Tropical polyhedra are equivalent to mean payoff games

Marianne Akian

(INRIA Saclay - Île-de-France and CMAP, École Polytechnique)
joint work with Stéphane Gaubert (INRIA Saclay and CMAP) and Alexander Guterman (Moscow State Univ.), see arXiv:0912.2462

EPSRC Symposium Workshop on Game theory for finance, social and biological sciences (GAM)

14-17 April 2010

Max-plus or tropical algebra (semiring)

- $2 \oplus 3=3,2 \otimes 3=5$.
- $a \oplus b=a \vee b=" a+b$ ";
- $a \otimes b=a+b=" a b "$.
- $\mathbb{R}_{\text {max }}$ is idempotent: $a \oplus a=a$.
- Hence there are no opposites,
- The natural order ($a \leq b$ if $a \oplus b=b$) is the usual order and all numbers are ≥ 0.
- A max-plus linear operator $A: \mathbb{R}_{\max }^{n} \rightarrow \mathbb{R}_{\max }^{m}$ can be represented by a matrix $A \in \mathbb{R}_{\max }^{\operatorname{man}}$.

$$
(A x)_{i}=\max _{j \in[n]}\left(A_{i j}+x_{j}\right), \quad i \in[n]:=\{1, \ldots n\}
$$

- Several ways to define a hypersurface:
- with two-sided equations:

$$
S=\left\{x \in \mathbb{R}_{\max }^{n} \mid \max _{j \in[n]}\left(a_{j}+x_{j}\right)=\max _{j \in[n]}\left(b_{j}+x_{j}\right)\right\}
$$

- with "one-sided" equations, as in tropical geometry:
$S=\left\{x \in \mathbb{R}_{\max }^{n} \mid\right.$ the \max in $\max _{j \in[n]}\left(a_{j}+x_{j}\right)$ is attained at least twice $\}$,
denoted " $\sum_{j} a_{j} x_{j}=\mathbf{0}$ " or "max ${ }_{j}\left(\mathrm{a}_{j}+x_{j}\right)=\mathbf{0}$ ".

Example

- The tropical line " $x+y+\mathbf{1}=\mathbf{0}$ " is the set of points where $\max (x, y, 0)$ is attained at least twice:

- this is the limit of the amoeba:
$\lim _{t \rightarrow 0^{+}}\left\{-\frac{1}{\log t}(\log (|x|, \log |y|) ; a x+b y+c=0\}\right.$ where $a, b, c \in \mathbb{C}$.

$$
y=x+1
$$

See Gelfand, Kapranov \& Zelevinsky, Passare ...

Tropical segments:

$[f, g]:=\left\{(\lambda+f) \vee(\mu+g) \mid \lambda, \mu \in \mathbb{R}_{\max }, \lambda \vee \mu=0\right\}$.
$C \subset \mathbb{R}_{\text {max }}^{n}$ is a tropical convex set if $f, g \in C \Longrightarrow[f, g] \in C$

Tropical convex cones \Leftrightarrow subsemimodules over $\mathbb{R}_{\max }^{n}$.

A tropical half-space is a set of the form

$$
H=\left\{x \in \mathbb{R}_{\max }^{n} \mid \max _{j}\left(a_{j}+x_{j}\right) \leq \max _{j}\left(b_{j}+x_{j}\right)\right\}
$$

It is also the union of sectors (usual convex sets) delimited by the tropical hyperplane: " $\max _{j}\left(c_{j}+x_{j}\right)=0$ " with $c_{j}=a_{j} \vee b_{j}$.

From the separation theorem, we have:

Theorem

Every closed tropical convex cone of $\mathbb{R}_{\text {max }}^{n}$ is the intersection of tropical half-spaces:

$$
C=\left\{x \in \mathbb{R}_{\text {max }}^{n} \mid A x \leq B x\right\}
$$

with $A, B \in \mathbb{R}_{\max }^{I \times[n]}$, and I possibly infinite.
See for instance [Zimmermann 77], [Cohen, Gaubert, Quadrat 01 and LAA04].

