Who laughs last? perturbation theory of games

Tibor Antal, Program for Evolutionary Dynamics, Harvard

- dynamics, question
- perturbation method: two key aspects
- simplest case: well mixed $2 * 2$
- further examples: n strategies, structured populations
- general results
with: C Tarnita, H Otsuki, J Wakeley, P Taylor, A Traulsen, M Nowak

Cooperation

humans, bacteria, trees, slime molds, ...

Foster '04

Social amoeba fruiting bodies
prisoner's dilemma
$\mathcal{C} \quad \mathcal{D}$
${ }_{\mathcal{D}}^{\mathcal{D}}\left(\begin{array}{ll}10 & 1 \\ 11 & 2\end{array}\right)$.
defectors win!

Evolutionary Dynamics

Moran process, N players

$$
t_{1}^{+}=t_{N-1}^{-}
$$

What is the question?

Two strategies: A and B : Which one is better?
John Forbes Nash, John Maynard Smith
fixation probabilities ...

Or: Which outnumbers the other in the long run? with two way mutation u
$\langle x\rangle>1 / 2 \quad u \rightarrow 0$
Kandori '93
fixation probabilities
$\rho_{A}>\rho_{B}$
general u

Perturbation method: 2 key points

Wright-Fisher
u mutation probability

$\Delta x^{\mathrm{tot}}=\Delta x^{\mathrm{sel}}-\frac{u}{2}\left(x+\Delta x^{\mathrm{sel}}\right)+\frac{u}{2}\left(1-x-\Delta x^{\mathrm{sel}}\right)$
$\langle x\rangle=\frac{1}{2}+\frac{1-u}{u}\left\langle\Delta x^{\mathrm{sel}}\right\rangle$

$$
\langle x\rangle>\frac{1}{2} \Longleftrightarrow\left\langle\Delta x^{\mathrm{sel}}\right\rangle>0
$$

Perturbation method: 2 key points

$$
\begin{aligned}
& \text { when playing agoinst } \\
& \text { Payoff }=1+\delta \times \text { payoff of } \mathrm{A} \begin{array}{|lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & x
\end{array} \text { frequency of } \mathrm{A} \\
& \text { Payoff }=1+\delta \times \text { payoffof } \begin{array}{l}
\text { B } \\
\mathrm{a}_{21}
\end{array} \mathrm{a}_{22} \quad \delta \text { selection strength } \\
& u \text { mutation probability } \\
& \langle x\rangle>\frac{1}{2} \Longleftrightarrow\left\langle\Delta x^{\text {sel }}\right\rangle>0
\end{aligned}
$$

Easy perturbation method for small δ

$$
\langle\Delta x\rangle=\sum \Delta x_{i} \pi_{i} \quad \begin{aligned}
& \Delta x_{i}=0+\delta \Delta x_{i}^{(1)} \\
& \pi_{i}=\pi_{i}^{(0)}+\delta \pi_{i}^{(1)}
\end{aligned}
$$

$\langle\Delta x\rangle=\delta \sum \Delta x_{i}^{(1)} \pi_{i}^{(0)}+\mathcal{O}\left(\delta^{2}\right)$

Simplest example

$\left(\begin{array}{cc}1 & S \\ T & 0\end{array}\right)$ well-mixed
payoffs: $f_{A}=1+\delta[X-1+S(N-X)]$

$$
\begin{aligned}
& f_{B}=1+\delta(X T+0) \\
& \Delta x^{\mathrm{sel}}=\delta N\left[\left(x^{3}-x^{2}\right)(1-S-T)+\left(x-x^{2}\right)(S-1 / N)\right]
\end{aligned}
$$

average in the neutral stationary state $\quad\langle\Delta x\rangle=\delta \sum \Delta x_{i}^{(1)} \pi_{i}^{(0)}+\mathcal{O}\left(\delta^{2}\right)$

Correlations from coalescent

$$
\frac{\langle x\rangle-\left\langle x^{2}\right\rangle}{\left\langle x^{2}\right\rangle-\left\langle x^{3}\right\rangle}=2
$$

$$
\langle x\rangle=\frac{1}{2} \quad\left\langle x^{2}\right\rangle=\frac{1}{2} \operatorname{Pr}\left(S_{k}=S_{l}\right) \quad\left\langle x^{3}\right\rangle=\frac{1}{2} \operatorname{Pr}\left(S_{k}=S_{l}=S_{q}\right)
$$

n strategies: when is k better than average?

