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Outline

• Introduce Patrolling Games on a graph.
• Applications and types of games.
• Results for all graphs.
• Strategy reduction techniques.
• Solutions for special graphs.

Idea: Think of planning to steal a painting from the Louvre – or
defending against it.



Patrolling Game on a Graph

Graph: Q=(N,E)
Nodes: N ={1,2,…,n}
Edges: E

T = time horizon of the game
t = 1,…,T

Players
Attacker: picks a node i and first time τ to perform the attack and needs 

m uninterrupted periods at the node for the attack to be successful

Patroller: picks a walk w on the graph that lasts T time periods and is 
successful if the walk intercepts the Attacker during the attack.

Pure Strategies Mixed Strategies:
Attacker: (i, τ) Playing (i, τ) with probability p(i, τ) 
Patroller: w Playing w with probability p(w)

1 3

2 4

5

We assume:



Patrolling Game on a Graph
Space-time Network: 
n=5, T=8, m=4

patroller picks:  w = 1-2-4-1-2-2-5-5

attacker picks: (i, τ) =(5,2)

Since the patroller’s walk does not intercept the attacker the attack is 
successful.
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Patrolling Game on a Graph
Space-time Network: 
n=5, T=8, m=4

patroller picks:  w = 1-2-4-5-2-2-5-5

attacker picks: (i, τ) =(5,2)

Since the patroller’s walk intercepts the attacker the attack is 
not successful.
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Patrolling Game on a Graph

The game is a zero-sum game with the following payoff:

1   if (i, τ) is intercepted by w
Payoff to the patroller =

0   otherwise

Value of the game = probability that the attack is intercepted

We denote that game: G(Q, T, m) and the value of the game V(Q, T, m)
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attacker patroller



Assumptions
We make some simplifying assumptions:

• The attacker will attack during the time interval:
By patrolling as if an attack will take place, the patroller deters the 
attack on this network and gives an incentive to the attacker to
attack another network.

• The nodes have equal values: 
Nodes with different values can be easily modelled in the 
mathematical programming formulations of the game. All games that 
can be solved computationally, can also be solved using different 
valued nodes.

• The nodes on the network are equidistant: 
This can also be modelled in the mathematical programming 

formulations.



Applications and Game Types

• Patrolling a Gallery:
T = fixed shift 

(e.g. one working day)
We call this the one-off game
and denote it Go with value Vo.

• Patrolling an Airport or 
a virtual network:
continuous patrolling

We call this the periodic game
and we let T be the period.
We denote it with Gp, Vp.
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one-off (open) game:
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periodic game:

attacker can only start attack at nodes 1,2,3.

patroller must return to starting node.



Results for all Graphs

1. The Value of the game is non-decreasing in m:

• the longer the attacker takes to complete the attack, the higher
the probability to the attack being intercepted.

2. The Value of the game is non-decreasing in the edge set |E|:

• with additional edges there are more patrolling paths and thus it is 
better for the patroller

Monotonicity Results



Results for all Graphs

3. The Value of the periodic game is less than or equal to the value 
of the one-off game:

• the one-off game has more patrolling strategies.

Monotonicity Results



Results for all Graphs

4. If Q’ is obtained from Q by node identification, then

since any patrol on Q that intercepts an attack, has a 
corresponding patrol on Q’ that intercepts the same attack

Node Identification

one node

Q

Q’



Results for all Graphs

5. We have:

The patroller can guarantee the lower bound by:
• picking a node equiprobably and waiting there

The attacker can guarantee the upper bound by:
• fixing an attack time interval and 
• attacking at a node equiprobably during that interval;

Out of these n pure strategies, the patroller can intercept at most m of them
(since the walk during the attack interval can visit at most m nodes)

The lower bound can be achieved for the disconnected graph      with n nodes:

Bounds on Value



Results for all Graphs

6. For the special case where         is the complete graph with n 
nodes, Ruckle (1983) has shown that:

Hence,

Result: For m=1: 

Henceforth we assume 

Game with m=1



Strategy Reduction Techniques
Symmetrization

Adjacency preserving bijections on Q:
• Nodes 2 and 3 are equivalent
• There exists an optimal attack strategy 

that attacks nodes 2 and 3 equiprobably

Graph symmetrization:

For the periodic game, 

• the time shifted patrols are equivalent  
• the attack intervals are equivalent under 
some rotation of the time cycle.

• we only need to consider the attack node
not the attack interval.

