, Xσ−m+2, . . . , Xσ−(m−1)−1 as a realisation of X condi-
tioned on the values of Xσ−m

and Xσ−(m−1) (that is, as a Markov
bridge between Xσ−m and Xσ−(m−1)).

2. Given Dσ−m
and Xσ−m

≤ Dσ−m
, with n = S(Dσ−m

):

• drawXσ−m+1, Xσ−m+2, . . . , Xσ−(m−1) using the normal transition ker-
nel for X. Note that the distribution of Xσ−(m−1) is exactly the same

as if it were drawn directly from P
(n)
X

(
Xσ−m

; ·
)
;

• draw Dσ−(m−1) from the regular conditional probability

P
(n)
D|{X}

(
· | Dσ−m

, Xσ−m
, Xσ−m+1, . . . , Xσ−(m−1)

)
=
P

(n)
X, D

(
Xσ−m , Dσ−m ; Xσ−(m−1) , ·

)
P

(n)
X

(
Xσ−m

; Xσ−(m−1)

) .

Each of these two methods produces chains X and D which satisfy the sto-
chastic domination of (28). Method 1 is that which is effectively used by the



algorithm, although there is no need for the final superfluous step (the Markov
bridge) when implementing the algorithm. Method 2, however, makes it clear
that X has the correct Markov transition kernel to be the required target chain.
Furthermore, the equivalence of the two schemes proves the validity of the final
step of the algorithm, where the chain X is run from time σ−1 to 0 without
reference to D.

Finally, the proof that the algorithm returns a draw from equilibrium follows
a common renewal theory argument. Consider a stationary version of the chain
X, say X̂, run from time −∞ to 0. The regenerations of X̂ (when it visits
the small set C∗), and those of D (when it hits level h∗) form two positive
recurrent renewal processes (with that of X̂ being aperiodic). Therefore, if D
is started far enough in the past, there will be a time −T at which both X̂
and D regenerate simultaneously. Now consider the process X̃n = X̂n1[n<−T ] +
Xn1[n≥−T ]. Clearly, X̃ is stationary and follows the same transitions of X from
time −T to 0. Thus X0 = X̃0 ∼ π, and so the output of the algorithm is indeed
a draw from the required equilibrium distribution.

This concludes the proof of Theorem 15: we have produced a domCFTP
algorithm based on the scale function V for the tame chain X.

3.4. When is a chain tame?

As a consequence of Theorem 15, question 2 of page 10 can be rephrased as:
when is a chain tame? Note that a tame chain will not necessarily be tamable
with respect to all scale functions, of course.

In this section we present an equivalent definition of tameness, and prove some
sufficient conditions for a polynomially ergodic chain to be tame. The following
theorem shows that tameness is determined precisely by the behaviour of the
chain until the time that it first hits the small set C.

Theorem 19. Suppose X satisfies the weak drift condition PV ≤ V + b1C .
Then, for n(x) = o(V (x)), the following two conditions are equivalent:

(i) there exists β ∈ (0, 1) such that Ex

[
V (Xn(x))

]
≤ βV (x), for V (x) suffi-

ciently large;
(ii) there exists β′ ∈ (0, 1) such that Ex

[
V (Xn(x)∧τC

)
]
≤ β′V (x), for V (x)

sufficiently large.

Furthermore, if V (x) is large enough, we may take |β − β′| < ε for any ε > 0.

Proof. Since C = {x : V (x) ≤ d} is a sub-level set, we can split the expectation
of V (Xn(x)∧τC

) according to whether τC ≤ n(x) or not, to show

Ex

[
V (Xn(x)∧τC

)
]
≤ sup

y∈C
V (y) + Ex

[
V (Xn(x)) ; τC > n(x)

]
≤ sup

y∈C
V (y) + Ex

[
V (Xn(x))

]
,

and so (i)⇒ (ii).



We now prove the reverse implication. Using the weak drift condition for X,
and recalling that n(x) is deterministic:

Ex

[
V (Xn(x)) ; τC ≤ n(x)

]
=

n(x)∑
k=1

Ex

[
EXk

[
V (Xn(x)−k)

]
; τC = k

]
≤

n(x)∑
k=1

sup
y∈C

Ey

[
V (Xn(x)−k) | Xk = y

]
Px [τC = k]

≤
n(x)∑
k=1

sup
y∈C

(V (y) + b(n(x)− k)) Px [τC = k]

≤ d+ n(x)b.

