An Operational Measure of Riskiness

Sergiu Hart

April 2007

This version: September 2009

An Operational Measure of Riskiness

Sergiu Hart

Center for the Study of Rationality Dept of Economics Dept of Mathematics The Hebrew University of Jerusalem
hart@huji.ac.il
http://www.ma.huji.ac.il/hart

Joint work with

Dean P. Foster
 The Wharton School University of Pennsylvania

Joint work with

Dean P. Foster
 The Wharton School University of Pennsylvania

- Dean Foster and Sergiu Hart
"An Operational Measure of Riskiness" (2009) Journal of Political Economy
www.ma.huji.ac.il/hart/abs/risk.html
- Dean Foster and Sergiu Hart "An Operational Measure of Riskiness" (2009) Journal of Political Economy
www.ma.huji.ac.il/hart/abs/risk.html
- Dean Foster and Sergiu Hart "A Reserve-Based Axiomatization of the Measure of Riskiness" (2008) www.ma.huji.ac.il/hart/abs/risk-ax.html

Papers (continued)

- Sergiu Hart
"A Simple Riskiness Order Leading to the Aumann-Serrano Index of Riskiness" (2008)
www.ma.huji.ac.il/hart/abs/risk-as.html

Papers (continued)

- Sergiu Hart
"A Simple Riskiness Order Leading to the Aumann-Serrano Index of Riskiness" (2008) www.ma.huji.ac.il/hart/abs/risk-as.html
- Sergiu Hart
"Comparing Risks by Acceptance and Rejection" (2009)
www.ma.huji.ac.il/hart/abs/risk-u.html

I: Introduction

A gamble

A gamble

$\mathrm{E}[g]=\$ 10$

A gamble

$$
\mathrm{E}[g]=\$ 10
$$

- ACCEPT \boldsymbol{g} or REJECT \boldsymbol{g} ?

A gamble

$$
\mathrm{E}[g]=\$ 10
$$

- ACCEPT g or REJECT g ?
- What is the RISK in accepting g ?

A gamble

$$
\mathrm{E}[g]=\$ 10
$$

- ACCEPT \boldsymbol{g} or REJECT \boldsymbol{g} ?
- What is the RISK in accepting g ?
- What is the RISKINESS of g ?

The Riskiness of a Gamble

- What is the RISkINESS of a gamble ?

The Riskiness of a Gamble

- What is the riskiness of a gamble ?
- Is there an objective way to measure the RISKINESS of a gamble?

The Riskiness of a Gamble

- What is the RISkiness of a gamble ?
- Is there an ObJECTIVE way to measure the RISKINESS of a gamble ?
- OBJECTIVE = depends only on the gamble, not on the decision-maker

The Riskiness of a Gamble

- What is the RISKINESS of a gamble ?
- Is there an objective way to measure the RISKINESS of a gamble ?
- OBJECTIVE = depends only on the gamble, not on the decision-maker
- OBJECTIVE measures:

The Riskiness of a Gamble

- What is the RISkiness of a gamble ?
- Is there an objective way to measure the RISKINESS of a gamble ?
- ObJECTIVE = depends only on the gamble, not on the decision-maker
- ObJECTIVE measures:
- RETURN $=$ expectation $(\mathbf{E}[g])$

The Riskiness of a Gamble

- What is the RISKINESS of a gamble ?
- Is there an objective way to measure the RISKINESS of a gamble ?
- OBJECTIVE = depends only on the gamble, not on the decision-maker
- OBJECTIVE measures:
- RETURN = expectation ($\mathbf{E}[g]$)
- SPREAD $=$ standard deviation $(\sigma[g])$

The Riskiness of a Gamble

- What is the RISKINESS of a gamble ?
- Is there an objective way to measure the RISKINESS of a gamble ?
- OBJECTIVE = depends only on the gamble, not on the decision-maker
- OBJECTIVE measures:
- RETURN = expectation ($\mathbf{E}[\boldsymbol{g}]$)
- SPREAD $=$ standard deviation $(\sigma[g])$
- RISKINESS = ?

The Riskiness of a Gamble

- What is the RISKINESS of a gamble ?
- Is there an objective way to measure the RISKINESS of a gamble ?
- OBJECTIVE = depends only on the gamble, not on the decision-maker
- OBJECTIVE measures:
- RETURN = expectation ($\mathbf{E}[g]$)
- SPREAD $=$ standard deviation $(\sigma[g])$
- RISKINESS = ?
(σ ?

The Riskiness of a Gamble

- What is the RISKINESS of a gamble ?
- Is there an objective way to measure the RISKINESS of a gamble ?
- OBJECTIVE = depends only on the gamble, not on the decision-maker
- OBJECTIVE measures:
- RETURN = expectation ($\mathbf{E}[\boldsymbol{g}]$)
- SPREAD $=$ standard deviation $(\sigma[g])$
- RISKINESS = ?
(σ ? not monotonic !)

The Riskiness of a Gamble

- Seeking a measure of riskiness that is:

The Riskiness of a Gamble

- Seeking a measure of riskiness that is:
- Objective (depends only on the distribution of the gamble)

The Riskiness of a Gamble

- Seeking a measure of riskiness that is:
- Objective (depends only on the distribution of the gamble)
- Measured in the same units as the outcomes (scale-invariant)

The Riskiness of a Gamble

- Seeking a measure of riskiness that is:
- Objective (depends only on the distribution of the gamble) [like \boldsymbol{E}, σ]
- Measured in the same units as the outcomes (scale-invariant) $\quad[$ like $E, \sigma]$

The Riskiness of a Gamble

- Seeking a measure of riskiness that is:
- Objective (depends only on the distribution of the gamble) [like \boldsymbol{E}, σ]
- Measured in the same units as the outcomes (scale-invariant) [like \boldsymbol{E}, σ]
- Monotonic (with respect to stochastic dominance)

The Riskiness of a Gamble

- Seeking a measure of riskiness that is:
- Objective (depends only on the distribution of the gamble) [like \boldsymbol{E}, σ]
- Measured in the same units as the outcomes (scale-invariant) [like \boldsymbol{E}, σ]
- Monotonic (with respect to stochastic dominance)
- Simple interpretation, formula

The Riskiness of a Gamble

- Seeking a measure of riskiness that is:
- Objective (depends only on the distribution of the gamble) [like \boldsymbol{E}, σ]
- Measured in the same units as the outcomes (scale-invariant) [like \boldsymbol{E}, σ]
- Monotonic (with respect to stochastic dominance)
- Simple interpretation, formula

The Risk of Accepting a Gamble

The Risk of Accepting a Gamble

Accepting the gamble g when the wealth W is:

The Risk of Accepting a Gamble

Accepting the gamble g when the wealth W is:

- $W=\$ 100$: very risky (bankruptcy)

The Risk of Accepting a Gamble

Accepting the gamble g when the wealth W is:

- $W=\$ 100$: very risky (bankruptcy)
- $W=\$ 1000000$: not risky

The Risk of Accepting a Gamble

Accepting the gamble g when the wealth W is:

- $W=\$ 100$: very risky (bankruptcy)
- $W=\$ 1000000$: not risky

The risk of accepting a gamble depends on the current wealth

The Risk of Accepting a Gamble

Accepting the gamble g when the wealth W is:

- $W=\$ 100$: very risky (bankruptcy)
- $W=\$ 1000000$: not risky

The risk of accepting a gamble depends on the current wealth

The Measure of Riskiness

Given a gamble g :

The Measure of Riskiness

Given a gamble g :

1. Identify the wealth levels where accepting the gamble g is RISKY

The Measure of Riskiness

Given a gamble g :

1. Identify the wealth levels where accepting the gamble g is RISKY
2. Define the RISKINESS of the gamble g as:

The Measure of Riskiness

Given a gamble g :

