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Zero-sum differential games

We are given a (nonlinear) system with two controls

ẋs = f (xs, αs, βs) xs ∈ Rn, αs ∈ A, βs ∈ B,

x0 = x

with A, B compact sets, and a cost functional

J(t , x , α, β) :=

∫ t

0
l(xs, αs, βs) ds + h(xt)

Player 1 governing αs wants to MINIMIZE J,
Player 2 governing βs wants to MAXIMIZE J.
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ẋs = f (xs, αs, βs) xs ∈ Rn, αs ∈ A, βs ∈ B,

x0 = x

with A, B compact sets, and a cost functional

J(t , x , α, β) :=

∫ t

0
l(xs, αs, βs) ds + h(xt)

Player 1 governing αs wants to MINIMIZE J,
Player 2 governing βs wants to MAXIMIZE J.

Martino Bardi (Università di Padova) Multiscale games Warwick, April 2010 3 / 44



Zero-sum differential games

We are given a (nonlinear) system with two controls
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Part I: Dynamic Programming and the Isaacs PDE

Classical idea: the value function of the game

”V (t , x) := J(t , x , α∗, β∗)

(α∗, β∗) = a saddle point of the game within feedback controls”

should be a solution of the Isaacs Partial Differential Equation

∂V
∂t

+ min
b∈B

max
a∈A

{−DxV · f (x , a, b)− l(x , a, b)} = 0 in R+ × Rn

with the initial condition

V (0, x) = h(x) in Rn.

Moreover, from the Hamiltonian computed on V one can (in principle!)
synthesize the saddle feedbacks.
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To make it rigorous must answer some questions:

1 Does the definition of V (t , x) make sense ?

2 What happens at point where V is not differentiable ?

3 Can the Cauchy problem for the Isaacs PDE be solved ?

4 Does it determine the value function V ?

5 How can we synthesize the saddle if DxV does not exist, or
argminb argmaxa are discontinuous?
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Mathematical tools: definitions of value

Question 1: rigorous definition of value.

by discretization: Fleming ’60s, Friedman 71
by nonanticipating strategies (causal maps from the open loop
controls of one player to those of the other player):
Varaiya, Roxin, Elliott - Kalton 67 - 74; the lower value is

V (t , x) := inf
α∈Γ(t)

sup
β∈B(t)

J(t , x , α[β], β),

and the upper value is

Ṽ (t , x) := sup
β∈∆(t)

inf
α∈A(t)

J(t , x , α, β[α]),

if they coincide the game has a value.
by generalized motions of the system: Krassovski - Subbotin ’70s,
Berkovitz ’80s,...
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Mathematical tools: the viscosity method

Questions 2-3-4: v solves Isaacs PDE in a generalized sense

1980 Subbotin: minimax solutions and Krassovski-Subbotin value,

1981 Crandall - P.-L. Lions: viscosity solutions, existence and
uniqueness for the Cauchy problem,

1984 L.C. Evans - Souganidis: V-R-E-K value is the viscosity
solution to the Cauchy problem,

1989 M.B. - Soravia: viscosity solutions for pursuit-evasion games.

Surveys:

Subbotin’s book 1995

M.B. - Capuzzo-Dolcetta book 1997

Fleming - Soner book, 2nd ed. 2006
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Set H(x , p) := minb∈Bmaxa∈A {−p · f (x , a, b)− l(x , a, b)}
and assume data at least continuous, f Lipschitz in x ....
Consider the Cauchy problem

(CP)
∂u
∂t

+ H(x , Dxu) = 0 in R+ × Rn, u(0, x) = h(x).

Main results

i) Comparison Principle: a viscosity subsolution u and supersolution v
of (CP) satisfy u ≤ v ∀t , x ; so (CP) has at most one visco. solution;

ii) the lower value V is the continous visco. solution of (CP);

iii) the VREK upper value Ṽ is the continous visco. solution of (CP)

with H̃ := maxa∈Aminb∈B {...} ; so V ≤ Ṽ ;

iv) if H = H̃ (Isaacs condition) then V = Ṽ and the game has a value.
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iv) if H = H̃ (Isaacs condition) then V = Ṽ and the game has a value.
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v) All other notions of (lower) value coincide with V ;

vi) if uε solves

∂uε

∂t
+ H(x , Dxuε) = ε∆uε in R+ × Rn, uε(0, x) = h(x).

then uε → V locally uniformly;

vii) any monotone and consistent approximation scheme for (CP)
converges to V .