Assuming (ii), we therefore have

Ex

[
V (Xn(x))

]
≤ Ex

[
V (Xn(x)∧τC

)
]
+ Ex

[
V (Xn(x)) ; τC ≤ n(x)

]
≤ β′V (x) + d+ n(x)b
≤ βV (x),

for all large enough V (x), since n(x) = o(V (x)).
Finally, due to the restriction upon the size of n(x), it is clear that β and

β′ may be made arbitrarily close simply by restricting attention to x for large
enough V (x).

Suppose that we now modify the behaviour of a tame chain X when it is
in the small set C. The following simple corollary of Theorem 19 shows that,
so long as the resulting chain still satisfies a weak drift condition, tameness is
preserved under such modification.

Corollary 20. Suppose X satisfies the drift condition PV ≤ V + b1C and that
X is tamed by the function F , to produce a chain X ′ satisfying GE(V, β, b′, C ′).
Let X̂ be a new chain produced by modifying the behaviour of X when in C,
such that X̂ satisfies PV ≤ V + b̂1C . Then F also tames X̂, and the resulting
chain X̂ ′ satisfies GE(V, β̂, b̂′, Ĉ ′), for any β̂′ ∈ (β, 1).

Proof. Write Fx = F (V (x)). Since X is tame, Theorem 19 tells us that for V (x)
large enough,

Ex [V (XFx∧τC
)] ≤ β̃V (x),

for any β̃ ∈ (β, 1). Now, since

X̂1[τ̂C≥Fx]
d= X1[τC≥Fx]

by definition,
Ex

[
V (X̂Fx∧τ̂C

)
]
≤ β̃V (x).



Furthermore, since X̂ satisfies the drift condition PV ≤ V + b̂1C , a second
application of Theorem 19 yields

Ex

[
V (X̂Fx

)
]
≤ β̂V (x),

where β̂ ∈ (β̃, 1) may be chosen arbitrarily close to β̃ (and hence to β). Thus
the same function F also tames X̂.

We have already remarked that all geometrically ergodic chains are tame:
the next two theorems provide sufficient conditions for a polynomially ergodic
chain to be tame.

Theorem 21. Let X be a chain satisfying a drift condition PV ≤ V −cV α+b1C

for which V (X) has bounded upward jumps whenever X /∈ C. That is, V (X1) ≤
V (X0) +K whenever X0 /∈ C, for some constant K <∞. Then X is tame.

Proof. From Theorem 19 we see that it is sufficient to show that by choosing
an appropriate taming function F we can obtain the bound

Ex

[
V (XF (V (x))) ; F (V (x)) < τC

]
≤ βV (x) + b′1C′(x), (29)

where β is small enough to satisfy

log β < (1− α)−1 logα. (30)

Choose β sufficiently small to satisfy (30), and then choose λ large enough
such that λ−1 < βc(1− α). Define the constant d1 by

dα
1 =

K

c(1− α)λ

(
β − 1

c(1− α)λ

)−1

,

and define C1 = {x : V (x) ≤ d1}. Note that, if x /∈ C1,(
β − 1

c(1− α)λ

)
V (x) ≥

(
K

c(1− α)λ

)
V 1−α(x). (31)

Finally, set d′ = max {d, d1}, and let C ′ = {x : V (x) ≤ d′}.
Now define the taming function F by

F (z) =

{⌈
λz1−α

⌉
for z > d′

1 for z ≤ d′.
(32)

Write Fx = F (V (x)) to ease notation. Then, for x /∈ C ′, since the upward



jumps of V (X) before time τC are bounded above by K:

Ex [V (XFx
) ; Fx < τC ] ≤ (V (x) +KFx) Px [τC > Fx]

≤ (V (x) +KFx)
Ex [τC ]
Fx

, by Markov’s inequality,

≤ (V (x) +KFx)
V 1−α(x)
c(1− α)Fx

, by Corollary 9,

≤ V (x)
c(1− α)λ

+
(

K

c(1− α)λ

)
V 1−α(x) using (32),

≤ βV (x), by inequality (31).

Finally, for x ∈ C ′, we have

Ex [V (XFx
)] = Ex [V (X1)] ≤ V (x) + b

≤ βV (x) + (1− β)d′ + b

= βV (x) + b′,

where b′ = (1−β)d′+b <∞. Hence (29) is satisfied for all x, and X is tame.