1. Identify the wealth levels where accepting the gamble g is RISKY
2. Define the RISKINESS of the gamble g as:
the CRITICAL WEALTH level below which accepting g becomes RISKY

II: The Bankruptcy Model

Gambles

Gambles

A gamble is a real-valued random variable g

Gambles

A gamble is a real-valued random variable g

- Positive expectation: $\mathrm{E}[g]>0$

Gambles

A gamble is a real-valued random variable g

- Positive expectation: $\mathrm{E}[g]>0$
- Some negative values: $\mathbf{P}[g<0]>0$ (loss is possible)

Gambles

A gamble is a real-valued random variable g

- Positive expectation: $\mathrm{E}[g]>0$
- Some negative values: $\mathbf{P}[g<0]>0$ (loss is possible)
- [technical] Finitely many values:
g takes the values $x_{1}, x_{2}, \ldots, x_{m}$
with probabilities $p_{1}, p_{2}, \ldots, p_{m}$

Gambles and Wealth

Gambles and Wealth

- The initial wealth is $W_{1}>0$

Gambles and Wealth

- The initial wealth is $W_{1}>0$
- At every period $t=1,2, \ldots$:

Gambles and Wealth

- The initial wealth is $W_{1}>0$
- At every period $t=1,2, \ldots$:
- let $W_{t}>0$ be the CURRENT WEALTH

Gambles and Wealth

- The initial wealth is $W_{1}>0$
- At every period $t=1,2, \ldots$:
- let $W_{t}>0$ be the CURRENT WEALTH
- a gamble g_{t} is OFFERED

Gambles and Wealth

- The initial wealth is $W_{1}>0$
- At every period $t=1,2, \ldots$:
- let $W_{t}>0$ be the CURRENT WEALTH
- a gamble g_{t} is OFFERED
- g_{t} may be ACCEPTED or REJECTED

Gambles and Wealth

- The initial wealth is $W_{1}>0$
- At every period $t=1,2, \ldots$:
- let $W_{t}>0$ be the CURRENT WEALTH
- a gamble g_{t} is OFFERED
- g_{t} may be ACCEPTED or REJECTED
- if ACCEPTED then $W_{t+1}=W_{t}+g_{t}$

Gambles and Wealth

- The initial wealth is $W_{1}>0$
- At every period $t=1,2, \ldots$:
- let $W_{t}>0$ be the CURRENT WEALTH
- a gamble g_{t} is OFFERED
- g_{t} may be ACCEPTED or REJECTED
- if ACCEPTED then $W_{t+1}=W_{t}+g_{t}$
- if REJECTED then $\boldsymbol{W}_{t+1}=\boldsymbol{W}_{\boldsymbol{t}}$

Gambles and Wealth

The initial wealth is $\boldsymbol{W}_{1}>0$

- At every period $t=1,2, \ldots$:

let $W_{t}>0$ be the current wealth

- a gamble g_{t} is OFFERED
g_{t} may be ACcEPTED or REJECTED
if ACCEPTED then $W_{t+1}=W_{t}+g_{t}$
if REJECTED then $W_{t+1}=W_{t}$

Gambles

- At every period $t=1,2, \ldots$:
- a gamble g_{t} is OFFERED

Gambles

- At every period $t=1,2, \ldots$
- a gamble g_{t} is OFFERED:

Gambles

- At every period $t=1,2, \ldots$
- a gamble g_{t} is OFFERED:
- the sequence $G=\left(g_{1}, g_{2}, \ldots, g_{t}, \ldots\right)$ is arbitrary

Gambles

- At every period $t=1,2, \ldots$
- a gamble g_{t} is OFFERED:
, the sequence $G=\left(g_{1}, g_{2}, \ldots, g_{t}, \ldots\right)$ is arbitrary
- g_{t} may depend on the past wealths, gambles, decisions

Gambles

- At every period $t=1,2, \ldots$
- a gamble g_{t} is OFFERED:
- the sequence $G=\left(g_{1}, g_{2}, \ldots, g_{t}, \ldots\right)$ is arbitrary
- g_{t} may depend on the past wealths, gambles, decisions
NOTE: not i.i.d., arbitrary dependence;

Gambles

- At every period $t=1,2, \ldots$
- a gamble g_{t} is OFFERED:
- the sequence $G=\left(g_{1}, g_{2}, \ldots, g_{t}, \ldots\right)$ is arbitrary
- g_{t} may depend on the past wealths, gambles, decisions
NOTE: not i.i.d., arbitrary dependence; non-Bayesian

Gambles

- At every period $t=1,2, \ldots$
- a gamble g_{t} is OFFERED:
- the sequence $G=\left(g_{1}, g_{2}, \ldots, g_{t}, \ldots\right)$ is arbitrary
- g_{t} may depend on the past wealths, gambles, decisions
NOTE: not i.i.d., arbitrary dependence; non-Bayesian; "adversary"

Gambles

- At every period $t=1,2, \ldots$
- a gamble g_{t} is OFFERED:
, the sequence $G=\left(g_{1}, g_{2}, \ldots, g_{t}, \ldots\right)$ is arbitrary
- g_{t} may depend on the past wealths, gambles, decisions
NOTE: not i.i.d., arbitrary dependence; non-Bayesian; "adversary"
- [technical] G is finitely generated: there is a finite collection of gambles such that every g_{t} is a multiple of one of them

Critical Wealth

- CRITICAL-WEALTH function Q :

Critical Wealth

- CRITICAL-WEALTH function Q :
- $Q:\{$ the set of gambles $\} \longrightarrow[0, \infty]$

Critical Wealth

- CRITICAL-WEALTH function Q :
- $Q:\{$ the set of gambles $\} \longrightarrow[0, \infty]$
- $Q(\boldsymbol{g})$ depends only on the distribution of \boldsymbol{g}

Critical Wealth

- CRITICAL-WEALTH function Q :
- $Q:\{$ the set of gambles $\} \longrightarrow[0, \infty]$
- $Q(\boldsymbol{g})$ depends only on the distribution of \boldsymbol{g}
- $Q(\lambda g)=\lambda Q(g)$ for $\lambda>0$ (scaling)

Critical Wealth and Strategies

- CRITICAL-WEALTH function Q :
- $Q:\{$ the set of gambles $\} \longrightarrow[0, \infty]$
- $\boldsymbol{Q}(\boldsymbol{g})$ depends only on the distribution of \boldsymbol{g}
- $Q(\lambda g)=\lambda Q(g)$ for $\lambda>0$ (scaling)
- SIMPLE STRATEGY $s \equiv s_{Q}$:

Critical Wealth and Strategies

- CRITICAL-WEALTH function Q :
- $Q:\{$ the set of gambles $\} \longrightarrow[0, \infty]$
- $Q(\boldsymbol{g})$ depends only on the distribution of \boldsymbol{g}
- $Q(\lambda g)=\lambda Q(g)$ for $\lambda>0$ (scaling)
- SIMPLE STRATEGY $s \equiv s_{Q}$:
- s rejects the gamble g at wealth \boldsymbol{W} when $W<Q(g)$
- s accepts the gamble g at wealth \boldsymbol{W} when $W \geq Q(g)$

Bankruptcy

Bankruptcy

BANKRUPTCY:

$$
W_{t}=0
$$

Bankruptcy

BANKRUPTCY:

$\lim _{t \rightarrow \infty} W_{t}=0$

No-Bankruptcy

NO-BANKRUPTCY:

$\left\{\lim _{t \rightarrow \infty} W_{t}=0\right\}$ has probability 0

A strategy GUARANTEES NO-BANKRUPTCY:

$\left\{\lim _{t \rightarrow \infty} W_{t}=0\right\}$ has probability 0

$$
\text { for every } G=\left(g_{1}, g_{2}, \ldots, g_{t}, \ldots\right)
$$

and every $W_{1}>0$

Main Result

Main Result

For every gamble g there exists a unique positive number $\mathrm{R}(g)$ such that:

