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Introduction

Our approach is based on the Dynamic Programming Principle
which allows to derive a nonlinear first order partial differential
equation describing the value function of the game (or the
upper/lower value function).

The theory of viscosity solutions gives the correct framework to
characterize the value function (or its upper/lower version) as
the unique weak solution of the Isaacs equation.

This characterization has been used also to construct
numerical schemes for the value function and to synthetize
optimal feedbacks.
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Introduction

Pursuit-Evasion Games without State Constraints

Hamilton-Jacobi-Isaacs equation

v(x) + min
b∈B

max
a∈A

{−f (x , a, b) · ∇v(x)} − 1 = 0 x ∈ Rn\T

where A, B are the admissible controls for the first and for the
second player, f is the vectorfield and T is the (given) target set.

Typically the HJI equation is complemented with Dirichlet
boundary conditions

v(x) = g(x) for x ∈ ∂T
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Introduction

Pursuit-Evasion Games without State Constraints

Uniqueness of viscosity solutions holds under rather general
assumptions (Evans-Souganidis, Bardi). Another approach
have been proposed by A. Subbotin (minmax solutions).
This approach has been used successfully for problems without
state constraints and has produced accurate results for
2-dimensional games.

However its extension to games with state constraints is non
trivial and few results are available, mainly via the viability
approach proposed by Aubin (viability kernel solutions).
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Pursuit-Evasion games with state constraints

Pursuit-Evasion games with state constraints in R
2N

{
ẏ(t) = f (y(t), a(t), b(t)) , t > 0
y(0) = x

where x = (xP , xE ) , y = (yP , yE ) , a ∈ A, b ∈ B

f (x , a, b) = f (xP , xE , a, b) =

(
fP(xP , a)
fE (xE , b)

)
, fP , fE ∈ R

N

State Constraints
yP(t) ∈ Ω1 , yE (t) ∈ Ω2

Target
T = {(xP , xE ) ∈ R

2N : |xP − xE | ≤ ε} , ε ≥ 0
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Pursuit-Evasion games with state constraints
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Pursuit-Evasion games with state constraints

The Tag-Chase game with state constraints

Two boys P and E which run one after the other in the same
2-dimensional domain (courtyard), so that the game is set in
Ω = Ω

2
1 ⊂ R

4.
P and E can run in every direction with velocity VP and VE

respectively.
{

ẋP = VP a a ∈ B2(0, 1)
ẋE = VE b b ∈ B2(0, 1)
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Pursuit-Evasion games with state constraints

A simple example
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Pursuit-Evasion games with state constraints

Optimal exploitation of natural resources (Jorgensen)
Let us consider a common property fishery.
m(t) = biomass of a particular stock of fish at time t
Assume that the stock is harvested by two fishermen A and B.
Fish has a natural growth, which follows the logistic function.
State dynamics

ṁ(t) = m(1 − m) − (α(t) + β(t))

α and β are the controls of the two players, which correspond
to their harvest rate.
We impose two two natural constraints:

0 ≤ α(t), β(t) ≤ Cmax and m(t) ≥ 0 for any t

Under these hypotheses, we have m ∈ [0, 1] for any t .
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Pursuit-Evasion games with state constraints

Optimal allocation of natural resources

Each fisherman wants to maximize his payoff

JA(α) =

∫
∞

0

(
−

1
α(s)

)
e−λsds , JB(β) =

∫
∞

0

(
−

1
β(s)

)
e−λsds

where λ ∈ (0, 1).

Every fisherman would like to choose its harvest rate as large
as possible, but he must be careful not to drive the stock to zero
because then he has to stop fishing.

WARNING: for m = 0, the constraint m ≥ 0 imposes α = 0 and
β = 0.
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Pursuit-Evasion games with state constraints

Isaacs equation

T (x) := capture time under optimal (non-anticipating)
strategies of both players.

THEOREM (Koike, 1995)
v(x) = 1 − e−T (x) is the unique viscosity solution of

{
v(x) + min

b∈B(x)
max

a∈A(x)
{−f (x , a, b) · ∇v(x)} − 1 = 0 x ∈ Ω\T

v(x) = 0 on ∂T
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Pursuit-Evasion games with state constraints

For A(x) = A and B(x) = B

v(x) = 1 − e−T (x) is the unique viscosity solution of

Hamilton-Jacobi-Isaacs equation






v(x) + min
b∈B

max
a∈A

{−f (x , a, b) · ∇v(x)} − 1 = 0, x ∈ Ω\T

v(x) = 0 on ∂T
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Pursuit-Evasion games with state constraints

Fully discrete scheme (without constraints)