Remark: vi) is the vanishing viscosity approximation of (CP).

In game terms uε(t , x) = infα supβ E [J] for the stochastic system

dxs = f (xs, αs, βs)ds + ε
√

2dWs

where Ws is a Brownian motion, i.e.,
uε = value of the small noise approximation of the game.
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A more general context: stochastic differential games

The theory of viscosity solutions works also for STOCHASTIC control
and d.g.’s, i.e.,

dxs = f (xs, αs, βs) ds + σ(xs, αs, βs) dWs, x0 = x ,

J(t , x , α, β) := Ex

[∫ t

0
l(xs, αs, βs) ds + h(xt)

]
.

The value function is the unique solution of the Cauchy problem for the
(degenerate) parabolic PDE

∂u
∂t

+ min
b∈B

max
a∈A

La,bu = 0

where La,b is the generator of the diffusion process with constant
controls αs = a, βs = b:

La,bu := −1
2

trace(σσT D2u)− f · Du

1 player: P.-L. Lions 1983; 2 players: Fleming - Souganidis 1989
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Costructive and computational methods

Questions 3 and 5: - solve explicitly or numerically the Isaacs PDE,

- compute the optimal (saddle) strategies.

Study of singular surfaces in low dimensions:
Isaacs, Breakwell, Bernhard,...
Surveys:

Lewin’s book 1994
Melikyan’s book 1998

Semi-discrete schemes: discretize time

xn+1 = xn + ∆t f (xn, an, bn),

find the value function V∆t(n, x) and the feedback saddle form the
D.P. finite difference equation, then let ∆t → 0 and show
convergence to V (t , x):
Fleming, Friedman,..., Souganidis, M.B. - Falcone,
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Fully discrete schemes: discretize time and space, solve the
game on a finite graph, then prove ( by viscosity methods )

V∆t ,∆x → v as ∆t ,∆x → 0

survey in M.B. - Falcone - Soravia, Ann. ISDG 4 (1999)

Methods from the theory of positional differential games and
minimax solutions:
Krassovski, Subbotin, Patsko .....

Methods based on necessary conditions:
Pesch, Breitner ......

Methods from viability theory:
Cardaliaguet, Quincampoix, Saint Pierre
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Part II: Games with random parameters

Usually the system and costs depend on a vector of parameters y :

f = f (x , y , a, b), l = l(x , y , a, b),

summarizing all the un-modeled variables.
In practical applications, for short time, one often models the
parameters as CONSTANTS: one gets some historical values y1, ..., yN

and then estimates φ = f , l by

φ ≈ 1
N

N∑
i=1

φi , φi := φ(x , yi , a, b),

the arithmetic mean of the observed data.

QUESTION: is this correct? and why?
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Rmk: the data y1, ..., yN often look like samples of a stochastic
process. How can we model them?

A process ỹτ is ergodic with invariant measure µ if for all measurable φ

lim
T→+∞

E

[
1
T

∫ T

0
φ(ỹτ ) dτ

]
=

∫
φ(y) dµ(y) =: E [φ].

Define yε
t := ỹt/ε. Suppose you observe yε

t at the times t = i/N,
i = 1, ..., N. Want to estimate the system and cost φ = f , l by

1
N

N∑
i=1

φi , φi := φ(x , yε
i/N , a, b).

For N large and ε small, setting τ = t/ε we get

1
N

N∑
i=1

φi ≈
∫ 1

0
φ(yε

t ) dt = ε

∫ 1/ε

0
φ(ỹτ ) dτ ≈ E [φ].
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A process ỹτ is ergodic with invariant measure µ if for all measurable φ

lim
T→+∞

E

[
1
T

∫ T

0
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φ(ỹτ ) dτ

]
=

∫
φ(y) dµ(y) =: E [φ].