The following proof makes use of Proposition 10, borrowed from Douc et al.
[4]. Note that tameness is clearly monotonic in the drift exponent α, since chains
satisfying PE(V, c, α, b, C) also satisfy PE(V, c, α′, b, C) for all α′ ≤ α.

Theorem 22. Let X be a chain satisfying the drift condition PV ≤ V − cV α +
b1C , with α > 3/4. Then X is tame.

Proof. Let ρ = (1−α)−1/2 > 2, and set α′ = 2α−1. Writing Vρ = V 1−ρ(1−α) =
V 1/2, and using Lemma 8,

PVρ ≤ Vρ − V α′

ρ + b11C ,

for some b1 <∞. We shall seek a time change that produces a geometric Foster-
Lyapunov condition on this scale, Vρ. As in the proof of Theorem 21 we simply
need to control

Ex [Vρ(XFx
) ; Fx < τC ] ,

where Fx = F (Vρ(x)).
By Proposition 10,

Ex

[
τC−1∑
n=0

nρ−1Vρ(Xn)

]
≤MV (x)

for some constant M <∞. Thus

Ex [Vρ(XFx) ; Fx < τC ] ≤ MV (x)
F ρ−1

x

. (33)

Now choose β > 0 such that log β < (ρ− 1) log ((ρ− 2)/(ρ− 1)), and define the
taming function F by

F (z) =
⌈
(λz)1/(ρ−1)

⌉
∨ 1,



for any λ > M/β. Then, from inequality (33),

Ex [Vρ(XFx
)] ≤ MV (x)

F ρ−1
x

≤ βVρ(x),

for Vρ(x) large enough. Therefore F tames X, as required.

In fact, it turns out that any chain satisfying drift condition PE may be
adaptively subsampled as above to produce a geometrically ergodic chain (see
[2] for details). However, for α ≤ 3/4 the pause function produced leads to an
improper equilibrium distribution for the dominating process of Theorem 16.
Connor [2] shows how this lower bound on α may be further reduced to 0.704,
but showing tameness for α ≤ 0.704 is still an open question. This is not to
say, of course, whether or not there may exist another suitable pause function,
possibly on a different scale.

These two sufficient conditions are not necessary for a chain to be tame: in
Section 4.5 we present an example of a chain that satisfies condition PE with
drift coefficient α = 1/2, and which does not have bounded jumps for X /∈ C,
and we show explicitly that it is tame.

4. Examples

We now present five explicit examples of polynomially ergodic chains, and show
that they are tame. The first two of these are tame by Theorem 21, and the next
two by Theorem 22. The final example (4.5) shows that the sufficient conditions
of Theorems 21 and 22 are not necessary for X to be tame.

4.1. Epoch chain

Consider the Markov chain X on {0, 1, 2, . . .} with the following transition ker-
nel: for all x ∈ {0, 1, 2, . . .},

P (x, x) = θx; P (0, x) = ζx;
P (x, 0) = 1− θx.

Thus X spends a random length of time (an epoch) at level x before jumping
to 0 and regenerating. Meyn and Tweedie [17] (page 362) show that this chain
is ergodic if ζx > 0 for all x, and∑

x

ζx(1− θx)−1 <∞. (34)

Furthermore, they show that the chain is not geometrically ergodic if θx → 1 as
x→∞, no matter how fast ζx → 0.

Now suppose that θx = 1 − κ(x + 1)−λ, for some suitable κ, λ > 0. We now
slightly strengthen condition (34) on {ζx} to obtain a polynomial drift condition:
we require that there exists ε > 0 such that

∑
x ζxx

(1+ε)λ <∞.



Let C =
[
0, κ1/λ

]
. Then following drift condition holds:

Ex [V (X1)] ≤ V (x)− κV α(x) + b1C(x), (35)

where V (x) = (x + 1)m, m = (1 + ε)λ, and α = ε/(1 + ε). This chain then
satisfies the conditions of Theorem 21 and is therefore tame.

4.2. Delayed death process

Consider the Markov chain X on {0, 1, 2, . . .} with the following transition ker-
nel:

P (x, x) = θx, x ≥ 1
P (x, x− 1) = 1− θx, x ≥ 1

P (0, x) = ζx > 0, x ∈ {0, 1, 2, . . .} ,

where θx = 1−κ(x+1)−λ, for some suitable κ > 0, λ > 1, and ζx → 0 as x→∞
fast enough to ensure

E0 [τ0] = 1 +
∞∑

x=1

ζx

x∑
y=1

(1− θy)−1 <∞,

making X ergodic.
It is simple to show that X is not geometrically ergodic, but that it does

satisfy condition PE(V, c, α, b, C) with V (x) = (x + 1)2λ and α = (λ − 1)/2λ.
Since the upward jumps of V (X) are clearly bounded for X ≥ 1, the chain is
tame by Theorem 21.