Let the constraint be given by Ω = Ω1 ∩ Ω2.
We define

β = e−h

Iin = {i : xi ∈ Ω \ T }

IT = {i : xi ∈ T ∩ Ω}

Iout1 = {i : xi /∈ Ω2}

Iout2 = {i : xi /∈ Ω2 \ Ω}
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Pursuit-Evasion games with state constraints

Fully discrete scheme (without constraints)

The discretization in time and space leads to a fully discrete
scheme

w(xi) = max
b∈B

min
a∈A

[βw(xi + hf (xi , a, b)] + 1 − β for i ∈ Iin

w(xi) =1 for i ∈ Iout2

w(xi) =0 for i ∈ IT ∪ Iout1
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Pursuit-Evasion games with state constraints

Fully discrete scheme (without constraints)
Theorem
The operator S : [0, 1]L → [0, 1]L.
S satisfies the following properties:

U ≤ V ⇒ S(U) ≤ S(V )

S is a contraction map.

Let U∗ be the unique fixed point, we define

w(xi) =U∗
i ∀ i

w(x) =
∑

j

λij(a, b)w(xj)(linear interpolation)
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Pursuit-Evasion games with state constraints

Convergence (without constraints)

Naturally w depends on the discretization steps, h and k .

Theorem
Let T be the closure of an open set with Lipschitz boundary,
“diamΩ → +∞” and v continuous. Then

wh,k → v on compact sets of R
N

for h → 0+ and k
h → 0+.
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Pursuit-Evasion games with state constraints

Convergence: discontinuous value

Let wε
n be the sequence generated by the numerical scheme

with target Tε = {x : d(x ,T ) ≤ ε}

Theorem
For all x there exists the limit

w(x) = lim
ε→0+

n→+∞
n≥n(ε)

wε
n(x)

and it coincides with the lower value V of the game with target
T , i.e.

w = V

The convergence is uniform on every compact set where V is
continuous.



A Constructive Approach to Pursuit-Evasion Games

Pursuit-Evasion games with state constraints

Time-discrete scheme for P-E games with SC

Definition: Admissible controls

A(y) = {a ∈ A : ∃ r > 0 such that yP(t ; y ′
P , a) ∈ Ω1

for t ∈ [0, r ] and y ′
P ∈ B(yP , r) ∩ Ω1},

B(y) = {b ∈ B : ∃ r > 0 such that yE (t ; y ′
E , b) ∈ Ω2

for t ∈ [0, r ] and y ′
E ∈ B(yE , r) ∩ Ω2}.

A(x) and B(x) are the admissible controls sets at x w.r. t. the
constraints.
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Pursuit-Evasion games with state constraints

Time-discrete scheme for P-E games with SC

Definition: Admissible controls (discrete time version)

Ah(x) :=
{

a ∈ A : xP + hfP(xP , a) ∈ Ω1
}

, x ∈ Ω

Bh(x) :=
{

b ∈ B : xE + hfE (xE , b) ∈ Ω2
}

, x ∈ Ω.

{
vh(x) = max

b∈Bh(x)
min

a∈Ah(x)
{βvh(x + hf (x , a, b))} + 1 − β x ∈ Ω\T

vh(x) = 0 x ∈ T

where β = e−h.



A Constructive Approach to Pursuit-Evasion Games

Convergence of the Fully Discrete Scheme

Fully-discrete scheme for P-E games with SC

We build a regular triangulation of Ω denoting by:
X the set of its nodes xi , i = 1, . . . , L
k := maxj{diam(Sj), Sjsimplexofthetriangulation}






v k
h (xi) = max

b∈Bh(xi )
min

a∈Ah(xi )

{
βv k

h (xi + hf (xi , a, b))
}

+ 1 − β xi ∈ (X\T )

v k
h (xi) = 0 xi ∈ T ∩ X

v k
h (x) =

∑
j λj(x)v k

h (xj) , 0 ≤ λj(x) ≤ 1 ,
∑

j λj (x) = 1 x ∈ Ω
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Convergence of the Fully Discrete Scheme

Discrete Reachable Sets

Definition
R0 := T

Rn :=

{
x ∈ Ω\

n−1⋃

j=0

Rj : for all b ∈ Bh(x) there exists

âx(b) ∈ Ah(x) such thatx + hf (x , âx (b), b) ∈ Rn−1

}
, n ≥ 1.
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Convergence of the Fully Discrete Scheme

Main result
Theorem
Let Ω be an open bounded set, f be continuous and Lipschitz
continuous w.r. t. x . Assume P always reaches E and let
min
x,a,b

|f (x , a, b)| ≥ f0 > 0 and 0 < k ≤ f0h. Then, we have:

a) vh(x) ≤ vh(y) , for any x ∈
n⋃

j=0
Rj , for any y ∈ Ω\

n⋃
j=0

Rj ;

b) vh(x) = 1 − e−nh , for any x ∈ Rn;

c) vk
h (x) = 1 − e−nh + O(k)

n∑
j=0

e−jh for any x ∈ Rn;

d)

|vh(x) − vk
h (x)| ≤

Ck
1 − e−h , for any x ∈ Ω.

for some positive constant C > 0.
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Convergence of the Fully Discrete Scheme

Convergence for P-E games with SC
Coupling the two results we can prove that our approximation
scheme converges to the value function.