Define yε
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Conclusion:
The arithmetic mean of data is a good approximation of a function of
the random parameters if

there are many data, and

the parameters are an ergodic process evolving on a time scale
much faster than the state variables.

QUESTION 1:
What are the right quantities to average?

The system dynamics f and costs l themselves or something else?

QUESTION 2:
Is this model fit to real observed data in applications ?
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Two-scale model of DGs with random parameters

If ỹτ solves

(FS) dỹτ = g(ỹτ ) dτ + ν(ỹτ ) dWτ ,

and yt = ỹt/ε, we get the two-scale system

(2SS)
ẋs = f (xs, ys, αs, βs) xs ∈ Rn,

dys = 1
ε g(ys) ds + 1√

ε
ν(ys) dWs, ys ∈ Rm,

Want to understand the limit as ε → 0 :

a Singular Perturbation problem.

Main assumption: the fast subsystem (FS) is ergodic, i.e., it has a
unique invariant measure µ.
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Example 1. Any non-degenerate diffusion

dỹτ = g(ỹτ ) dτ + ν(ỹτ ) dWτ , det ν 6= 0

on a compact manifold, e.g., the torus Tm, is ergodic.

Example 2. The Ornstein-Uhlenbeck process

dỹt = (m − ỹt) dt +
√

2 ν dWt

(m, ν constant) is ergodic with Gaussian invariant measure

µ ∼ N (m, ν2).

It is also mean-reverting, i.e., the drift pulls the process back to its
mean value m.

Fouque, Papanicolaou, Sircar give empirical data showing that a good
model for the volatility in financial markets is

σ = σ(yε
t ), yε

t := ỹt/ε

for some σ(·) > 0.
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A natural candidate limit system is

ẋs = 〈f 〉(xs, αs, βs), 〈f 〉(x , a, b) =

∫
Rm

f (x , y , a, b) dµ(y).

More generally, we can consider a stochastic control system with
random parameters, so the 1st equation in (2SS) becomes

(Sx) dxs = f (xs, ys, αs, βs) ds + σ(xs, ys, αs, βs) dWs,

and then the candidate limit system becomes

(S) dxs = 〈f 〉(xs, αs, βs) ds + 〈σ〉(xs, αs, βs) dWs,

with

〈σ〉〈σ〉T (x , a, b) =

∫
Rm

σσT (x , y , a, b) dµ(y).
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For the initial conditions x0 = x , y0 = y take the cost functional

Jε(t , x , y , α., β.) := E
[∫ t

0
l(xs, ys, αs, βs) ds + h(xt)

]
.

The value function is V ε(t , x , y) := infα∈Γ(t) supβ∈B(t) Jε(t , x , y , α[β], β).

The candidate limit functional is

J(t , x , α., β.) = E
[∫ t

0
〈l〉(xs, αs, βs) ds + h(xt)

]
,

with the effective cost 〈l〉(x , a, b) :=
∫

Rm l(x , y , a, b) dµ(y),

and xs is the trajectory of the limit system (S) with x0 = x .

QUESTION: limε→0 V ε(t , x , y) = V (t , x) := infα supβ J(t , x , α[β], β) ?
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Convergence for split system with a single controller

An answer is known by probabilistic methods if B is a singleton, so the
problem is a minimization for the single player a.

Theorem [Kushner, book 1990]

If the system (Sx) for the slow variables xs has σ = σ(x , y) possibly
degenerate but independent of the control and

f (x , y , a) = f0(x , y) + f1(x , a), l(x , y , a) = l0(x , y) + l1(x , a),

then
lim
ε→0

V ε(t , x , y) = V (t , x) := inf
α.

J(t , x , α.).
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Convergence for games with split system

Theorem [M.B. et al. 2009]

If the system (Sx) for the slow variables xs has σ = σ(x , y) possibly
degenerate but independent of the control and

f (x , y , a, b) = f0(x , y)+f1(x , a, b), l(x , y , a, b) = l0(x , y)+l1(x , a, b),

then
lim
ε→0

V ε(t , x , y) = V (t , x) := inf
α

sup
β

J(t , x , α[β], β).