4.3. Delayed simple random walk

Similarly, a delayed reflected simple random walk can be defined by the following
transition probabilities:

P (x, x+ 1) = κ(1− p)(x+ 1)−1 (x ≥ 1), P (0, 1) = κ(1− p),
P (x, x) = 1− κ(x+ 1)−1 (x ≥ 1), P (0, 0) = 1− κ(1− p),
P (x, x− 1) = κp(x+ 1)−1 (x ≥ 1),

for suitable κ > 0, and with p > 1/2 to ensure that X is ergodic. X is not
geometrically ergodic, but does satisfy condition PE(V, c, α, b, C) with V (x) =
(x + 1)m and α = (m − 2)/m for any integer m > 2. Note that although the
bound |Xn+1 −Xn| ≤ 1 holds, we are unable to apply Theorem 21 since that
requires a uniform bound on |V (Xn+1)− V (Xn)|. However, choosing m > 10
means that Theorem 22 may be applied to show that X is tame.



4.4. Random walk Metropolis-Hastings

For a more practical example, consider a random walk Metropolis Hastings algo-
rithm on Rd, with proposal density q and target density p. Fort and Moulines [5]
consider the case when q is symmetric and compactly supported, and log p(z) ∼
− |z|s, 0 < s < 1 as |z| → ∞. (When d = 1, this class of target densities
includes distributions with tails typically heavier than the exponential, such
as the Weibull distributions: see [5] for more details.) They show that, under
these conditions, the Metropolis-Hastings algorithm converges at any polyno-
mial rate. In particular, it is possible to choose a scale function V such that the
chain satisfies condition PE with α > 3/4. Therefore, by Theorem 22 this chain
is tame.

4.5. Random walk on a half-line

For our final example of a tame chain, we consider Example 5.1 of Tuominen
and Tweedie [22]. This is the random walk on [0,∞) given by

Xn+1 = (Xn + Zn+1)
+
, (36)

where {Zn} is a sequence of i.i.d. real-valued random variables. We suppose that
E [Z] = −µ < 0 (so 0 is a positive-recurrent atom) and that E [(Z+)m] = µm <
∞ for some integer m ≥ 2.

We also assume that E
[
rZ+

]
= ∞ for all r > 1, and claim that this forces

X to be subgeometrically ergodic. To see this, consider the chain X̂ which uses
the same downward jumps as X but stays still when X increases. That is,

X̂n+1 =
(
X̂n − Z−n+1

)+

.

Let τ0 be the first time that X hits 0, and τ̂0 be the corresponding hitting time
for X̂. Note that, for all n > 0,

Ex

[
X̂n∧τ̂0

]
≥ x− Ex [n ∧ τ̂0] µ̂, (37)

where µ̂ := −E [Z ; Z ≤ 0] > 0. Now, the left hand side of (37) is dominated
by x, and Ex [τ̂0] <∞, so letting n→∞ yields

Ex [τ0] ≥ Ex [τ̂0] ≥ x/µ̂. (38)

Thus, for r > 1:

E0 [rτ0 ] = rE0 [EX1 [rτ0 ]]

≥ rE0

[
rEX1 [τ0]

]
≥ rE0

[
rX1/µ̂

]
=∞, by assumption.



Therefore, by Theorem 3, X is not geometrically ergodic.
Now, Jarner and Roberts [10] show that ifm ≥ 2 is an integer, thenX satisfies

condition PE with V (x) = (x + 1)m and α = (m − 1)/m. Clearly the upward
jumps of V (X) when X /∈ C are not necessarily bounded, and so Theorem 21
cannot be applied. Furthermore, if m ≤ 4 then α ≤ 3/4 and so Theorem 22
cannot be applied. However, we now show that X is still tame when m = 2 (and
thus tame for all m ≥ 2).

(i) First assume that the law of Z is concentrated on [−z0,∞) for some z0 > 0,
and so µ2 = E

[
(Z+)2

]
<∞. Then, if x ≥ z0:

Ex

[
(X1 + 1)2

]
= E

[
(x+ 1 + Z)2

]
= (x+ 1)2 + 2(x+ 1) E [Z] + E

[
Z2
]

≤ (x+ 1)2 − 2µ(x+ 1) + (µ2 + z2
0).