Cristiani, F. (2006)
Under the assumptions of our main result, vk

h → vh

+

Bardi, Koike, Soravia (2000)
Under regularity assumptions on the sets of constraints, vh → v

⇓

Under the above assumptions, vk
h → v uniformly for

k = O(h1+α) and h → 0.
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Convergence of the Fully Discrete Scheme

Feedback controls for games

The algorithm computes an approximate optimal control couple
(a∗, b∗) at each point of the grid. By w we can also compute an
approximate optimal feedback at every point of Q.

(a∗(x), b∗(x)) ≡ argminmax{e−hw(x + hf (x , a, b))} + 1 − e−h

In case of multiple solutions we can select a unique couple, e.g.
minimizing two convex functionals.

We can also introduce an inertia criterium to stabilize the
trajectories, i.e. if a at step n + 1 the set of optimal couples
contains (a∗

n, b∗
n) we keep it.
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Numerical experiments without state constraints

The Homicidal Chauffeur
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Numerical experiments without state constraints

Trajectories 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x2

x1

Test 5: P=(-0.1,-0.3) E=(0.1,0.3)

P

E



A Constructive Approach to Pursuit-Evasion Games

Numerical experiments without state constraints

Trajectories 2
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Numerical experiments without state constraints

Optimal Trajectories (Merz Thesis)
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Numerical experiments without state constraints

Optimal Trajectories (computed)
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Numerical experiments without state constraints

Solution of the fishery game (symmetric)

Considering the symmetry of the problem, one possibility is that
they make an agreement and we expect the same optimal
strategy for the two players.
In this case we can consider the two players as a unique entity
and deal with a standard infinite-horizon optimal control
problem.
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Numerical experiments without state constraints

Solution of the fishery game (symmetric)

We solve numerically the HJB equation

λv(x) + max
a∈(0,Cmax ]

{−f (x , a) · ∇v(x) − ℓ(x , a)} = 0 , x ∈ [0, 1]

where

f (x , a) = x(1 − x) − a and ℓ = 1/a
the new cost Ĵ =

∫
∞

0 ℓ(m(s), α(s))e−λsds must be minimized.

Once the value function v is computed, the optimal control in
feedback form and the optimal trajectory are reconstructed
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Numerical experiments without state constraints

Solution of the fishery game (symmetric)
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Figure: Optimal trajectory (left) and optimal feedback control (right)
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Numerical experiments without state constraints

Solution of the fishery game (asymmetric)
In order to avoid the state constraint m ≥ 0, and we introduce
an asymmetry in the problem. we slightly modify the state
dynamics

ṁ(t) = m(1 − m) − (α(t) + β(t))m(t).

Here the two controls represent the ”fishing power” used by the
two players. We define the cost functional in such a way the
problem can be seen as a two-player zero-sum differential
game,

J(α, β) =

∫
∞

0
e−λs

(
(βm − cBβ) − (αm − cAα)

)
ds

with 0 ≤ cA, cB ≤ 1.
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Numerical experiments without state constraints

Solution of the fishery game (asymmetric)

Player B wants to maximize J, whereas player A wants to
minimize it.
βm (resp., αm) is proportional to the gain of player B (resp.,
player A).
cBβ (resp., cAα) represents the cost paid by player B (resp.,
player A) to go fishing, we assume that this cost is linear w.r.t.
the control variable.
Note that when m becomes too small, fishermen have no
interest to fish, since the cost overcomes the gain.
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Numerical experiments without state constraints

Solution of the fishery game (asymmetric)
We solve numerically the HJI equation

λv(x) + min
b∈[0,Cmax ]

max
a∈[0,Cmax ]

{−f (x , a, b) · ∇v(x) − ℓ(x , a, b)} = 0

for x ∈ [0, 1] where

f (x , a) = x(1 − x) − (a + b)x

ℓ(x , a, b) = (bx − cBb)− (ax − cAa)

If cA = cB , the game is symmetric and the optimal value for J is
0.
If it is not symmetric, we a more interesting situation.
Choosing cA = 0.05, cB = 0.025, Cmax = 1, λ = 0.7, and
m(0) = 0.6, the second player (the most efficient one) is able to
eliminate player A from the competition, leading the state below
the threshold of the positive gain for its competitor.
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Numerical experiments without state constraints

Solution of the fishery game (asymmetric)
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Numerical experiments without state constraints