It is proved by PDE instead of probabilistic methods.
It is a special case of the general result we show later.
N.B.: split system and uncontrolled diffusion σ are restrictive
assumptions: see the next examples.
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Financial models: option pricing

The evolution of stock S with stochastic volatility σ is

d log Ss = γ ds + σ(ys) dWs

dys = 1
ε (m − ys) + ν√

ε
dW̃s

There is NO control, W. and W̃. can be correlated, l ≡ 0, and, e.g., the
terminal cost at time t is h(St) = (St − K )+ for European call options.

Then, as ε → 0,

V ε(t , x , y) := E [h(St) |S0 = x , y0 = y ] → V (t , x) =

the Black-Scholes formula of the model with (constant) mean historical
volatility

d log Ss = γ ds + 〈σ〉dWs, 〈σ〉2 =

∫
R

σ2(y)
1√

2πν2
e−(y−m)2/2ν2

dy .
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Merton portfolio optimization problem

Invest βs in the stock Ss, 1− βs in a bond with interest rate r .
Then the wealth xs evolves as

d xs = (r + (γ − r)βs)xs ds + xsβs σ(ys) dWs

dys = 1
ε (m − ys) + ν√

ε
dW̃s

and want to maximize the expected utility at time t , E [h(xt)] for some h
increasing and concave.
N.B.: the diffusion term depends on the control and is not in split form,
the previous theory does not apply.

QUESTIONS:
Is the limit as ε → 0 a Merton problem with constant volatility?
If so, is the previous averaged system still correct ?
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An advertising model

Consider a duopoly: in a market with total sales M the sales of firm 1
are Ss, those of firm 2 are M − Ss, and αs, βs ≥ 0 are the advertising
efforts. Take Lanchester dynamics

Ṡs = (M − Ss)αs − βsSs

and objective functionals (ri , θi > 0)

J1 =

∫ t

0

(
r1Ss − θ1α

2
s

)
ds, J2 =

∫ t

0

(
r2(M − Ss)− θ2β

2
s

)
ds.

This can be written as a 0-sum game with cost functional (θ > 0)

J =

∫ t

0

(
rSs + θαs

2 − βs
2
)

ds,

see Jorgensen and Zaccour, book 2004.
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If the three parameters M, r , θ are random, assume they are functions
of a fast ergodic process yε

s .

The system is not split because there is a term M(ys)αs.

QUESTIONS:
Is the limit as ε → 0 a Lanchester system with objective functional
linear in the state and quadratic in the control ?
If so, what are the effective parameters ?
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Convergence via Bellman-Isaacs equations

1 Write the Hamilton-Jacobi-Bellman-Isaacs equation for the value
function V ε;

2 find a limit (effective) PDE such that V ε converges to its solution
V ;

3 identify the limit PDE as a Bellman-Isaacs for a new system f and
cost functional J, so V is the value function of this new game.
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Step 1: V ε solves
∂V ε

∂t +H
(
x , y , DxV ε, D2

xxV ε
)
− 1

εLV ε = 0 in R+ × Rn × Rm,

V ε(0, x , y) = h(x) in Rn × Rm,

H
(

x , y , Dx , D2
xx

)
:= min

b∈B
max
a∈A

{
−trace(σσT D2

xx )− f · Dx − l
}

L := trace(ννT D2
yy ) + g · Dy

Step 2: Look for an effective H such that the limit equation is

∂V
∂t

+ H
(

x , DxV , D2
xxV

)
= 0 in R+ × Rn
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Theorem [M.B., Cesaroni, Manca 2009]

V ε(t , x , y) → V (t , x) as ε → 0, locally uniformly

and V solves (in viscosity sense)

∂V
∂t

+

∫
H
(

x , y , DxV , D2
xxV

)
dµ(y) = 0 in R+ × Rn

where µ is the invariant measure of the fast subsystem (FS).

