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Most genes affect many traits1–4. This phenomenon, known as
pleiotropy, is a major constraint on evolution because adaptive
change in one trait may be prevented because it would compro-
mise other traits affected by the same genes2,4. Here we show that
pleiotropy can have an unexpected effect and benefit one of the
most enigmatic of adaptations—cooperation. A spectacular act
of cooperation occurs in the social amoeba Dictyostelium dis-
coideum, in which some cells die to form a stalk that holds the
other cells aloft as reproductive spores5,6. We have identified a
gene, dimA7, in D. discoideum that has two contrasting effects. It
is required to receive the signalling molecule DIF-1 that causes
differentiation into prestalk cells. Ignoring DIF-1 and not
becoming prestalk should allow cells to cheat by avoiding the
stalk. However, we find that in aggregations containing the wild-
type cells, lack of the dimA gene results in exclusion from spores.
This pleiotropic linkage of stalk and spore formation limits the
potential for cheating in D. discoideum because defecting on
prestalk cell production results in an even greater reduction in
spores. We propose that the evolution of pleiotropic links
between cheating and personal costs can stabilize cooperative
adaptations.

Acts of cooperation such as stalk formation inD. discoideum are a
challenge for evolutionary biologists because of the potential for
disruptive cheaters8–12. When starving, the normally solitary amoe-
bae of D. discoideum aggregate together to form a migratory slug
and then a fruiting body in which most cells become spores but
around one-fifth die to form a supporting stalk5,6. Genetically
different clones of D. discoideum will aggregate together and form
chimaeric fruiting bodies5 and chimaerism seems to be common in
nature because multiple clones co-occur in tiny soil samples13. This
suggests that a defector12 that produces fewer stalk cells can gain a
selfish advantage5 and raises the question of how stalk formation is
maintained9,11. Around half of prestalk cells in D. discoideum,
known as the prestalk O cells, are induced to differentiate by the
signalling molecule DIF-1 (ref. 14), that is released by the neigh-
bouring prespore cells15 (Fig. 1a). A viable cheating strategy, there-
fore, would be to ignore DIF-1 and overproduce spore cells in
chimaeras. This is supported by the observation that cells with
lowered DIF sensitivity, resulting from growth with glucose, cheat
and are over represented in the spores when mixed with cells grown
without glucose16,17.

We used a knockout mutant to examine the effects of ignoring
DIF-1. dimA encodes a central component of the DIF response
pathway. Amutant with this gene disrupted (dimA2) ignores DIF-1
and produces prespore cells in place of prestalk O cells7 (Fig. 1a).We
examined the behaviour of dimA2 cells as they aggregated with
equal numbers of their parental wild-type strain (AX4). The dimA2

cells co-aggregated normally with AX4: dimA2 and AX4 cells
entered aggregations in equal numbers, and there was no loss of
dimA2 from aggregations during the migratory slug stage (mean
percentage of dimA2 cells in dimA/AX4 chimaeras from two time
points in two independent experiments ¼ 48%; 1 petri plate per
mixture in each experiment, cells counted N ¼ 1,168; Chi-squared

Figure 1 dimA 2 cells occupy the prespore zone and behave like a cheater in chimaeras.

a, A schematic diagram of a slug of the slime mould Dictyostelium discoideum showing

three of the major cell types: prestalk A (pstA), prestalk O (pstO) and prespore cells.

Prespore cells release DIF-1, which induces pstO cell differentiation. b, Schematic
diagram showing the distribution of dimA 2 cells in a chimaeric slug with the wild-type

AX4. c, dimA 2 cells are over represented in the rear of the slug: chimaeras of 50% AX4,

48% dimA 2 and 2% dimA 2–GFP. Some dimA 2 cells are present in the prestalk zone

(see text) but are not visible with 2% GFP expressing cells. d, AX4 cells are over
represented in the front of the slug: 50% dimA 2, 48% AX4 and 2% AX4–GFP. e, Control:
98% dimA 2 and 2% dimA 2–GFP. f, Control: 98% AX4 and 2% AX4–GFP. g, A
chimaeric fruiting body (50% AX4, 48% dimA 2 and 2% dimA 2–GFP): sp, sorus; st,

stalk; bd, basal disc. There are more dimA 2 cells in the stalk than basal disc. Scale bar is

0.1mm.
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prisoner's dilemma

defectors win!



Evolutionary Dynamics
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Two strategies:  A and B:  Which one is better?

fixation probabilities ...

What is the question?

John Forbes Nash,
John Maynard Smith

time

x
u→ 0

fixation probabilities
ρA > ρB

A

B

time

x
general u

〈x〉 > 1/2
Kandori '93

Or:  Which outnumbers the other in the long run?
with two way mutation u



Perturbation method: 2 key points

Wright-Fisher

t
selection

t + 1
mutation

payoff of

when playing against
A B

A
B

a11 a12

a21 a22

∆xsel

∆xmut

〈x〉 =
1
2

+
1 − u

u
〈∆xsel〉

Payoff = 1 + δ ×
δ selection strength

mutation probabilityu

 frequency of  Ax

∆xtot = ∆xsel − u

2
(x + ∆xsel) +

u

2
(1− x−∆xsel)

〈x〉 >
1
2
⇐⇒ 〈∆xsel〉 > 0



payoff of

when playing against
A B

A
B

a11 a12

a21 a22
Payoff = 1 + δ ×

δ selection strength
mutation probabilityu

 frequency of  Ax

∆xi = 0 + δ∆x(1)
i

πi = π(0)
i + δπ(1)

i

Easy perturbation method for small δ

〈∆x〉 =
∑

∆xi πi

〈x〉 >
1
2
⇐⇒ 〈∆xsel〉 > 0

〈∆x〉 = δ
∑

∆x(1)
i π(0)

i +O(δ2) neutral probabilities only !