The Tag-Chase game with state constraints

We consider two boys P and E which run one after the other in
the same 2-dimensional domain, so that the game is set in
Ω = Ω

2
1 ⊂ R

4. P and E can run in every direction with velocity
VP and VE respectively.

{
ẋP = VP a a ∈ B2(0, 1)
ẋE = VE b b ∈ B2(0, 1)

The case VP > VE was studied in [Alziary de Rocquefort,
1991].
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Numerical experiments without state constraints

Capturability in Tag-Chase game

THEOREM
Let the target be

T = {(xP , xE ) ∈ R
4 : |xP − xE | ≤ ε} , ε ≥ 0.

and Ω1 an open bounded set. Then,
◮ if VP > VE then the capture time T is finite and bounded by

T (xP , xE ) ≤
|xP − xE |

VP − VE
.

◮ If VP = VE , ε > 0 and Ω1 is convex then the capture time T
is finite.
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Numerical experiments with state constraints

The computation of the value function has been done in R
4

since reduced coordinates can not be applied in the
constrained problem.
We have exploited the symmetries in the Tag-Chase game and
used a fast projection algorithm to interpolate in R

4 (standard
linear interpolation is too expensive).
The synthesis of optimal controls in Ω\T has been computed
by the value function as

(a∗, b∗) = Arg max
b∈Bh(x)

min
a∈Ah(x)

{βvh(x + hf (x , a, b))} + 1 − β
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Numerical experiments with state constraints

Test 1, VP > VE

ε = 10−3, VP = 2, VE = 1, n = 50, nc = 48 + 1. Convergence
was reached in 85 iterations. The CPU time (IBM - 8 procs)
was 17h 36m 16s, the wallclock time was 2h 47m 37s.
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Numerical experiments with state constraints

Test 1, VP > VE

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P E

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P

E



A Constructive Approach to Pursuit-Evasion Games

Numerical experiments with state constraints

Test 1, VP > VE
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Numerical experiments with state constraints

Test 2, VP > VE

architecture wallclock time speed-up efficiency

IBM serial 26m 47s - -
IBM 2 procs 14m 19s 1.87 0.93
IBM 4 procs 8m 09s 3.29 0.82
IBM 8 procs 4m 09s 6.45 0.81

PC dual core, ser 1h 08m 44s - -
PC dual core, par 34m 51s 1.97 0.99

speed-up:=
Tser

Tpar
efficiency:=

speed-up
np

.
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Numerical experiments with state constraints

Test 3, VP > VE
In this test the domain has a square hole in the center. The side
of the square is 1.06. ε = 10−4, VP = 2, VE = 1, n = 50,
nc = 48 + 1. Convergence: 109 iterations. CPU time: 1d 00h
34m 18s, wallclock time: 3h 54m 30s.
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Numerical experiments with state constraints

Test 3, VP > VE
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Numerical experiments with state constraints

Test 4, VP > VE
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Numerical experiments with state constraints

Test 5, VP = VE

v is discontinuous on ∂T . No convergence results.
ε = 10−3, VP = 1, VE = 1, n = 50, nc = 36. Convergence was
reached in 66 iterations.
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Numerical experiments with state constraints

Test 5, VP = VE
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A Constructive Approach to Pursuit-Evasion Games

Numerical experiments with state constraints

Test 6, VP = VE
The domain has a circular hole in the center. Non-convex
domain, then no guarantee capture occurs.
Since v is equal to 1 in a large part of the domain this produces
a strange behavior of some optimal trajectories.
ε = 10−4, VP = 1, VE = 1, n = 50, nc = 48 + 1. Convergence:
94 iterations. CPU time: 1d 12h 05m 22s.
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A Constructive Approach to Pursuit-Evasion Games

Fast Marching Methods

Fast Marching Methods for games
The main idea of Fast Marching method is based on the front
propagation point of view.
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Fast Marching Methods

The evolution of the front at every time is given by the level sets
of the function T (x) solution of the

Eikonal equation

{
c(x)|∇T (x)| = 1 x ∈ R

n\Ω
T (x) = 0 x ∈ ∂Ω

(1)

T (x) is the arrival time of the front at x .
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Fast Marching Methods

FM Algorithm. Test: differential games with state
constraints

SL iterative (left) and BFM (right)
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Fast Marching Methods

Buffered FM Algorithm for differential games with state
constraints

The L1 error is computed with respect to the solution of the
iterative algorithm rather than the exact solution.
2x2 controls, tol = 10−6.

method ∆x L1 error CPU time (sec)

SL (70 it) 0.08 - 21.5
BFM 0.08 0.002 9.16

FM-SL 0.08 0.23 1.59

SL (130 it) 0.04 - 157
BFM 0.04 0.002 60

FM-SL 0.04 0.42 6.17
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