Step 3: if ∃ effective system and cost f , σ, l :

H :=

∫
min
b∈B

max
a∈A

{
−trace(σσT D2

xx )− f · Dx − l
}

dµ(y)

= min
b∈B

max
a∈A

{
−trace(σσT D2

xx )− f · Dx − l
}

=⇒ V (t , x) := infα supβ E
[∫ t

0 l(xs, α[β]s, βs)ds + h(xt)
]
, xs solving

dxs = f (xs, α[β]s, βs)ds + σ(xs, α[β]s, βs)dWs.
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Corollary

For split systems, i.e.,

σ = σ(x , y), f = f0(x , y) + f1(x , a, b), l = l0(x , y) + l1(x , a, b),

the limit (effective) system and cost are obtained by averaging w.r.t.
µ(y) :

f = 〈f 〉 =

∫
f0(x , y) dµ(y) + f1(x , a, b),

σσT = 〈σ〉〈σ〉T =

∫
σσT dµ(y), l = 〈l〉 =

∫
l0(x , y) dµ(y)+ l1(x , a, b)

Proof: under these assumptions
∫

dµ and minb∈B maxa∈A commute

H =

∫
min
b∈B

max
a∈A

{...}dµ(y) = min
b∈B

max
a∈A

∫
{...}dµ(y).
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Merton problem with stochastic volatility

Maximize E [h(xt)] for the system in R2

dxs = (r + (γ − r)βs)xs ds + xsβs σ(ys) dWs

dys = 1
ε (m − ys) + ν√

ε
dW̃s

with γ > r , σ > 0, βs ∈ [0,∞),
and Ws, W̃s possibly correlated scalar Wiener processes.

Assume the utility h has h′ > 0 and h′′ < 0.
Then expect a value function strictly increasing and concave in x , i.e.,
V ε

x > 0, V ε
xx < 0. The HJB equation becomes

∂V ε

∂t
− rxV ε

x +
[(γ − r)V ε

x ]2

σ2(y)2V ε
xx

=
1
ε

[
(m − y)V ε

y + ν2V ε
yy

]
in R+ × R2
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By the Theorem, V ε(t , x , y) → V (t , x) as ε → 0 and V solves

∂V
∂t

− rxVx +
(γ − r)2V 2

x

2Vxx

∫
1

σ2(y)
dµ(y) = 0 in R+ × R

So the limit problem is a Merton problem with constant volatility

σ :=

(∫
1

σ2(y)
dµ(y)

)−1/2

a harmonic average of σ

So if I have N empirical data σ1, ..., σN of the volatility, in the
Black-Scholes formula for option pricing I use the arithmetic mean

σ2
a =

1
N

N∑
i=1

σ2
i

whereas in the Merton problem I use the harmonic mean

σ2
h =

(
1
N

N∑
i=1

1
σ2

i

)−1

≤σ2
a.
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The advertising model with random parameters

Ṡs = (M(ys)− Ss)αs − βsSs, S0 = x

dys = 1
ε (m − ys) + ν√

ε
dWs, y0 = y

The objective functional of the 0-sum duopoly game is

Jε = E
[∫ t

0

(
r(ys)Ss + θ(ys)α

2
s − β2

s

)
ds
]

with θ > 0. By the Theorem, V ε(t , x , y) → V (t , x) as ε → 0 and V
solves

∂V
∂t

−
∫ (

r(y)x + (M(y)− x)2 V 2
x

4
− x2V 2

x

4θ(y)

)
dµ(y) = 0 in R+ × R

Martino Bardi (Università di Padova) Multiscale games Warwick, April 2010 32 / 44



Denote with 〈φ〉 :=
∫

φdµ.

The PDE for V is the Isaacs equation for the game with system

Ṡs =

√
〈M2〉 − 2〈M〉Ss + S2

s αs − βsSs

that is NOT a Lanchester dynamics, and objective functional

J =

∫ t

0

(
〈r〉Ss + 〈1

θ
〉−1α2

s − β2
s

)
ds

that is still linear in state and quadratic in the controls but with different
averages of the parameters.
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Ṡs =

√
〈M2〉 − 2〈M〉Ss + S2

s αs − βsSs

that is NOT a Lanchester dynamics, and objective functional

J =

∫ t

0

(
〈r〉Ss + 〈1

θ
〉−1α2

s − β2
s

)
ds

that is still linear in state and quadratic in the controls but with different
averages of the parameters.