Main Result

For every gamble g there exists a unique positive number $\mathrm{R}(g)$ such that:

A simple strategy s_{Q}
with critical-wealth function Q

Main Result

For every gamble g there exists a unique positive number $\mathrm{R}(g)$ such that:

A simple strategy s_{Q} with critical-wealth function Q guarantees no-bankruptcy

Main Result

For every gamble g there exists a unique positive number $\mathrm{R}(g)$ such that:

A simple strategy s_{Q} with critical-wealth function Q guarantees no-bankruptcy

if and only if

Main Result

For every gamble g there exists a unique positive number $\mathrm{R}(g)$ such that:

A simple strategy s_{Q} with critical-wealth function Q guarantees no-bankruptcy

if and only if

$Q(g) \geq \mathrm{R}(g)$ for every gamble g

Main Result

For every gamble g there exists a unique positive number $\mathrm{R}(g)$ such that:

A simple strategy s_{Q} with critical-wealth function Q guarantees no-bankruptcy

if and only if

$Q(g) \geq \mathrm{R}(g)$ for every gamble g

Main Result

For every gamble g there exists a unique positive number $\mathrm{R}(g)$ such that:

A simple strategy s_{Q}
with critical-wealth function Q
guarantees no-bankruptcy

if and only if

$Q(g) \geq \mathrm{R}(g)$ for every gamble g

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

W

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(\boldsymbol{g})$ for every g

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

Examples of such strategies:

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

REJECT

$$
\mathrm{R}(g)
$$

Examples of such strategies:

- $Q(g)=\infty$ for all g : Always reject

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

Examples of such strategies:

- $Q(g)=\infty$ for all g : Always reject
- $Q(g)=\mathrm{R}(g)$ for all g : Reject $\Leftrightarrow W<\mathrm{R}(g)$

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

Examples of such strategies:

- $Q(g)=\infty$ for all g : Always reject
- $Q(g)=\mathrm{R}(g)$ for all g : Reject $\Leftrightarrow W<\mathrm{R}(g)$
- Anything in between

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

A simple strategy s guarantees no-bankruptcy if and only if
s rejects g when $W<\mathrm{R}(g)$

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathbf{R}(g)$ for every g

A simple strategy s guarantees no-bankruptcy if and only if
s rejects g when $W<\mathrm{R}(g)$

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathrm{R}(g)$ for every g

A simple strategy s guarantees no-bankruptcy if and only if
s rejects g when $W<\mathrm{R}(g)$

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathbf{R}(g)$ for every g

A simple strategy s guarantees no-bankruptcy if and only if
s rejects g when $W<\mathrm{R}(g)$

Main Result

A simple strategy s_{Q} guarantees no-bankruptcy if and only if $Q(g) \geq \mathbf{R}(g)$ for every g

A simple strategy s guarantees no-bankruptcy if and only if
s rejects g when $W<\mathrm{R}(g)$

Main Result

$\mathrm{R}(\boldsymbol{g})=$ the RISKINESS of \boldsymbol{g}

Main Result

$\mathrm{R}(\boldsymbol{g})=$ the RISKINESS of \boldsymbol{g}

No-bankruptcy is guaranteed

if and only if

One never accepts gambles whose RISKINESS exceeds the current wealth

Main Result

$\mathrm{R}(\boldsymbol{g})=$ the RISKINESS of \boldsymbol{g}

No-bankruptcy is guaranteed if and only if

One never accepts gambles whose RISKINESS exceeds the current wealth

RISKINESS ~"reserve"

Main Result (continued)

Main Result (continued)

Moreover, for every gamble g, its RISKINESS $\mathrm{R}(\boldsymbol{g})$ is the unique solution $R>0$ of the equation

Main Result (continued)

Moreover, for every gamble g, its RISKINESS $\mathrm{R}(\boldsymbol{g})$ is the unique solution $R>0$ of the equation

$$
\mathrm{E}\left[\log \left(1+\frac{1}{R} g\right)\right]=0
$$

The Riskiness of Some Gambles

The Riskiness of Some Gambles

The Riskiness of Some Gambles

X	$\mathrm{E}[g]$	$\mathrm{R}(g)$
$\$ 200$	$\$ 50$	$\$ 200$
$\$ 120$	$\$ 10$	$\$ 600$

The Riskiness of Some Gambles

X	$\mathrm{E}[\mathrm{g}]$	$\mathrm{R}(\mathrm{g})$
$\$ 300$	$\$ 100$	$\$ 150$
$\$ 200$	$\$ 50$	$\$ 200$
$\$ 120$	$\$ 10$	$\$ 600$

The Riskiness of Some Gambles

X	$\mathrm{E}[g]$	$\mathrm{R}(\mathrm{g})$
$\$ 300$	$\$ 100$	$\$ 150$
$\$ 200$	$\$ 50$	$\$ 200$
$\$ 120$	$\$ 10$	$\$ 600$
$\$ 105$	$\$ 2.5$	$\$ 2100$

The Riskiness of Some Gambles

X	$\mathrm{E}[g]$	$\mathrm{R}(\boldsymbol{g})$
$\$ 300$	$\$ 100$	$\$ 150$
$\$ 200$	$\$ 50$	$\$ 200$
$\$ 120$	$\$ 10$	$\$ 600$
$\$ 105$	$\$ 2.5$	$\$ 2100$
$\$ 102$	$\$ 1$	$\$ 5100$

The Riskiness of Some Gambles

$$
g=\begin{gathered}
\frac{p}{1-p}-\$ 105 \\
\frac{100}{}
\end{gathered}
$$

The Riskiness of Some Gambles

p	$\mathrm{E}[g]$	$\mathrm{R}(g)$
0.5	$\$ 2.5$	$\$ 2100$
0.6	$\$ 23$	$\$ 235.23$
0.8	$\$ 64$	$\$ 106.93$
0.9	$\$ 84.5$	$\$ 100.16$

The Riskiness Measure \mathbf{R}

The Riskiness Measure \mathbf{R}

- is objective and universal

The Riskiness Measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...

The Riskiness Measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation

The Riskiness Measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- is defined for each gamble separately

The Riskiness Measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- is defined for each gamble separately
- is normalized (unit = \$)

The Riskiness Measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- is defined for each gamble separately
- is normalized (unit = \$)
(... more to follow ...)

III: The Shares Model

The Shares Model

The Shares Model

- May take any proportion of the offered g_{t} (i.e., $\alpha_{t} g_{t}$ for $\alpha_{t} \geq 0$, instead of $\alpha_{t}=0,1$)

The Shares Model

- May take any proportion of the offered g_{t} (i.e., $\alpha_{t} g_{t}$ for $\alpha_{t} \geq 0$, instead of $\alpha_{t}=0,1$)
- A simple shares strategy s_{Q} :

The Shares Model

- May take any proportion of the offered g_{t} (i.e., $\alpha_{t} g_{t}$ for $\alpha_{t} \geq 0$, instead of $\alpha_{t}=0,1$)
- A simple shares strategy s_{Q} :
- At $W=Q(g)$ accept g (i.e., $\alpha=1$)

The Shares Model

- May take any proportion of the offered g_{t} (i.e., $\alpha_{t} g_{t}$ for $\alpha_{t} \geq 0$, instead of $\alpha_{t}=0,1$)
- A simple shares strategy s_{Q} :
- At $W=Q(g)$ accept g (i.e., $\alpha=1$)
- At any W accept αg where $\alpha=W / Q(g)$ $(Q(\alpha g)=W)$

The Shares Model

- May take any proportion of the offered g_{t} (i.e., $\alpha_{t} g_{t}$ for $\alpha_{t} \geq 0$, instead of $\alpha_{t}=0,1$)
- A simple shares strategy s_{Q} :
- At $W=Q(g)$ accept g (i.e., $\alpha=1$)
- At any W accept αg where $\alpha=W / Q(g)$ $(Q(\alpha g)=W)$
- Theorem Let s_{Q} be a simple shares strategy.