Thus, for any 0 < β < 1 there exists zβ > z0 and bβ <∞ such that, with
V (x) = (x+ 1)2 and α = 1/2,

Ex [V (X1)] ≤ V (x)− (2− β)µV α(x) + bβ1[x≤zβ ]. (39)

Assume that β < 1/4 and a corresponding zβ > z0 are fixed. Write Cβ =
[0, zβ ], and for V (x) > zβ define F (V (x)) =

⌈
V 1/2(x)/µ

⌉
. Iterating the

drift condition (39) we obtain for x /∈ C, with Fx = F (V (x)):

Ex [V (XFx
)] ≤ V (x)− (2− β)µ

Fx−1∑
k=0

Ex

[
V 1/2(Xk)

]
+ bβFx

≤ (x+ 1)2 − (2− β)µ
Fx−1∑
k=0

(x+ 1− kµ) + bβFx (40)

since Ex

[
V 1/2(Xk)

]
= Ex [(Xk + 1)] ≥ x+ 1− kµ,

≤
(

1− (2− β) +
(2− β)

2

)
(x+ 1)2 + γx

for some γ > 0,

≤ β

2
V (x) + γV

1
2 (x).

Thus there exists a sub-level set C ′ and a constant b′ <∞ such that if

F (x) =

{⌈
x1/2/µ

⌉
x /∈ C ′

1 x ∈ C ′,

we obtain
Ex [V (XFx

)] ≤ βV (x) + b′1C′(x).

with β < 1/4. Since α = 1/2 we satisfy log β < (1−α)−1 logα and so this
chain is indeed tame.



(ii) In the general case, we can proceed by truncating the law of Z at a level
−z0 so that the truncated distribution has a negative mean. The resulting
chain, X∗ say, is tame by the above argument. However, X∗ stochastically
dominates X on the whole of [0,∞), and so X must also be tame.

A polynomial drift condition can still be shown to hold when m ∈ (1, 2) (cor-
responding to drift α ∈ (0, 1/2)). Furthermore, it is quite simple to produce an
adaptive subsampling scheme in this situation that produces a chain satisfying
condition GE(V, β, b, C). However, it is also necessary to make β small enough
to satisfy part (b) of Definition 14, and we have not yet been able to achieve
this. Therefore it is unclear at present whether such chains are in fact tame.

5. Conclusions and questions

We have introduced the concept of a tame Markov chain, and shown that a
domCFTP algorithm exists for all such chains. This algorithm is not expected
to be practical in general, but it directly extends the results of [6] and [13]:
in a practical setting of course, one would use a dominating process that is
better suited to the chain of interest. We have proved two sufficient conditions
for a polynomially ergodic chain to be tame, and provided an example which
demonstrates that neither of these sufficient conditions are necessary.

Our suspicion, which is shared by those experts with whom we have discussed
this, is that the following conjecture is true:

Conjecture 23. There exists a chain satisfying condition PE which is wild.

On the other hand, we do not rule out the possibility that all polynomially
ergodic chains are tame. A resolution of this conjecture would do much to fur-
ther our understanding of such chains. The tame/wild classification provides
some structure to the class of subgeometrically ergodic Markov chains that goes
beyond the rate at which they converge to equilibrium. Although purely theoret-
ical at present, this may prove to be important in understanding tricky MCMC
implementations: for a tame chain, the existence of a time-change which pro-
duces a geometrically ergodic chain could possibly be exploited to improve the
behaviour of an MCMC algorithm.

It is also natural to ask what can be said about the more general case of
subgeometric ergodicity. The drift condition

PV ≤ V − φ ◦ V + b1C , (41)

(where φ > 0 is a concave, non-decreasing, differentiable function with
φ′(t) → 0 as t → ∞) is a generalisation of (7) which can be shown to imply
subgeometric ergodicity [4]. Much of the work in this paper extends naturally to
chains satisfying this drift condition (see [2] for details). However, it is possible
to produce a version X of the Epoch chain of Section 4.1 that satisfies (41) but
not (7). Furthermore, no subsampling scheme defined using a function F of the
form (17) will result in a geometrically ergodic chain, and so this X is wild. The



existence of a perfect simulation algorithm for this and similar chains is also an
open question.
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