Martino Bardi (Università di Padova) Multiscale games Warwick, April 2010 33 / 44



Conclusions

In control and game problems with random parameters driven by a fast
ergodic process the limit problem can be

1 of the same form and with parameters the historical mean of the
random ones (as in uncontrolled problems!)

2 of the same form, but the parameters are obtained by a different
averaging of the random ones (as in Merton)

3 of a form different from the original problem (as in the advertising
game).

The formula for the effective Hamiltonian is very simple, but there is no
general recipe for deducing from it an explicit limit problem.
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Part III: Singular Perturbations of differential games

Singularly perturbed deterministic (for simplicity) control system

ẋs = f (xs, ys, αs, βs) xs ∈ Rn, αs ∈ A, βs ∈ B,

ẏs = 1
ε g(xs, ys, αs, βs) ys ∈ Rm,

x0 = x , y0 = y .

Here ys are fast state variables depending on xs and the controls
αs, βs. The value function

V ε(t , x , y) := infα∈Γ(t) supβ∈B(t)

∫ t
0 l(xs, ys, α[β]s, βs) ds + h(xt)

solves the Isaacs equation

∂V ε

∂t
+ H

(
x , y , DxV ε,

DyV ε

ε

)
= 0 in R+ × Rn × Rm,

H(x , y , p, q) :=

min
b∈B

max
a∈A

{−p · f (x , y , a, b)− q · g(x , y , a, b)− l(x , y , a, b)}
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Ergodicity of a game for the fast subsystem

Freeze x , p and take the (lower) value function for the game in Rm

w(t , y ; x , p) := inf
α∈Γ(t)

sup
β∈B(t)

∫ t

0
L(yτ , α[β]τ , βτ ; x , p) dτ,

L(y , a, b; x , p) := p · f (x , y , a, b) + l(x , y , a, b),

where yτ is the trajectory of

(FS) ẏτ = g(x , yτ , α[β]τ , βτ ), y0 = y

Definition:

(FS) is ERGODIC for the cost L if, for all x , p,

lim
t→+∞

w(t , y ; x , p)

t
= constant (in y ), uniformly in y =: H(x , p)
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Convergence theorem (M.B. - Alvarez, ARMA 2003)

Assume the fast variables y live on the torus Tm

(i.e., all data are Zm- periodic in y ).
Fast subsystem (FS) ergodic for the cost L =⇒

V ε(t , x , y) → V (t , x) as ε → 0,

(in the sense of weak viscosity limits), and V solves

(CP)
∂V
∂t

+ H (x , DxV ) = 0, V (0, x) = h(x).

If, moreover,

(1) |H(x , p)− H(z, p)| ≤ C|x − z|(1 + |p|),

then (CP) has a unique viscosity solution and

V ε → V locally uniformly.
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Conclusion: dimension reduction

The initial n + m-dimensional game is split into

an m-dimensional ergodic-type game (that determines H)

if we have a representation

H(x , p) = min
b′∈B′

max
a′∈A′

{
−f (x , a′, b′) · p − l(x , a′, b′)

}
for some control sets A′, B′ and effective system and cost f , l ,
the PDE in (CP) is the Isaacs equation of a
n-dimensional "effective" game

=⇒ we got a SEPARATION OF SCALES and a reduction to two
lower dimensional games.
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Example 1 (M.B. - Alvarez, Mem. A.M.S. 2010).
The 1st player controls the slow variables xs, the 2nd player the fast
ones ys

ẋs = f (xs, ys, αs)

ẏs = 1
ε g(xs, ys, βs)

and the fast subsystem (FS) is Bounded-Time Controllable by the 2nd
player , i.e. ∀ x ∃S > 0 such that ∀ y , ỹ the 2nd player can drive (FS)
from y to ỹ within a time ≤ S.