Tropical polyhedral cones are defined as the intersection of finitely many tropical half-spaces $(I=[m])$, or equivalently, the convex hull of finitely many rays.
See the works of [Gaubert, Katz, Butkovič, Sergeev, Schneider,...]. See also the tropical geometry point of view [Sturmfels, Develin, Joswig, Yu,...].

Tropical convex cones and games

- $A x \leq B x \Leftrightarrow x \leq f(x)$ with $f(x)=A^{\sharp} B x:$

$$
(f(x))_{j}=\inf _{i \in I}\left(-A_{i j}+\max _{k \in[n]}\left(B_{i k}+x_{k}\right)\right) .
$$

- f is the dynamic programming operator of a zero-sum two player deterministic game: the states and actions are in I and [n], Min plays in states $j \in[n]$, choose a state $i \in I$ and receive $A_{i j}$ from Max, Max plays in states $i \in I$, choose a state $j \in[n]$ and receive $B_{i j}$ from Min.
The vector of values v_{j}^{N} of the game after N turns (Min + Max) starting in state j satisfies:

$$
v^{N}=f\left(v^{N-1}\right), v^{0}=0
$$

- f is a min-max function [Olsder 91] when I is finite, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ when the columns of A and the rows of B are not $\equiv-\infty$.
- f is order preserving $(x \leq y \Rightarrow f(x) \leq f(y))$ and additively homogeneous $(f(\lambda+x)=\lambda+f(x))$.

Tropical convex cones and games

- Every order preserving and additively homogeneous map $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be written as the dynamic programming operator of a zero-sum two player deterministic game (with infinite action space l):

$$
[g(x)]_{j}=\inf _{i \in I} \max _{k \in[n]}\left(r_{j i k}+x_{k}\right)
$$

(take $I=\mathbb{R}^{n}$ and $r_{j y k}=g(y)_{j}-y_{k}$) [Kolokoltsov; Gunawardena, Sparrow; Rubinov, Singer].

- Every dynamic programming operator g as above can be written as $g(x)=A^{\sharp} B x$ for some (infinite) matrices $A, B \in \mathbb{R}_{\max }^{l^{\prime} \times[n]}$ (take $\left.I^{\prime}=I \times[n], A_{(i, \ell), j}=\delta_{\ell, j}, B_{(i, \ell), j}=r_{\ell, i, j}\right)$.
- Thus $C:=\left\{x \in(\mathbb{R} \cup\{-\infty\})^{n} \mid x \leq g(x)\right\}$ is a tropical convex cone.

Corollary

Every dynamic programming operator of a deterministic game (resp. every order preserving additively homogeneous map) yields an external representation of a closed tropical convex cone, and vice versa. In this correspondence, games with finite action spaces, or equivalently min-max functions, are mapped to polyhedral cones.

Perron-Frobenius tools for order preserving homogeneous maps

$\exp : x \mapsto\left(\exp \left(x_{j}\right)\right)_{j \in[n]} \operatorname{maps} \mathbb{R}_{\text {max }}^{n}$ to the positive cone \mathbb{R}_{+}^{n} of \mathbb{R}^{n}, and send order preserving additively homogeneous maps of $(\mathbb{R} \cup\{-\infty\})^{n}$ into order preserving positively homogenous maps of \mathbb{R}_{+}^{n}. Spectral radius, Collatz-Wielandt number, and dual CW number:

$$
\begin{aligned}
& \rho(f):=\max \left\{\lambda \in \mathbb{R}_{\max } \mid \exists u \in \mathbb{R}_{\max }^{n} \backslash\{-\infty\}, f(u)=\lambda+u\right\}, \\
& \operatorname{cw}(f):=\inf \left\{\mu \in \mathbb{R} \mid \exists w \in \mathbb{R}^{n}, f(w) \leq \mu+w\right\}, \\
& \operatorname{cw}^{\prime}(f):=\sup \left\{\lambda \in \mathbb{R}_{\max } \mid \exists u \in \mathbb{R}_{\max }^{n} \backslash\{-\infty\}, f(u) \geq \lambda+u\right\}
\end{aligned}
$$