The Shares Model

- May take any proportion of the offered g_{t}
(i.e., $\alpha_{t} g_{t}$ for $\alpha_{t} \geq 0$, instead of $\alpha_{t}=0,1$)
- A simple shares strategy s_{Q} :
- At $W=Q(g)$ accept g (i.e., $\alpha=1$)
- At any W accept αg where $\alpha=W / Q(g)$ $(Q(\alpha g)=W)$
- Theorem Let s_{Q} be a simple shares strategy.
- $\lim _{t \rightarrow \infty} W_{t}=\infty$ (a.s.) for every process $\Leftrightarrow \quad Q(g)>R(g)$ for every gamble g.

The Shares Model

- May take any proportion of the offered g_{t}
(i.e., $\alpha_{t} g_{t}$ for $\alpha_{t} \geq 0$, instead of $\alpha_{t}=0,1$)
- A simple shares strategy s_{Q} :
- At $W=Q(g)$ accept g (i.e., $\alpha=1$)
- At any W accept αg where $\alpha=W / Q(g)$ $(Q(\alpha g)=W)$
- Theorem Let s_{Q} be a simple shares strategy.
- $\lim _{t \rightarrow \infty} \boldsymbol{W}_{t}=\infty$ (a.s.) for every process $\Leftrightarrow \quad Q(g)>R(g)$ for every gamble g.
- $\lim _{t \rightarrow \infty} W_{t}=0$ (a.s.) for some process $\Leftrightarrow \quad Q(g)<R(g)$ for some gamble g.

The Shares Model

- Therefore we may replace no-BANKRUPTCY with other criteria, such as:

The Shares Model

- Therefore we may replace no-bankruptcy with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} \boldsymbol{W}_{t} \geq \boldsymbol{W}_{\mathbf{1}}$

The Shares Model

- Therefore we may replace no-BANKRUPTCY with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} W_{t} \geq W_{1}$
- BOUNDED LOSS: $\lim \inf _{t} W_{t} \geq W_{1}-C$

The Shares Model

- Therefore we may replace no-BANKRUPTCY with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} W_{t} \geq W_{1}$
- BOUNDED LOSS: $\lim \inf _{t} W_{t} \geq W_{1}-C$
- ASSURED GAIN: $\lim \inf _{t} \boldsymbol{W}_{t} \geq W_{1}+\boldsymbol{C}$

The Shares Model

- Therefore we may replace no-BANKRUPTCY with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} W_{t} \geq W_{1}$
- BOUNDED LOSS: $\lim \inf _{t} W_{t} \geq W_{1}-C$
- ASSURED GAIN: $\lim \inf _{t} W_{t} \geq W_{1}+C$
- INFINITE GROWTH: $\lim _{t} \boldsymbol{W}_{t}=\infty$

The Shares Model

- Therefore we may replace no-BANKRUPTCY with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} W_{t} \geq W_{1}$
- BOUNDED LOSS: $\lim \inf _{t} W_{t} \geq W_{1}-C$
- ASSURED GAIN: $\lim \inf _{t} W_{t} \geq W_{1}+C$
- INFINITE GROWTH: $\lim _{t} W_{t}=\infty$
- . . .

The Shares Model

- Therefore we may replace no-bANKRUPTCY with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} \boldsymbol{W}_{t} \geq W_{1}$
- BOUNDED LOSS: $\lim \inf _{t} W_{t} \geq W_{1}-C$
- ASSURED GAIN: $\lim \inf _{t} W_{t} \geq W_{1}+C$
- Infinite Growth: $\lim _{t} W_{t}=\infty$
- . . .
- Corollary A simple shares strategy s_{Q} guarantees NO-LOSS

The Shares Model

- Therefore we may replace no-bANKRUPTCY with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} \boldsymbol{W}_{t} \geq W_{1}$
- BOUNDED LOSS: $\lim \inf _{t} W_{t} \geq W_{1}-C$
- ASSURED GAIN: $\lim \inf _{t} W_{t} \geq W_{1}+C$
- Infinite Growth: $\lim _{t} W_{t}=\infty$
- . . .
- Corollary A simple shares strategy s_{Q} guarantees NO-LOSS
- if $\quad Q(g)>\boldsymbol{R}(\boldsymbol{g})$ for every gamble \boldsymbol{g}

The Shares Model

- Therefore we may replace no-BANKRUPTCY with other criteria, such as:
- NO-LOSS: $\lim \inf _{t} \boldsymbol{W}_{t} \geq W_{1}$
- BOUNDED LOSS: $\lim \inf _{t} W_{t} \geq W_{1}-C$
- ASSURED GAIN: $\lim \inf _{t} W_{t} \geq W_{1}+C$
- infinite growth: $\lim _{t} W_{t}=\infty$
- . . .
- Corollary A simple shares strategy s_{Q} guarantees NO-LOSS
- if $\quad Q(g)>R(g)$ for every gamble g
- only if $Q(g) \geq R(g)$ for every gamble g

Example

Example

- Consider an i.i.d. sequence $\left(\boldsymbol{g}_{t}\right)_{t}$ with $\boldsymbol{g}_{t} \sim \boldsymbol{g}$

Example: $Q(g)=\$ 200$

- Consider an i.i.d. sequence $\left(\boldsymbol{g}_{t}\right)_{t}$ with $\boldsymbol{g}_{t} \sim \boldsymbol{g}$
- Assume the critical wealth is $Q(g)=\$ 200$

Example: $Q(g)=\$ 200$

- Consider an i.i.d. sequence $\left(\boldsymbol{g}_{t}\right)_{t}$ with $\boldsymbol{g}_{t} \sim \boldsymbol{g}$
- Assume the critical wealth is $Q(g)=\$ 200$
- At time \boldsymbol{t} the gamble $\left(\boldsymbol{W}_{\boldsymbol{t}} / 200\right) \boldsymbol{g}_{\boldsymbol{t}}$ is taken

Example: $Q(g)=\$ 200$

- Consider an i.i.d. sequence $\left(\boldsymbol{g}_{t}\right)_{t}$ with $\boldsymbol{g}_{t} \sim \boldsymbol{g}$
- Assume the critical wealth is $Q(g)=\$ 200$
- At time \boldsymbol{t} the gamble $\left(\boldsymbol{W}_{\boldsymbol{t}} / 200\right) \boldsymbol{g}_{\boldsymbol{t}}$ is taken

$$
\Rightarrow W_{t+1}=W_{t}+\left(\frac{W_{t}}{200}\right) g_{t}=W_{t}\left(1+\frac{g_{t}}{200}\right)
$$

Example: $Q(g)=\$ 200$

$$
\Rightarrow W_{t+1}=W_{t}+\left(\frac{W_{t}}{200}\right) g_{t}=W_{t}\left(1+\frac{g_{t}}{200}\right)
$$

Example: $Q(g)=\$ 200$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{200}\right)
$$

Example: $Q(g)=\$ 200$

$$
\frac{g}{200}=
$$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{200}\right)
$$

Example: $Q(g)=\$ 200$

$W_{t+1}=W_{t}\left(1+\frac{g_{t}}{200}\right)$

Example: $Q(g)=\$ 200$

$W_{t+1}=W_{t}\left(1+\frac{g_{t}}{200}\right)$

Example: $Q(g)=\$ 200$

- These are the relative returns from accepting g at $\boldsymbol{W}=\$ 200$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{200}\right)
$$

Example: $Q(g)=\$ 200$

- These are the relative returns from accepting \boldsymbol{g} at $\boldsymbol{W}=\$ 200$
- These relative returns are obtained every period i.i.d.:

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{200}\right)
$$

Example: $Q(g)=\$ 200$

$1 / 2$
$+60 \%$
-50%
$1 / 2$

Example: $Q(g)=\$ 200$

Proposition. $W_{t} \rightarrow 0$ (a.s.)