Time symmetrization:
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Symmetrical Strategies:  mixed strategies which give equal probability
to equivalent strategies 
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Strategy Reduction Techniques
Dominance

5 3

2 4
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Walks w1, w2 same except on (t-1, t, t+1).
• walk w2 dominates w1:
If w1 intercepts an attack (i, τ) then w2
also intercepts (i, τ) .

Let 1 be a leaf node connected to node 2:
We call node 2 a penultimate node.
• the attacker should not attack at penultimate nodes.

From above, walk w does not stay at a node for 3 
consecutive periods. 

If w intercepts (1, τ) then it must intercept (2, τ).

For              :

For                :

for T>=3



Strategy Reduction Techniques
Decomposition

Decomposition Result: We have                                         , 

which holds with equality if the        are disjoint in      .



Example
Kite Graph Periodic game on Q, with T=3 and m=3:

From dominance, we know that attacker 
would never attack at penultimate node 4, 
since it is always better to attack at the 
adjacent leaf node.

Without node 4 the graph decomposes 
into two graphs Q1 and Q2 shown below.

From decomposition we have:
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Timing of Attack:Go (L6),T= 5,m= 3)

Left: time-equiprob.
3x+2y=x+5y,
x=1/10,y=1/15
And V=13/30

Middle:, 8 equiprobable attacks.
No patrol can intercept >3 attacks,
so  V<=3/8<13/30. 
Right: Play blue 1/8, red ¼.  All
attacks intercepted by by 3 patrols
out of 8, counting reds as 2. 



Generic Strategies
Uniform Attacker Strategy

Attacker’s Diametrical Strategy

The attacker fixes a time interval of length m.
Attacks at each node of Q equiprobably

d(i,j) = minimum number of edges between nodes i and j
d = diameter of Q = maximum d(i,j) for all pairs i, j.

The attacker attacks equiprobably nodes i and j that have distance d.

We have:

The diametrical strategy guarantees the above upper bound:

• If m, T are large as compared to d, the best the patroller can do against the
diametrical strategy is to go back and forth across the graph diameter (m/2d)

• If d is large as compared to m, T, the best the patroller can do against the 
diametrical strategy is to stay at the diametrical nodes and win half the time (1/2).



Generic Strategies
Independent strategies
Independent set: set of nodes where no simultaneous attacks at any two nodes
of the set can be intercepted by the same patrol. Depends on T,m and game type

Independence number Ι : the size of the maximal independent set (3). 

Periodic Game for Kite Graph with T=3, m=3.

Independent Sets: {2,3} {1,5}  {2,3,5}
(since the patrol needs to return to the initial node)

Independent attack strategy: attack equiprobably nodes in the maximal 
independence set in a common attack interval.
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Generic Strategies

Covering set of Q: a set of intercepting patrols such that every node of Q is 
contained in at least one of the patrols.

Covering strategies

Intercepting Patrol: a patrol w that intercepts every attack on a node that it contains.

Covering number J: the size of the minimal covering set.

Covering patrol strategy: choose equiprobably from the minimal set of covering
patrols.

Intercepting patrols: 1-1-2-1
1-3-4-1
4-5-5-4 

Periodic Game for Kite Graph with T=3, m=3.
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Generic Strategies
Independent and Covering strategies

Upper bound: independent attack strategy
Lower bound: covering patrol strategy

When Ι = J we can determine the value of the game:
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Periodic Game for Kite Graph with T=3, m=3.

Maximal Independent Set = {2,3,5}
Minimal Covering Set = {1-1-2-1, 1-3-4-1, 4-5-5-4}

We have I = J = 3: 

V(Q) = 1/3



Solutions for Special Graphs
Hamiltonian Graph

Any graph with a Hamiltonian cycle:

• value 

• Patroller - Random Hamiltonian patrol:
pick a node at random and follow the 
Hamiltonian cycle in a fixed direction

• Attacker - uniform attacking strategy



Solutions for Special Graphs
Hamiltonian Graphs: example Periodic game on Q, T=10, m=4:

Q

has a Hamiltonian cycle and T=10 is a multiple of n=10:



Solutions for Special Graphs
Bipartite Graphs

A B

• No odd cycles

We assume:

Attacker can guarantee             , if he attacks equiprobably on each 
node of the larger set B.

When Q is complete bipartite and a=b, there exists a Hamiltonian cycle and
the value is achieved.



Solutions for Special Graphs
Bipartite Graphs: The Star Graph

: star graph with n nodes

: cycle graph with 2(n-1) nodes

a = 1,  b = n-1 
T is a multiple of 2(n-1)

By node identification:

Since         is bipartite: Thus, 

• attack leaf nodes equiprobably
• patrols leaf nodes every second period



Solutions for Special Graphs
Line Graph 1 2 3

• d = diameter = n-1
The diametrical attacker strategy guarantees the upper bound for the attacker

The Hamiltonian patrol on the cycle graph is equivalent to walking up and down
the line graph (oscillation strategy).  