Then (FS) is ergodic (for all costs L).

If also g(x , y , B) 3 0 and l is independent of b

H(x , p) := min
y∈Tm

max
a∈A

{−p · f (x , y , a)− l(x , y , a)}

so in the limit game the fast variables y become the controls of 2nd
player.

Martino Bardi (Università di Padova) Multiscale games Warwick, April 2010 39 / 44



Example 1 (M.B. - Alvarez, Mem. A.M.S. 2010).
The 1st player controls the slow variables xs, the 2nd player the fast
ones ys
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ẏs = 1
ε g(xs, ys, βs)

and the fast subsystem (FS) is Bounded-Time Controllable by the 2nd
player , i.e. ∀ x ∃S > 0 such that ∀ y , ỹ the 2nd player can drive (FS)
from y to ỹ within a time ≤ S.

Then (FS) is ergodic (for all costs L).

If also g(x , y , B) 3 0 and l is independent of b

H(x , p) := min
y∈Tm

max
a∈A

{−p · f (x , y , a)− l(x , y , a)}

so in the limit game the fast variables y become the controls of 2nd
player.

Martino Bardi (Università di Padova) Multiscale games Warwick, April 2010 39 / 44



Example 2. Assume y = (yA, yB) ∈ TmA × TmB
such that

ẋs = f A(xs, yA
s ) + f B(xs, yB

s )

ẏA
s = 1

ε gA(xs, ys, αs)

ẏB
s = 1

ε gB(xs, ys, βs)

yA B.T. controllable by 1st player, yB B.T. controllable by 2nd player.

Then (FS) is ergodic.

If also gB(x , y , B) 3 0, gA(x , y , A) 3 0 and l = lA(x , yA) + lB(x , yB)

H(x , p) = max
yA∈TmA

min
yB∈TmB

{−p · f (x , y)− l(x , y)}

so in the limit game the fast variables yA become the controls of 1st
player and the fast variables yB become the controls of 2nd player.
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Singular Perturbations of Stochastic DGs

dxs = f (xs, ys, αs, βs) ds + σ(xs, ys, αs, βs) dWs

dys = 1
ε g(xs, ys, αs, βs) ds + 1√

ε
ν(xs, ys, αs, βs) dWs

x0 = x , y0 = y

J(t , x , y , α, β) := E(x ,y)

[∫ t

0
l(xs, ys, αs, βs) ds + h(xt)

]
General principle still holds: ergodic fast subsystem =⇒
convergence of the value function of the S.P. problem.

We saw before examples modeling random parameters:
ys uncontrolled ergodic process.
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Theorem

(M.B. - Alvarez, Mem. A.M.S. to 2010)

Assume ∃η > 0 such that

ννT (x , y , a, b) ≥ ηIm ∀x , y , a, b,

i.e., the noise is uniformly nondegenerate in the Fast Subsystem

(FS) dyτ = g(x , yτ , ατ , βτ ) dτ + ν(x , yτ , ατ , βτ ) dWτ .

Then (FS) is ergodic for all costs and so the value function of the SP
problem converge as ε → 0.

The proof is done by working on the Isaacs parabolic equation and
uses some deep results in the theory of elliptic PDEs (Krylov - Safonov
estimates).
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References on Singular Perturbations

For control systems with only 1 player
Kokotović - Khalil - O’Reilly book 1986
Bensoussan’s book 1988
Kushner’s book 1990
Kabanov - Pergamenshchikov book 2003
Gaitsgory, Artstein, Leizarowitz,... 1992 - 2004.
P.-L. Lions - Jensen 1982-84, M.B. - Capuzzo-Dolcetta ’97,
M.B. - Bagagiolo ’98, Quincampoix - Watbled 2003,
M.B. - Alvarez 2001 - 2010

For differential games (with 2 or more players) :
Gardner - Cruz 1978, Khalil - Kokotović 1979, Pan - Basar 1993
Gaitsgory 1996
Subbotina 1996 - 2001
M.B. - Alvarez 2003 - 2010
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Thanks for your attention!
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