Example: $Q(g)=\$ 200$

Proposition. $W_{t} \rightarrow 0$ (a.s.)
Proof.

Example: $Q(g)=\$ 200$

$1 / 2$
$\sqrt{\frac{1 / 2}{1 / 2}-60 \%} \quad W_{t+1}=W_{t} \times 1.6$
Proposition. $W_{t} \rightarrow 0$ (a.s.)
Proof.

Example: $Q(g)=\$ 200$

$1 / 2$

Proposition. $W_{t} \rightarrow 0$ (a.s.)
Proof.

Example: $Q(g)=\$ 200$

$$
\begin{array}{ll}
\frac{1 / 2}{}+60 \% & W_{t+1}=W_{t} \times 1.6 \\
1 / 2 & -50 \%
\end{array} W_{t+1}=W_{t} \times 0.5
$$

Proposition. $W_{t} \rightarrow 0$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow

- about half the days wealth is multiplied by 1.6
- about half the days wealth is multiplied by 0.5

Example: $Q(g)=\$ 200$

$$
\begin{array}{ll}
\frac{1 / 2}{}+60 \% & W_{t+1}=W_{t} \times 1.6 \\
1 / 2 & -50 \%
\end{array} W_{t+1}=W_{t} \times 0.5
$$

Proposition. $W_{t} \rightarrow 0$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow

- about half the days wealth is multiplied by 1.6
- about half the days wealth is multiplied by 0.5
\Rightarrow A factor of $\approx \sqrt{1.6 \cdot 0.5} \quad$ per period

Example: $Q(g)=\$ 200$

$$
\begin{array}{ll}
\frac{1 / 2}{}+60 \% & W_{t+1}=W_{t} \times 1.6 \\
1 / 2 & -50 \%
\end{array} W_{t+1}=W_{t} \times 0.5
$$

Proposition. $W_{t} \rightarrow 0$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow

- about half the days wealth is multiplied by 1.6
- about half the days wealth is multiplied by 0.5
\Rightarrow A factor of $\approx \sqrt{1.6 \cdot 0.5}<1$ per period

Example: $Q(g)=\$ 200$

$$
\begin{array}{ll}
\frac{1 / 2}{}+60 \% & W_{t+1}=W_{t} \times 1.6 \\
1 / 2 & -50 \%
\end{array} W_{t+1}=W_{t} \times 0.5
$$

Proposition. $W_{t} \rightarrow 0$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow

- about half the days wealth is multiplied by 1.6
- about half the days wealth is multiplied by 0.5
\Rightarrow A factor of $\approx \sqrt{1.6 \cdot 0.5}<1$ per period
$\Rightarrow W_{t} \rightarrow 0$ (a.s.)

Example: $Q(g)=\$ 1000$

Example: $Q(g)=\$ 1000$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{1000}\right)
$$

Example: $Q(g)=\$ 1000$

$\frac{g}{1000}=$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{1000}\right)
$$

Example: $Q(g)=\$ 1000$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{1000}\right)
$$

Example: $Q(g)=\$ 1000$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{1000}\right)
$$

Example: $Q(g)=\$ 1000$

$$
\frac{g}{1000}=\left\{\begin{array}{l}
\frac{1 / 2}{120}=+12 \% \\
\frac{120}{100}=\frac{100}{1000}=-10 \%
\end{array}\right.
$$

- These are the relative returns from accepting \boldsymbol{g} at $\boldsymbol{W}=\$ 1000$

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{1000}\right)
$$

Example: $Q(g)=\$ 1000$

$$
\frac{g}{1000}=\left\{\begin{array}{l}
\frac{1 / 2}{\frac{120}{1000}=+12 \%} \\
\frac{100}{1 / 2}-\frac{1000}{1000}=-10 \%
\end{array}\right.
$$

- These are the relative returns from accepting \boldsymbol{g} at $\boldsymbol{W}=\$ 1000$
- These relative returns are obtained every period i.i.d.:

$$
W_{t+1}=W_{t}\left(1+\frac{g_{t}}{1000}\right)
$$

Example: $Q(g)=\$ 1000$

Example: $Q(g)=\$ 1000$

Proposition. $W_{t} \rightarrow \infty$ (a.s.)

Example: $Q(g)=\$ 1000$

$1 / 2$

Proposition. $W_{t} \rightarrow \infty$ (a.s.)
Proof.

Example: $Q(g)=\$ 1000$

$1 / 2$

Proposition. $W_{t} \rightarrow \infty$ (a.s.)
Proof.

Example: $Q(g)=\$ 1000$

$1 / 2$

Proposition. $W_{t} \rightarrow \infty$ (a.s.)
Proof.

Example: $Q(g)=\$ 1000$

$\begin{array}{ll}\frac{1 / 2}{\sqrt{1 / 2}}-12 \% & W_{t+1}=W_{t} \times 1.12 \\ & W_{t+1}=W_{t} \times 0.90\end{array}$
Proposition. $W_{t} \rightarrow \infty$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow
2 \approx half the days wealth is multiplied by 1.12
2 \approx half the days wealth is multiplied by 0.90

Example: $Q(g)=\$ 1000$

$$
\begin{array}{ll}
\frac{1 / 2}{1 / 2}-12 \% & W_{t+1}=W_{t} \times 1.12 \\
-10 \% & W_{t+1}=W_{t} \times 0.90
\end{array}
$$

Proposition. $W_{t} \rightarrow \infty$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow
2 \approx half the days wealth is multiplied by 1.12
2 \approx half the days wealth is multiplied by 0.90
\Rightarrow A factor of $\approx \sqrt{1.12 \cdot 0.90} \quad$ per period

Example: $Q(g)=\$ 1000$

$$
\begin{array}{ll}
\frac{1 / 2}{1 / 2}-12 \% & W_{t+1}=W_{t} \times 1.12 \\
-10 \% & W_{t+1}=W_{t} \times 0.90
\end{array}
$$

Proposition. $W_{t} \rightarrow \infty$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow
2 \approx half the days wealth is multiplied by 1.12
2 \approx half the days wealth is multiplied by 0.90
\Rightarrow A factor of $\approx \sqrt{1.12 \cdot 0.90}>1$ per period

Example: $Q(g)=\$ 1000$

$$
\begin{array}{ll}
\frac{1 / 2}{}+12 \% & W_{t+1}=W_{t} \times 1.12 \\
1 / 2 & -10 \%
\end{array} \boldsymbol{W}_{t+1}=W_{t} \times 0.90
$$

Proposition. $W_{t} \rightarrow \infty$ (a.s.)
Proof. The Law of Large Numbers \Rightarrow
2 \approx half the days wealth is multiplied by 1.12
2 \approx half the days wealth is multiplied by 0.90
\Rightarrow A factor of $\approx \sqrt{1.12 \cdot 0.90}>1$ per period
$\Rightarrow W_{t} \rightarrow \infty$ (a.s.)

Example: Riskiness $\mathrm{R}(\mathrm{g})=$?

Example: Riskiness $\mathrm{R}(\mathrm{g})=$?

$$
1+\frac{g}{600}=
$$

Example: Riskiness $\mathrm{R}(\mathrm{g})=$?

Example: Riskiness $\mathrm{R}(\mathrm{g})=$?

Example: Riskiness $\mathrm{R}(\mathrm{g})=$?