Perturbation method: 2 key points



(
1 S
T 0

)
well-mixed

payoffs: fA = 1 + δ [X − 1 + S(N −X)]
fB = 1 + δ(XT + 0)

average in the neutral stationary state 〈∆x〉 = δ
∑

∆x(1)
i π(0)

i +O(δ2)

∆xsel = δN
[
(x3 − x2)(1− S − T ) + (x− x2)(S − 1/N)

]

Simplest example

〈∆xsel〉 > 0 T < 1− S +
(

S − 1
N

)
〈x〉 − 〈x2〉
〈x2〉 − 〈x3〉

= 2
neutral correlations
 from coalescence

T < S + 1− 2
N

Example: T = 1, S =
1
2

A wins for N=5,
but B wins for N=3

Kandori '93,
TA, Traulsen, Nowak '09



〈x〉 − 〈x2〉
〈x2〉 − 〈x3〉

Correlations from coalescent

time

MRCA

Pr(Sk = Sl) =
∑

t

Pr(Sk = Sl|T = t)Pr(T = t)

〈x〉 =
1
2

〈x2〉 =
1
2
Pr(Sk = Sl) 〈x3〉 =

1
2
Pr(Sk = Sl = Sq)

time

= 2



n strategies: when is k better than average?



a11 a12 . . . a1n
...

...
an1 . . . . . . ann





Lk =
1
n

n∑

i=1

(akk + aki − aik − aii) > 0

Low mutation

Hk =
1
n2

n∑

i=1

n∑

j=1

(akj − aij) > 0

High mutation

Lk + NuHk > 0
Arbitrary mutation

a11 + a12 > a21 + a22n = 2 :
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

S1 S2 S3

S1 1 0 13

S2 0 λ 8

S3 0 7 9




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S3 0 7 9
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Example 2

Defectors beat Cooperators
( C D

C 10 1
D 11 2

)
.

a11 + a12 < a21 + a22since

But lets add Loners





C D L
C 10 1 0
D 11 2 0
L 0 0 0





LC =
8
3
, LD =

4
3
, LL = −4

HC = 1, HD =
5
3
, HL = −8

3

C win

D win

General, C win for µ < µ∗ ≡ 1



Example 3 m round Prisoner's dilemma

b benefit, c cost




AllC AllD TFT
AllC (b− c)m −cm (b− c)m
AllD bm 0 b
TFT (b− c)m −c (b− c)m


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=
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AllC better 
than average



Islands: simplest structured population

(
b

c

)∗
=

z − h

g − h

y = Pr(Sk = Sq)
z = Pr(Xk = Xq)
g = Pr(Sk = Sq, Xk = Xq)
h = Pr(Sl = Sk, Xk = Xq)

strategy
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Xk

(
b− c −c

b 0

)C D

D
C

C
D

D

D

D
C

C
u
β

strategy mutation
position mutation
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β β1− 2β

birth

phenotype

Moran 75

random
 death

N = 7

Evolution in phenotype space



phenotype
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random
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Evolution in phenotype space



phenotype

N = 7

disperse or condense ?

Evolution in phenotype space



Group of size         diffuses as
√

r D = r/2

r = Nβ



Colors
u

Mutation

y = Pr(Sk = Sq)
z = Pr(Xk = Xq)
g = Pr(Sk = Sq, Xk = Xq)
h = Pr(Sl = Sk, Xk = Xq)

strategy
position

Sk

Xk

(
b

c

)∗
=

z − h

g − h

(
b− c −c

b 0

)C D

D
C

phenotypeonsite play

TA '09
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Coop
Coop

Def

Def

(
1 Ŝ
T̂ 0

)

T̂ < Ŝ + 1 +
√

3



phenotype II

phenotype I

Higher dimensions

?
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One parameter to rule them all

payoff of

when playing against
A B

A
B

(
a b
c d

)σa + b > c + σdA wins iff

single parameter for all structures

σ = 1− 2/Nor

classical well mixed σ = 1

a + b > c + d (risk dominance)

# strategies       # parameters

2 1
3 2≥

more strategies on structure? Wage, Tarnita '10

phenotype game σ = 1 +
√

3

Tarnita '09



Relations to relatedness

A wins iff
b

c
>

1
R

(Hamilton's rule)

same size islands
R =

Pr(Sk = Sq|Xk = Xq)− Pr(Sk = Sq)
1− Pr(Sk = Sq)

sets, more general 
structures

no relatedness interpretation
of our general formulas

R =
Pr(Sk = Sq| Xk = Xq)− Pr(Sl = Sk| Xk = Xq)

1− Pr(Sl = Sk| Xk = Xq)

 fluctuating size islands, 
phenotype walk

TA '09, Taylor '10

(
b

c

)∗
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z − h

g − h



Final slide

general method to study weak selection

thanks

TA, Ohtsuki, Wakeley, Taylor, Nowak, PNAS '09

papers can be found on my website