Theorem (see [Nussbaum, LAA 86] for general cones of \mathbb{R}^{n}) Let f be a continuous, order preserving and additively homogeneous self-map of $(\mathbb{R} \cup\{-\infty\})^{n}$, then

$$
\rho(f)=\operatorname{cw}(f) .
$$

Proposition

The following limit exists and is independent of the choice of x :

$$
\bar{\chi}(f):=\lim _{N \rightarrow \infty} \max _{j \in[n]} f_{j}^{N}(x) / N,
$$

and we have:

$$
\mathrm{cw}^{\prime}(f)=\rho(f)=\mathrm{cw}(f)=\bar{\chi}(f) .
$$

Moreover, there is at least one coordinate $j \in[n]$ such that $\chi_{j}(f):=\lim _{N \rightarrow \infty} f_{j}^{N}(x) / N$ exists and is equal to $\bar{\chi}(f)$. See [Vincent 97, Gunawardena, Keane 95, Gaubert, Gunawardena 04] for the existence of $\bar{\chi}$ when f preserves \mathbb{R}^{n}.
$\chi_{j}(f)$ is the mean payoff of the game starting in state j.
When f is a min-max function which preserves \mathbb{R}^{n}, this can be shown also using Kohlberg's theorem (80) on the existence of invariant half-lines $f(u+t \eta)=u+(t+1) \eta$ for t large. Then $\chi_{j}(f)$ exists for all j and $\bar{\chi}(f)=\max _{j \in[n]} \chi_{j}(f)$.

$$
C:=\left\{x \mid \max _{j \in[n]}\left(A_{i j}+x_{j}\right) \leq \max _{j \in[n]}\left(B_{i j}+x_{j}\right), \quad i \in I\right\}
$$

Theorem

$\exists x \in C \backslash\{0\}$ iff Max has at least one winning position in the mean payoff game with dynamic programming operator

$$
f_{j}(x)=\left(A^{\sharp} B x\right)_{j}=\inf _{i \in I}\left(-A_{i j}+\max _{k \in[n]}\left(B_{i k}+x_{k}\right)\right),
$$

$$
\text { i.e., } \exists j \in[n], \chi_{j}(f) \geq 0 .
$$

$$
A=\left(\begin{array}{cc}
2 & -\infty \\
8 & -\infty \\
-\infty & 0
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & -\infty \\
-3 & -12 \\
-9 & 5
\end{array}\right)
$$

players receive the weight of the arc

$$
\begin{aligned}
2+x_{1} & \leq 1+x_{1} \\
8+x_{1} & \leq \max \left(-3+x_{1},-12+x_{2}\right) \\
x_{2} & \leq \max \left(-9+x_{1}, 5+x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
2+x_{1} & \leq 1+x_{1} \\
8+x_{1} & \leq \max \left(-3+x_{1},-12+x_{2}\right) \\
x_{2} & \leq \max \left(-9+x_{1}, 5+x_{2}\right)
\end{aligned}
$$

$\chi(g)=(-1,5), x=(-\infty, 0)$ solution

Theorem

When C is a polyhedron, the set of winning initial positions
$\left\{j \in[n] \mid \chi_{j}(f) \geq 0\right\}$ is exactly the union of supports (indices of finite entries) of the elements of C.
The proof relies on Kohlberg's theorem of existence of invariant half-lines.

Corollary

Whether an (affine) tropical polyhedron

$$
\left\{x \mid \max \left(\max _{j \in[n]}\left(A_{i j}+x_{j}\right), c_{i}\right) \leq \max \left(\max _{j \in[n]}\left(B_{i j}+x_{j}\right), d_{i}\right), i \in[m]\right\}
$$

is non-empty reduces to whether a specific state of a mean payoff game is winning.

Corollary

Each of the following problems:

1. Is an (affine) tropical polyhedron empty?
2. Is a prescribed initial state in a mean payoff game winning?
can be transformed in linear time to the other one.
One can then compute $\chi(f)$ by dichotomy solving the emptyness problem for convex polyhedra.