\Rightarrow Factor of $\sqrt{\frac{6}{5} \cdot \frac{5}{6}}=1$ per period

Example: Riskiness $\mathrm{R}(\mathrm{g})=$?

\Rightarrow Factor of $\sqrt{\frac{6}{5} \cdot \frac{5}{6}}=1$ per period
$\Leftrightarrow \mathrm{E}\left[\log \left(1+\frac{1}{600} g\right)\right]=0$

Example: Riskiness $\mathrm{R}(\mathrm{g})=\$ 600$

$$
1+\frac{g}{600}=\left\{\begin{array}{l}
\frac{1 / 2}{\frac{720}{600}=\frac{6}{5}} \\
\frac{500}{1 / 2}=\frac{5}{6}
\end{array}\right.
$$

\Rightarrow Factor of $\sqrt{\frac{6}{5} \cdot \frac{5}{6}}=1$ per period
$\Leftrightarrow \mathrm{E}\left[\log \left(1+\frac{1}{600} g\right)\right]=0$
The RISKINESS of the gamble g is

$$
\mathrm{R}(g)=\$ 600
$$

The critical wealth level $=\$ 600$

The RISKINESS of the gamble g is $R(g)=\$ 600$

The critical wealth level $=\$ 600$

- Accepting the gamble g when the wealth is $W<\$ 600$ gives "bad" returns (a regime where $W_{t} \rightarrow 0$ a.s.)

The riskiness of the gamble g is

$$
\mathrm{R}(g)=\$ 600
$$

The critical wealth level $=\$ 600$

- Accepting the gamble g when the wealth is $W<\$ 600$ gives "bad" returns (a regime where $W_{t} \rightarrow 0$ a.s.)
- Accepting the gamble g when the wealth is $W>\$ 600$ gives "good" returns: (a regime where $W_{t} \rightarrow \infty$ a.s.)

The riskiness of the gamble g is

$$
\mathrm{R}(g)=\$ 600
$$

Finite Time

- Up to now: limit as $t \rightarrow \infty$

Finite Time

- Up to now: limit as $t \rightarrow \infty$
- FINITE t : the distribution of wealth is quite different in the two regimes

Finite Time

- Up to now: limit as $t \rightarrow \infty$
- Finite t : the distribution of wealth is quite different in the two regimes
- Example: Probability of no-loss after t periods

t	$Q(g)$	$\mathrm{P}\left[W_{t+1} \geq W_{1}\right]$
100		
100		
1000		
1000		

Finite Time

- Up to now: limit as $t \rightarrow \infty$
- FINITE t : the distribution of wealth is quite different in the two regimes
- Example: Probability of no-loss after t periods

\boldsymbol{t}	$\boldsymbol{Q}(\boldsymbol{g})$	$\mathrm{P}\left[\boldsymbol{W}_{t+1} \geq \boldsymbol{W}_{1}\right]$
100	$\$ 200$	2.7%
100	$\$ 1000$	64%
1000		
1000		

Finite Time

- Up to now: limit as $t \rightarrow \infty$
- FINITE t : the distribution of wealth is quite different in the two regimes
- Example: Probability of no-loss after t periods

\boldsymbol{t}	$\boldsymbol{Q}(\boldsymbol{g})$	$\mathrm{P}\left[\boldsymbol{W}_{t+1} \geq \boldsymbol{W}_{1}\right]$
100	$\$ 200$	2.7%
100	$\$ 1000$	64%
1000	$\$ 200$	$10^{-7} \%$
$\mathbf{1 0 0 0}$	$\$ 1000$	87%

Finite Time

- Up to now: limit as $t \rightarrow \infty$
- FInite t : the distribution of wealth is quite different in the two regimes
- Example: MED $:=$ Median of $\boldsymbol{W}_{t+1} / \boldsymbol{W}_{1}$

\boldsymbol{t}	$\boldsymbol{Q}(\boldsymbol{g})$	$\mathrm{P}\left[\boldsymbol{W}_{\boldsymbol{t + 1}} \geq \boldsymbol{W}_{\mathbf{1}}\right]$	MED
$\mathbf{1 0 0}$	$\$ 200$	2.7%	0.0014%
$\mathbf{1 0 0}$	$\$ 1000$	64%	148%
$\mathbf{1 0 0 0}$	$\$ 200$	$10^{-7} \%$	$10^{-46} \%$
$\mathbf{1 0 0 0}$	$\$ 1000$	87%	5373%

Properties of R

Properties of R

- Homogeneity: $\mathrm{R}(\lambda g)=\lambda \mathrm{R}(g)$ for $\lambda>0$

Properties of R

- Homogeneity: $\mathrm{R}(\lambda g)=\lambda \mathrm{R}(g)$ for $\lambda>0$
- Subadditivity: $\mathrm{R}(g+h) \leq \mathrm{R}(g)+\mathrm{R}(h)$

Properties of R

- Homogeneity: $\mathrm{R}(\boldsymbol{\lambda} \boldsymbol{g})=\lambda \mathrm{R}(g)$ for $\lambda>0$
- Subadditivity: $\mathrm{R}(\boldsymbol{g}+\boldsymbol{h}) \leq \mathrm{R}(\boldsymbol{g})+\mathrm{R}(\boldsymbol{h})$
- Convexity: For $0 \leq \lambda \leq 1$ $\mathrm{R}(\lambda g+(1-\lambda) h) \leq \lambda \mathrm{R}(g)+(1-\lambda) \mathrm{R}(h)$

Properties of R

- Homogeneity: $\mathrm{R}(\lambda \boldsymbol{g})=\lambda \mathrm{R}(g)$ for $\lambda>0$
- Subadditivity: $\mathrm{R}(\boldsymbol{g}+\boldsymbol{h}) \leq \mathrm{R}(g)+\mathrm{R}(h)$
- Convexity: For $0 \leq \lambda \leq 1$ $\mathrm{R}(\lambda g+(1-\lambda) h) \leq \lambda \mathrm{R}(g)+(1-\lambda) \mathrm{R}(h)$
- First order stochastic dominance: If $g \prec_{s t_{1}} h$ then $R(g)>R(h)$

Properties of R

- Homogeneity: $\mathrm{R}(\lambda \boldsymbol{g})=\lambda \mathrm{R}(g)$ for $\lambda>0$
- Subadditivity: $\mathrm{R}(\boldsymbol{g}+\boldsymbol{h}) \leq \mathrm{R}(g)+\mathrm{R}(h)$
- Convexity: For $0 \leq \lambda \leq 1$ $\mathrm{R}(\lambda g+(1-\lambda) h) \leq \lambda \mathrm{R}(g)+(1-\lambda) \mathrm{R}(h)$
- First order stochastic dominance: If $\boldsymbol{g} \prec_{s t_{1}} \boldsymbol{h}$ then $\mathrm{R}(\boldsymbol{g})>\mathrm{R}(\boldsymbol{h})$
- Second order stochastic dominance: If $g \prec_{s t_{2}} h$ then $\mathrm{R}(\boldsymbol{g})>\mathrm{R}(\boldsymbol{h})$

Properties of R

- Homogeneity: $\mathrm{R}(\boldsymbol{\lambda} \boldsymbol{g})=\lambda \mathrm{R}(g)$ for $\lambda>0$
- Subadditivity: $\mathrm{R}(\boldsymbol{g}+\boldsymbol{h}) \leq \mathrm{R}(\boldsymbol{g})+\mathrm{R}(\boldsymbol{h})$
- Convexity: For $0 \leq \lambda \leq 1$ $\mathrm{R}(\lambda g+(1-\lambda) h) \leq \lambda \mathrm{R}(g)+(1-\lambda) \mathrm{R}(h)$
- First order stochastic dominance: If $\boldsymbol{g} \prec_{s t_{1}} \boldsymbol{h}$ then $\mathrm{R}(\boldsymbol{g})>\mathrm{R}(\boldsymbol{h})$
- Second order stochastic dominance: If $g \prec_{s t_{2}} h$ then $\mathrm{R}(\boldsymbol{g})>\mathrm{R}(\boldsymbol{h})$