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & & & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n}
\end{array}\right)
$$

Low mutation

$$
\begin{aligned}
L_{k}= & \frac{1}{n} \sum_{i=1}^{n}\left(a_{k k}+a_{k i}-a_{i k}-a_{i i}\right)>0 \\
& n=2: a_{11}+a_{12}>a_{21}+a_{22}
\end{aligned}
$$

High mutation

$$
H_{k}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{k j}-a_{i j}\right)>0
$$

Arbitrary mutation

$$
L_{k}+N u H_{k}>0
$$

Example I

Example 2

Defectors beat Cooperators $\quad \begin{gathered}\mathcal{C} \\ \mathcal{D}\end{gathered}\left(\begin{array}{ll}10 & 1 \\ 11 & 2\end{array}\right)$.
since $\quad a_{11}+a_{12}<a_{21}+a_{22}$
$\begin{array}{ll} & \\ \text { But lets add Loners } & \mathcal{C}\left(\begin{array}{ccc}\mathcal{C} & \mathcal{D} & \mathcal{L} \\ 10 & 1 & 0 \\ 11 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)\end{array}$

$$
\mathcal{C} \quad \mathcal{D}
$$

$L_{\mathcal{C}}=\frac{8}{3}$,
$L_{\mathcal{D}}=\frac{4}{3}$,
$L_{\mathcal{L}}=-4$
C win
$H_{\mathcal{C}}=1, \quad H_{\mathcal{D}}=\frac{5}{3}, \quad H_{\mathcal{L}}=-\frac{8}{3}$
D win

General, \mathbf{C} win for $\mu<\mu^{*} \equiv 1$

Example 3

m round Prisoner's dilemma

AllC AllD TFT
AllC
AllD
$\operatorname{TFT}$$\left(\begin{array}{ccc}(b-c) m & -c m & (b-c) m \\ b m & 0 & b \\ (b-c) m & -c & (b-c) m\end{array}\right)$
(a) Low mutation rates

(b) High mutation rates

Islands: simplest structured population

$$
\begin{aligned}
& y=\operatorname{Pr}\left(S_{k}=S_{q}\right) \\
& z=\operatorname{Pr}\left(X_{k}=X_{q}\right) \\
& g=\operatorname{Pr}\left(S_{k}=S_{q}, X_{k}=X_{q}\right) \\
& h=\operatorname{Pr}\left(S_{l}=S_{k}, \quad X_{k}=X_{q}\right)
\end{aligned}
$$

u strategy mutation
β position mutation

$$
\begin{gathered}
\mathrm{C} \\
\mathrm{D}\left(\begin{array}{cc}
\mathrm{C} & \mathrm{D} \\
b & -c \\
b & 0
\end{array}\right)
\end{gathered}
$$

$$
z=\operatorname{Pr}\left(X_{k}=X_{q}\right) \quad S_{k} \quad \text { strategy }
$$

$$
g=\operatorname{Pr}\left(S_{k}=S_{q}, X_{k}=X_{q}\right) \quad X_{k} \quad \text { position }
$$

$$
\left(\frac{b}{c}\right)^{*}=\frac{z-h}{g-h}
$$

$M=2$ islands

$$
\left(\frac{b}{c}\right)^{*}=\frac{M+r+2+\mu}{M-1}+\frac{M(1+\mu)}{(M-1)(2+\mu)}\left[\frac{3+\mu}{r}-\frac{1}{r+2+\mu}\right]
$$

$$
\begin{aligned}
\mu & =2 N u \\
r & =2 N \beta
\end{aligned}
$$

island size dependence $(\mu=0)$

Evolution in phenotype space

Evolution in phenotype space

Evolution in phenotype space

disperse or condense?

$$
\begin{aligned}
\mu & =2 N u \\
r & =2 N \beta
\end{aligned}
$$

$$
\left.\begin{array}{l}
\quad \text { Coop } \\
\text { Coop } \\
\text { Def } \\
\text { Def } \\
1 \\
\hat{S} \\
\hat{T}
\end{array}\right) \quad \text { 人 } \quad \hat{T}<\hat{S}+1+\sqrt{3}
$$

One parameter to rule them all

A wins iff $\quad \sigma a+b>c+\sigma d$
single parameter for all structures payof of ${ }_{\mathrm{B}}^{\mathrm{A}}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
classical well mixed $\sigma=1$

$$
a+b>c+d \quad \text { (risk dominance) } \quad \text { or } \sigma=1-2 / N
$$

phenotype game $\sigma=1+\sqrt{3}$

when playing against

$$
\text { payoff of } \begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~B}
\end{array}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

\# strategies \# parameters

$$
\begin{array}{r}
2 \\
\geq 3
\end{array}
$$

Relations to relatedness

$$
\text { A wins iff } \quad \frac{b}{c}>\frac{1}{R} \quad \text { (Hamilton's rule) }
$$

same size islands

$$
R=\frac{\operatorname{Pr}\left(S_{k}=S_{q} \mid X_{k}=X_{q}\right)-\operatorname{Pr}\left(S_{k}=S_{q}\right)}{1-\operatorname{Pr}\left(S_{k}=S_{q}\right)}
$$

fluctuating size islands,
phenotype walk

$$
\left(\frac{b}{c}\right)^{*}=\frac{z-h}{g-h} \quad R=\frac{\operatorname{Pr}\left(S_{k}=S_{q} \mid X_{k}=X_{q}\right)-\operatorname{Pr}\left(S_{l}=S_{k} \mid X_{k}=X_{q}\right)}{1-\operatorname{Pr}\left(S_{l}=S_{k} \mid X_{k}=X_{q}\right)}
$$

TA '09, Taylor 'IO
sets, more general

structures

no relatedness interpretation of our general formulas

Final slide

general method to study weak selection

TA, Ohtsuki, Wakeley, Taylor, Nowak, PNAS '09
papers can be found on my website
thanks