It follows that all these problems

- belong to NP \cap co-NP ([Condon 92], [Zwick and Paterson 96])
- can be solved in pseudo-polynomial time (value iteration).
- other algorithms with experimentally fast average execution time:
- pumping algorithm [Gurvich, Karzanov, and Khachiyan 88],
- policy iteration ([Cochet, Gaubert, Gunawardena 98],....), parity game algorithm of [Jurdziński and Vöge 00], but the number of iterations may be exponential, see [Fridman, 2009].
- the existence of a polynomial algorithm is an open problem.

Mean payoff games associated to linear independence

Let $A \in M_{m, n}\left(\mathbb{R}_{\max }\right)$. The columns of A are tropically linearly dependent if we can find scalars $x_{1}, \ldots, x_{n} \in \mathbb{R}_{\max }$, not all equal to $-\infty$, such that " $A x=0$ ", that is for all $i \in[m]$, when evaluating the expression

$$
\max _{j \in[n]}\left(A_{i j}+x_{j}\right)
$$

the maximum is attained (at least) twice.

Equivalently, the rows of A belongs to the tropical hyperplane

$$
\left\{z \mid \max _{j \in[n]} z_{j}+x_{j} \text { attained twice }\right\} .
$$

We define the game with dynamic programming operator

$$
g_{j}(x)=\min _{i \in[m],(i, j) \in E}\left(-A_{i j}+\max _{k \in[n], k \neq j}\left(A_{i k}+x_{k}\right)\right),
$$

where $E=\left\{(i, j) \mid A_{i j} \neq-\infty\right\}$.
$k \neq j$: the backspace move is forbidden for Max. So $\chi(g) \leq 0$.
Theorem
The columns of A are linearly dependent if and only if Max has at least one winning position in the game with operator g.

We define the game with dynamic programming operator

$$
g_{j}(x)=\min _{i \in[m],(i, j) \in E}\left(-A_{i j}+\max _{k \in[n], k \neq j}\left(A_{i k}+x_{k}\right)\right),
$$

where $E=\left\{(i, j) \mid A_{i j} \neq-\infty\right\}$.
$k \neq j$: the backspace move is forbidden for Max. So $\chi(g) \leq 0$.

Theorem

The columns of A are linearly dependent if and only if Max has at least one winning position in the game with operator g.

Idea of the proof. If in $(A u)_{i}$ the max is attained only once, then, there is an index j such that $A_{i j}+u_{j}>\max _{k \neq j} A_{i k}+u_{k}$. We deduce that
$u_{j}>g_{j}(u)$.

$$
a=\left(\begin{array}{lll}
0 & 2 & 0
\end{array}\right) b=\left(\begin{array}{lll}
0 & 3 & 2
\end{array}\right) c=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right) d=\left(\begin{array}{lll}
1 & 3 & 0
\end{array}\right)
$$

$$
a=\left(\begin{array}{lll}
0 & 2 & 0
\end{array}\right) b=\left(\begin{array}{lll}
0 & 3 & 2
\end{array}\right) c=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right) e=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)
$$

If one replaces d by e, we leave it to the reader to check that Max looses at all states.

A $n \times n$ matrix B is tropically nonsingular iff the optimal assignment problem

$$
\max _{\sigma} \sum_{i \in[n]} B_{i \sigma(i)}
$$

has a unique optimal solution. We get a game proof of what follows:

Corollary

If $m \geq n$, the columns of A are linearly independent if and only if there is a $n \times n$ tropically nonsingular submatrix (unique optimal assignment).
[Develin, Santos, Sturmels 05]: mixed subdivision proof (special case finite entries), see also [Izhakian, Rowen 09]. Can we find this matrix in polynomial time ?

Concluding remarks

- Tropical convexity yields a geometrical point of view on mean payoff games.
- Several tropical problems reduce to mean payoff games. See also current works of Gaubert and co-authors.
- Mean payoff deterministic games with finite action spaces \qquad tropical linear programming...
- Can we find new algorithms for mean payoff games using the correspondance with tropical polyhedra?
- Can we find polynomial algorithms for all these problems?