• We use node identification, to show that 
the upper bound is achieved:



Solutions for Special Graphs
Consider        the line graph with n=3. Let m=2.Line Graph 

1 2 3

Attacker can guarantee ½ by attacking at the endpoints equiprobably: 
no walk can intercept both.  

Patroller can guarantee ½ by playing equiprobably the following oscillations: 
every attack is intercepted by at least one oscillation.



Solutions for Special Graphs
Line Graph

m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
n=1 1 1 1 1 1 1 1 1 1
n=2 1 1 1 1 1 1 1 1 1
n=3 1/2 3/4 1 1 1 1 1 1 1
n=4 1/2 1/2 4/6 5/6 1 1 1 1 1
n=5 1/3 3/7 4/8 5/8 6/8 7/8 1 1 1
n=6 1/3 4/8 5/10 6/10 7/10 8/10 9/10 1
n=7 1/4 5/11 6/12 7/12 8/12 9/12 10/12
n=8 1/4 6/12 7/14 8/14 9/14 10/14
n=9 1/5 7/15 8/16 9/16 10/16

n=10 1/5 8/16 9/18 10/18
n=11 1/6 9/19 10/20
n=12 1/6 10/20



Mathematical Programming
LP Formulation Let A be the set of attacker strategies for G(Q,T,m)

Patroller’s game:

Num. of attacker strategies: n (periodic game)
(constraints) n(T-m+1) (one-off game)

Num. of patroller strategies: number of circuits of length T (periodic game)
(variables) number of paths of length T (one-off game)



Flow formulation
Case: Periodic game, Q bipartite, m=2, T even

Thus, we can count the number of attacks intercepted:

• each visit at a node will intercept exactly two attacks

• the attacks intercepted from visits to different nodes are disjoint

i

attacks intercepted from the 
visit of walk w to node i and not
intercepted by any other visit of w

w

Proposition: A walk that dwells at a node for more than one period is dominated
by walks that do not dwell at a node.



Flow formulation
Case: Periodic game, Q bipartite, m=2, T even kite graph, T=5

t=0 t=1 t=2 t=3 t=4

• i nodes in Q
• e arc of QS:

Split space-time network QS:
• introduce split arcs
• no arc joining the same node
in consecutive time periods

= number of visits of walk w to node i during the time horizon

= number of attacks at node i intercepted by walk w

Probability attack at node i is intercepted by w =



Flow formulation
Case: Periodic game, Q bipartite, m=2, T even

size of x: no. of walks
x gives probability of each walk
x is a flow on each walk

• Substitute: Bx with z
• Then z(e) is the probability flow on arc e.
• Using flow conservation constraints:
we can guarantee that the flow z forms walks

flow value
equals 1



Flow formulation
Case: Periodic game, Q bipartite, m=2, T even

num. of variables:   (2E+n)T + 1
num of constraints: 2nT+n+1

Linear in the problem parameters.

We can solve games with large n and T.

Further, it is easy to introduce different 
attack values at each node.



Flow formulation
Case: Periodic game, Q bipartite, m=2, T even

Multi-valued Nodes

d = vector of node values
D = diagonal matrix with d on the diagonal

Reverse the payoff:
0 when attack is intercepted
d(i) when attack at node i is successful



Flow formulation

NAB

Z

PH S

LIB

CA

H D

LSE network, m=2, T=20.

Optimal Attacker strategy: 
attack red nodes equiprobably
with probability 1/5

Game Value = 4/5 
(1 is best for attacker)

Single-valued Nodes: (value = 0 attack intercepted)



Flow formulation

LSE network, m=2, T=20.

Optimal Attacker strategy: 
• attack NAB, D with prob. 2/10
• attack A, LIB with prob. 3/10

Game Value = 1.8 
(0 is best for patroller)

NAB

Z

PH S

LIB

CA

H D
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Multi-valued Nodes (value = 0 attack intercepted)



Current and Future Work

Current work:
1. The Line Graph.
2. Network design: hardening nodes; adding edges.
3. Computational methods: constraint generation methods where the 

LP is solved with a subset of constraints and the most violated 
constraints are generated:

• mixed integer programming is used to find the most 
violated constraint

• a heuristic to find a violated constraint
Future work:
• Multiple attackers/ patrols
• Version with in-game observation



The End

Thank you.
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