Who laughs last? perturbation theory of games

Tibor Antal, Program for Evolutionary Dynamics, Harvard

- dynamics, question
- perturbation method: two key aspects
- simplest case: well mixed 2*2
- further examples: n strategies, structured populations
- general results

with: C Tarnita, H Otsuki, J Wakeley, P Taylor, A Traulsen, M Nowak

Cooperation

humans, bacteria, trees, slime molds, ...

Foster '04

Social amoeba fruiting bodies

prisoner's dilemma $\mathcal{C} \quad \mathcal{D}$ $\mathcal{C} \quad \begin{pmatrix} 10 & 1 \\ 11 & 2 \end{pmatrix}$. defe

defectors win!

Evolutionary Dynamics

TA, Scheuring '06

What is the question?

Two strategies: A and B: Which one is better?

- John Forbes Nash, John Maynard Smith
- fixation probabilities ...

Or: Which outnumbers the other in the long run? with two way mutation u

Perturbation method: 2 key points

Perturbation method: 2 key points

$$\begin{array}{rcl} \text{when playing against} \\ \textbf{Payoff} = & 1 + \delta & \times & \text{payoff of} & \textbf{A} & \textbf{B} \\ \hline a_{11} & a_{12} \\ a_{21} & a_{22} \\ \hline \langle x \rangle > & \frac{1}{2} \iff \langle \Delta x^{\mathrm{sel}} \rangle > 0 \end{array}$$

- x frequency of A
- δ selection strength
- u mutation probability

Easy perturbation method for small δ

$$\begin{split} \langle \Delta x \rangle &= \sum \Delta x_i \, \pi_i & \Delta x_i = 0 + \delta \Delta x_i^{(1)} \\ \pi_i &= \pi_i^{(0)} + \delta \pi_i^{(1)} \\ \end{split} \\ \end{split} \\ \end{split} \\ \begin{cases} \langle \Delta x \rangle &= \delta \sum \Delta x_i^{(1)} \, \pi_i^{(0)} + \mathcal{O}(\delta^2) \\ \end{array} \\ \end{split}$$

neutral probabilities only !

Simplest example

 $\begin{pmatrix} 1 & S \\ T & 0 \end{pmatrix}$ well-mixed

payoffs:
$$f_A = 1 + \delta [X - 1 + S(N - X)]$$

 $f_B = 1 + \delta(XT + 0)$
 $\Delta x^{sel} = \delta N [(x^3 - x^2)(1 - S - T) + (x - x^2)(S - 1/N)]$
average in the neutral stationary state $\langle \Delta x \rangle = \delta \sum \Delta x_i^{(1)} \pi_i^{(0)} + \mathcal{O}(\delta^2)$
 $\langle \Delta x^{sel} \rangle > 0 \longrightarrow T < 1 - S + \left(S - \frac{1}{N}\right) \frac{\langle x \rangle - \langle x^2 \rangle}{\langle x^2 \rangle - \langle x^3 \rangle}$
 $f = 2$
neutral correlations
from coalescence
Kandori '93,
TA, Traulsen, Nowak '09
Example: $T = 1, S = \frac{1}{2}$
A wins for N=5,
but B wins for N=3

Correlations from coalescent

$$\frac{\langle x \rangle - \langle x^2 \rangle}{\langle x^2 \rangle - \langle x^3 \rangle} = 2$$

$$\langle x \rangle = \frac{1}{2} \qquad \langle x^2 \rangle = \frac{1}{2} \operatorname{Pr}(S_k = S_l) \qquad \langle x^3 \rangle = \frac{1}{2} \operatorname{Pr}(S_k = S_l = S_q)$$

n strategies: when is k better than average?

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Low mutation

$$L_k = \frac{1}{n} \sum_{i=1}^n (a_{kk} + a_{ki} - a_{ik} - a_{ii}) > 0$$

$$n = 2: a_{11} + a_{12} > a_{21} + a_{22}$$

High mutation

$$H_k = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n (a_{kj} - a_{ij}) > 0$$

Arbitrary mutation

 $L_k + N u H_k > 0$

Example I

Example 2

General, C win for $\mu < \mu^* \equiv 1$

Example 3 m round Prisoner's dilemma

b benefit, c cost

$$\begin{array}{ccc} \text{AllC} & \text{AllD} & \text{TFT} \\ \text{AllC} & \begin{pmatrix} (b-c)m & -cm & (b-c)m \\ bm & 0 & b \\ (b-c)m & -c & (b-c)m \end{pmatrix} \end{array}$$

(a) Low mutation rates

(b) High mutation rates

Islands: simplest structured population

 $\begin{array}{ll} u & \text{strategy mutation} \\ \beta & \text{position mutation} \end{array}$

$$\begin{array}{ccc}
\mathbf{C} & \mathbf{D} \\
\mathbf{C} & b - c & -c \\
\mathbf{D} & b & 0
\end{array}$$

$$y = \Pr(S_k = S_q)$$

$$z = \Pr(X_k = X_q)$$

$$g = \Pr(S_k = S_q, X_k = X_q)$$

$$h = \Pr(S_l = S_k, X_k = X_q)$$

$$S_k$$
 strategy X_k position

$$\left(\frac{b}{c}\right)^* = \frac{z-h}{g-h}$$

Evolution in phenotype space

Moran 75

Evolution in phenotype space

Evolution in phenotype space

disperse or condense ?

 $\begin{array}{l} \mu = 2Nu \\ r = 2N\beta \end{array}$

One parameter to rule them all

A wins iff $\sigma a + b > c + \sigma d$ single parameter for all structures

phenotype game $\sigma = 1 + \sqrt{3}$

classical well mixed $\sigma = 1$ a + b > c + d (risk dominance)

or
$$\sigma = 1 - 2/N$$

payoff of $\begin{bmatrix} A & a \\ B & c \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

when playing against

Α

В

more strategies on structure?Wage, Tarnita '10# strategies# parameters2I ≥ 3 2

Relations to relatedness

A wins iff
$$\frac{b}{c} > \frac{1}{R}$$
 (Hamilton's rule)

same size islands

$$R = \frac{\Pr(S_k = S_q | X_k = X_q) - \Pr(S_k = S_q)}{1 - \Pr(S_k = S_q)}$$

fluctuating size islands,
phenotype walk

$$\left(\frac{b}{c}\right)^* = \frac{z-h}{g-h} \qquad R = \frac{\Pr(S_k = S_q \mid X_k = X_q) - \Pr(S_l = S_k \mid X_k = X_q)}{1 - \Pr(S_l = S_k \mid X_k = X_q)}$$
TA '09, Taylor '10

sets, more general structures

no relatedness interpretation of our general formulas

general method to study weak selection

TA, Ohtsuki, Wakeley, Taylor, Nowak, PNAS '09

papers can be found on my website

thanks