Statistical Mechanics of Strategic Substitutes on Networks

Warwick Mathematics Institute - April 15th, 2010

Luca Dall'Asta – ICTP (Trieste)

In collaboration with:

P. Pin – Univ. Siena

A. Ramezanpour - Politecnico, Turin

Strategic Games on Networks

- I) agents are the nodes of a graph G
- 2) set X of possible pure strategies/actions (e.g. $X = \{0,1\}$)

3) local utility/payoff function $u_i \left[x_i, f\left(\left\{ x_j \middle| j \in \partial i \right\} \right) \right]$

At least one Nash Equilibrium always exists in pure strategies (or in mixed strategies if X is discrete)

Strategic Games on Networks

Two main cases:

- Strategic Complements (actions mutually reinforce one another)

Usually the Nash equilibrium is unique

- Strategic Substitutes (actions mutually offset one another)

there could be *many Nash equilibria* (exponentially in N) with very different properties

Best-Shot Game

- provision of local public goods, information
 (A. Galeotti, S. Goyal, M. O. Jackson, F. Vega-Redondo, and L. Yariv,
 "Network Games", forthcoming in *The Review of Economic Studies* also Y. Bramoullé and R. Kranton, J. Econ. Theory 135, 478 2007.)
- binary actions $X = \{0,1\}$

- Utility
$$u_i(x_i, \hat{x}_{\partial i})$$
 with $\hat{x}_{\partial i} = \sum_{j \in \partial i} x_j$

$$u_i(1,0) > u_i(0,0)$$

2)
$$u_i(1,\hat{x}) < u_i(0,\hat{x})$$
 for any $\hat{x} > 0$

Best-Shot Game

 $\vec{x} = (x_1, ..., x_N)$ is a Nash Equilibrium

$$\forall i \quad \left(x_i = 1 \quad \bigwedge \sum_{j \in \partial i} x_j = 0 \right) \quad \bigvee \left(x_i = 0 \quad \bigwedge \sum_{j \in \partial i} x_j > 0 \right)$$

 \vec{x} is a maximal independent set of graph G

Best-Shot Game

Examples for a regular random graph of degree K = 4

Multiple Nash Equilibria

I) Complete network knowledge

Graphical Games (belief propagation algorithms)

(e.g. Kearns, chapter 7 in Algorithmic Game Theory by Nisan et al., 2007)

2) Incomplete information by incomplete network knowledge

Bayes-Nash Equilibrium (mean-field)

(e.g. Galeotti et al. 2009, Lopez-Pintado, 2008)

Incomplete Information

- 1) agents know their own degree k
- 2) have a belief P(k,k') on neighbors' degree k'

 $F(k, \rho)$ = prob. that a random agent of degree k chooses 1 when anticipating that each neighbor will choose 1 with independent prob ρ

A symmetric Bayes-Nash equilibrium exists in mixed strategies (Kakutani's fixed point th.)

$$\rho_k = \sum_{k'} P(k,k') F(k,\rho_{k'})$$

Simulations on Random Graphs

The B.-N.E. is the fixed point solution of mean-field equations for best-response dynamics

CSP Representation

If N.E. can be expressed as a set of local conditions (on G), then

Nash Equilibria are solutions of a constraint satisfaction problem

Partition function:

$$Z(\mu) = \sum_{\vec{x}} e^{-\mu \sum_{i=1}^{N} x_i} \prod_{i} I_i(x_i, \{x_j\}_{j \in \partial i})$$

Standard methods of statistical mechanics of disordered systems (see e.g. M. Mezard and A. Montanari "Information, Physics, and Computation", 2009)

Cavity Approach

Probability marginal V of having configuration $\{x_i, \{x_k\}_{k \in v(i)\setminus j}\}$ on node i and its neighbors k on the cavity graph

On random graphs the resulting self-consistent equations can be solved analytically (and numerically on any graph)

They provide an exact heuristic on locally tree-like graphs

Cavity Approach

Density of contributors ρ , Entropy of N.E. $s(\rho)$, that means $N_{NE}(\rho) \approx exp(N s(\rho))$

Equilibrium Selection (?)

- take a N.E.
- flip a node's action from 0 to 1 (or viceversa)
- let the other nodes rearrange their actions by best-response

- I) The space of N.E. is connected under this operation (distance between equilibria is o(N))
- 2) Rearrangements up to the second neighborhood
- 3) Typical N.E. are "stable"

- take a N.E.
- flip a node's action from 0 to 1 (or viceversa)
- let the other nodes rearrange their actions by best-response

N.E. are well connected in a single cluster

Is it still true at fixed density ρ of contributors? NO

TIPICAL DENSITY ρ

LOW DENSITY ρ

Is it still true at fixed density ρ of contributors? NC

Effects of Degree Heterogeneity

Low density N.E. become less accessible and less stable for larger <k²> (e.g. mean preserving spread)

4

Conclusions

- We investigated the space of N.E. of a network game (of strategic substitutes)
- These statistical properties can be used to extract info to design incentives or to define proper refinements of N.E.
- Interesting problems in Algorithmic GT.

References:

L. D., P. Pin, A. Ramezanpour, *Phys. Rev. E* **80**, 061136 (2009)

L. D., P. Pin and A. Ramezanpour, Optimal Equilibria of the Best Shot Game, under revision in JPET.