Properties of R

- Homogeneity: $\mathrm{R}(\boldsymbol{\lambda} \boldsymbol{g})=\lambda \mathrm{R}(g)$ for $\lambda>0$
- Subadditivity: $\mathrm{R}(\boldsymbol{g}+\boldsymbol{h}) \leq \mathrm{R}(\boldsymbol{g})+\mathrm{R}(h)$
- Convexity: For $0 \leq \lambda \leq 1$ $\mathrm{R}(\lambda g+(1-\lambda) h) \leq \lambda \mathrm{R}(g)+(1-\lambda) \mathrm{R}(h)$
- First order stochastic dominance: If $g \prec_{s t_{1}} h$ then $\mathbf{R}(g)>\mathbf{R}(h)$
- Second order stochastic dominance: If $g \prec_{s t_{2}} h$ then $\mathrm{R}(\boldsymbol{g})>\mathrm{R}(\boldsymbol{h})$

Expected Utility

Utility function $u(x)$

Expected Utility

Utility function $u(x)$:

- Accept \boldsymbol{g} at \boldsymbol{W} if and only if

$$
\mathrm{E}[u(\boldsymbol{W}+\boldsymbol{g})] \geq u(\boldsymbol{W})
$$

Expected Utility

Utility function $u(x)$:

- Accept \boldsymbol{g} at \boldsymbol{W} if and only if

$$
\mathrm{E}[u(W+g)] \geq u(W)
$$

LOG UTILITY:

$$
u(x)=\log (x)
$$

Expected Utility

Utility function $u(x)$:

- Accept \boldsymbol{g} at \boldsymbol{W} if and only if

$$
\mathrm{E}[u(W+g)] \geq u(W)
$$

LOG UTILITY:

$$
u(x)=\log (x)
$$

- Constant Arrow-Pratt Relative Risk Aversion coefficient $=1$ (CRRA-1)

The Riskiness Measure R

The Riskiness Measure R

$$
\mathrm{E}\left[\log \left(1+\frac{1}{\mathrm{R}(g)} \boldsymbol{g}\right)\right]=0
$$

The Riskiness Measure R

$$
\mathrm{E}\left[\log \left(1+\frac{1}{\mathrm{R}(g)} g\right)\right]=0
$$

$$
\mathrm{E}[\log (\mathrm{R}(\boldsymbol{g})+\boldsymbol{g})]=\log (\mathrm{R}(\boldsymbol{g}))
$$

The Riskiness Measure R

$$
\mathrm{E}\left[\log \left(1+\frac{1}{\mathrm{R}(g)} g\right)\right]=0
$$

\Leftrightarrow

$$
\mathrm{E}[\log (\mathrm{R}(\boldsymbol{g})+\boldsymbol{g})]=\log (\mathrm{R}(\boldsymbol{g}))
$$

\Leftrightarrow
LOG UTILITY rejects g when $W<\mathrm{R}(g)$
LOG UTILITY accepts g when $W \geq \mathrm{R}(g)$

The Riskiness Measure R

$$
\mathrm{E}\left[\log \left(1+\frac{1}{\mathrm{R}(g)} g\right)\right]=0
$$

\Leftrightarrow

$$
\mathrm{E}[\log (\mathrm{R}(\boldsymbol{g})+\boldsymbol{g})]=\log (\mathrm{R}(\boldsymbol{g}))
$$

\Leftrightarrow
LOG UTILITY rejects g when $W<\mathrm{R}(g)$
LOG UTILITY accepts g when $W \geq \mathrm{R}(g)$
\Leftrightarrow
LOG UTILITY rejects g if and only if $W<R(g)$

The Riskiness Measure R

LOG UTILITY rejects \boldsymbol{g} if and only if $\boldsymbol{W}<\mathbf{R}(\boldsymbol{g})$

The Riskiness Measure R

LOG UTILITY rejects g if and only if $\boldsymbol{W}<\mathrm{R}(\boldsymbol{g})$

No-bankruptcy

LOG UTILITY rejects g if and only if $\boldsymbol{W}<\mathbf{R}(g)$

OUR RESULT:

LOG UTILITY rejects g if and only if $W<R(g)$

OUR RESULT:

No-bankruptcy is guaranteed

\Leftrightarrow reject when $W<\mathrm{R}(g)$

LOG UTILITY rejects g if and only if $\boldsymbol{W}<\mathbf{R}(\boldsymbol{g})$

OUR RESULT:

No-bankruptcy is guaranteed

\Leftrightarrow reject when $W<\mathrm{R}(g)$
\Leftrightarrow reject at least as much as LOG UTILITY

LOG UTILITY rejects g if and only if $W<\mathrm{R}(g)$

OUR RESULT:

No-bankruptcy is guaranteed

\Leftrightarrow reject when $W<R(g)$
\Leftrightarrow reject at least as much as LOG UTILITY

LOG UTILITY \Leftrightarrow relative risk aversion $\equiv 1$

LOG UTILITY rejects g if and only if $W<\mathrm{R}(g)$

OUR RESULT:

No-bankruptcy is guaranteed

\Leftrightarrow reject when $W<\mathrm{R}(g)$
\Leftrightarrow reject at least as much as LOG UTILITY
\approx relative risk aversion ≥ 1

LOG UTILITY \Leftrightarrow relative risk aversion $\equiv 1$

No-bankruptcy and Risk Aversion

LOG UTILITY rejects g if and only if $\boldsymbol{W}<\mathrm{R}(\boldsymbol{g})$

OUR RESULT:

No-bankruptcy is guaranteed
\Leftrightarrow reject when $W<\mathrm{R}(g)$
\Leftrightarrow reject at least as much as LOG UTILITY
$\approx \quad$ relative risk aversion ≥ 1

LOG UTILITY \Leftrightarrow relative risk aversion $\equiv 1$

IV: Reserve

Reserve

Reserve

Every gamble g has a RESERVE $Q(g)>0$

Reserve: Axioms

Every gamble \boldsymbol{g} has a Reserve $Q(g)>0$

- DISTRIBUTION: If \boldsymbol{g} and \boldsymbol{h} have the same distribution then $Q(g)=Q(h)$

Reserve: Axioms

Every gamble g has a Reserve $Q(g)>0$

- DISTRIBUTION: If \boldsymbol{g} and \boldsymbol{h} have the same distribution then $Q(g)=Q(h)$
- SCALING:
$Q(\boldsymbol{\lambda} \boldsymbol{g})=\boldsymbol{\lambda} Q(\boldsymbol{g})$ for every $\boldsymbol{\lambda}>\mathbf{0}$

Reserve: Axioms

Every gamble g has a Reserve $Q(g)>0$

- DIStribution: If \boldsymbol{g} and \boldsymbol{h} have the same distribution then $Q(g)=Q(h)$
- SCALING:
$Q(\boldsymbol{\lambda} \boldsymbol{g})=\boldsymbol{\lambda} Q(\boldsymbol{g})$ for every $\boldsymbol{\lambda}>\mathbf{0}$
- MONOTONICITY:

If $g \leq h$ and $g \neq \boldsymbol{h}$ then $Q(g)>Q(h)$

Reserve: Axioms

Every gamble g has a RESERVE $Q(g)>0$

- DIStribution: If \boldsymbol{g} and \boldsymbol{h} have the same distribution then $Q(g)=Q(h)$
- SCALING:
$Q(\boldsymbol{\lambda} \boldsymbol{g})=\boldsymbol{\lambda} Q(\boldsymbol{g})$ for every $\boldsymbol{\lambda}>\mathbf{0}$
- MONOTONICITY:

If $\boldsymbol{g} \leq \boldsymbol{h}$ and $\boldsymbol{g} \neq \boldsymbol{h}$ then $Q(\boldsymbol{g})>Q(h)$

- COMPOUND GAMBLE

Reserve: Axioms

COMPOUND GAMBLE:

Reserve: Axioms

COMPOUND GAMBLE:

Reserve: Axioms

COMPOUND GAMBLE:

Notation:

Reserve: Axioms

COMPOUND GAMBLE:

Notation:

Reserve: Axioms

COMPOUND GAMBLE:

Notation:

Reserve: Axioms

COMPOUND GAMBLE:

Notation:

Reserve: Axioms

COMPOUND GAMBLE:

Notation:

Reserve: Axioms

COMPOUND GAMBLE:

- g, h_{1}, h_{2}, \ldots independent gambles

Reserve: Axioms

COMPOUND GAMBLE:

- g, h_{1}, h_{2}, \ldots independent gambles
- $f=g+\sum_{i} \mathbf{1}_{\left[g=x_{i}\right]} h_{i}$

Reserve: Axioms

COMPOUND GAMBLE:

$\Rightarrow \$ 500$

- g, h_{1}, h_{2}, \ldots independent gambles
- $f=g+\sum_{i} \mathbf{1}_{\left[g=x_{i}\right]} h_{i}$
- for every i : $Q\left(h_{i}\right)=Q(g)+x_{i}$

Reserve: Axioms

COMPOUND GAMBLE:

$\Rightarrow \$ 500$

- g, h_{1}, h_{2}, \ldots independent gambles
- $f=g+\sum_{i} \mathbf{1}_{\left[g=x_{i}\right]} h_{i}$
- for every i : $Q\left(h_{i}\right)=Q(g)+x_{i}$

$$
\Rightarrow Q(f)=Q(g)
$$

Reserve: Axioms

COMPOUND GAMBLE:

$$
-\$ 100
$$

$\Rightarrow \$ 500$

- g, h_{1}, h_{2}, \ldots independent gambles
- $f=g+\sum_{i} \mathbf{1}_{\left[g=x_{i}\right]} h_{i}$
- for every i : $Q\left(h_{i}\right)=Q(g)+x_{i}$

$$
\Rightarrow Q(f)=Q(g)
$$

Reserve: Axioms

COMPOUND GAMBLE:

$$
-\$ 100
$$

$\Rightarrow \$ 500$

- g, h_{1}, h_{2}, \ldots independent gambles
- $\boldsymbol{f}=\boldsymbol{g}+\sum_{i} \mathbf{1}_{\left[g=x_{i}\right]} \boldsymbol{h}_{\boldsymbol{i}}$
- for every i : $Q\left(h_{i}\right)=Q(g)+x_{i}$

$$
\Rightarrow Q(f)=Q(g)
$$

Reserve: Axioms

COMPOUND GAMBLE:

$\Rightarrow \$ 500$

- g, h_{1}, h_{2}, \ldots independent gambles
- $f=g+\sum_{i} \mathbf{1}_{\left[g=x_{i}\right]} h_{i}$
- for every i : $Q\left(h_{i}\right)=Q(g)+x_{i}$

$$
\Rightarrow Q(f)=Q(g)
$$

Reserve

Reserve

THEOREM

The minimal reserve function Q that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE

Reserve and Riskiness

THEOREM

The minimal reserve function Q that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure R

Reserve and Riskiness

THEOREM

The minimal reserve function Q that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure R

Reserve and Riskiness

THEOREM

The minimal reserve function Q that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure R

- $Q=\mathrm{R}$ satisfies the four axioms

Reserve and Riskiness

THEOREM

The minimal reserve function Q that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure R

- $Q=\mathrm{R}$ satisfies the four axioms
- If $Q \neq \mathrm{R}$ satisfies the four axioms then $Q(g)>\mathrm{R}(g)$ for every gamble g

Critical Wealth

- CRRA (γ) : Utility function u_{γ} with constant relative risk aversion $=\gamma$

Critical Wealth

- CRRA (γ) : Utility function u_{γ} with constant relative risk aversion $=\gamma$
- $u_{\gamma}(x)=-x^{-(\gamma-1)}$ for $\gamma>1$
- $u_{\gamma}(x)=\log (x) \quad$ for $\gamma=1$
- $u_{\gamma}(x)=x^{1-\gamma}$ for $0<\gamma<1$

Critical Wealth

- CRRA (γ) : Utility function u_{γ} with constant relative risk aversion $=\gamma$
- γ-CRITICAL WEALTH $\boldsymbol{R}_{\gamma}(g)$ of the gamble \boldsymbol{g} :

Critical Wealth

- CRRA (γ) : Utility function u_{γ} with constant relative risk aversion $=\gamma$
- γ-CRITICAL WEALTH $\boldsymbol{R}_{\gamma}(g)$ of the gamble \boldsymbol{g} :

$$
\mathrm{E}\left[u_{\gamma}\left(R_{\gamma}(g)+g\right)\right]=u_{\gamma}\left(R_{\gamma}(g)\right)
$$

Critical Wealth

- CRRA (γ) : Utility function u_{γ} with constant relative risk aversion $=\gamma$
- γ-CRITICAL WEALTH $\boldsymbol{R}_{\gamma}(\boldsymbol{g})$ of the gamble \boldsymbol{g} :

$$
\mathrm{E}\left[u_{\gamma}\left(\boldsymbol{R}_{\gamma}(g)+g\right)\right]=u_{\gamma}\left(R_{\gamma}(g)\right)
$$

$\operatorname{CRRA}(\gamma)$ accepts \boldsymbol{g} at $\boldsymbol{W} \Leftrightarrow \boldsymbol{W} \geq \boldsymbol{R}_{\gamma}(\boldsymbol{g})$

Critical Wealth

- CRRA (γ) : Utility function u_{γ} with constant relative risk aversion $=\gamma$
- γ-CRITICAL WEALTH $\boldsymbol{R}_{\gamma}(g)$ of the gamble \boldsymbol{g} :

$$
\mathrm{E}\left[u_{\gamma}\left(R_{\gamma}(g)+g\right)\right]=u_{\gamma}\left(R_{\gamma}(g)\right)
$$

$\operatorname{CRRA}(\gamma)$ accepts \boldsymbol{g} at $\boldsymbol{W} \Leftrightarrow \boldsymbol{W} \geq \boldsymbol{R}_{\gamma}(\boldsymbol{g})$

- $\boldsymbol{R}_{1}(g)=\mathrm{R}(g)\left(\right.$ for $\left.\gamma=1: u_{1}=\log \right)$

Critical Wealth

- CRRA (γ) : Utility function u_{γ} with constant relative risk aversion $=\gamma$
- γ-CRITICAL WEALTH $\boldsymbol{R}_{\gamma}(g)$ of the gamble \boldsymbol{g} :

$$
\mathrm{E}\left[u_{\gamma}\left(R_{\gamma}(g)+g\right)\right]=u_{\gamma}\left(R_{\gamma}(g)\right)
$$

$\operatorname{CRRA}(\gamma)$ accepts \boldsymbol{g} at $\boldsymbol{W} \Leftrightarrow \boldsymbol{W} \geq \boldsymbol{R}_{\gamma}(\boldsymbol{g})$

- $\boldsymbol{R}_{1}(g)=\mathrm{R}(g)\left(\right.$ for $\left.\gamma=1: u_{1}=\log \right)$
- $\boldsymbol{R}_{\gamma}(g)$ increases with γ

Reserve and Critical Wealth

THEOREM

Reserve and Critical Wealth

THEOREM
 The reserve function Q satisfies the four axioms

Reserve and Critical Wealth

THEOREM

The reserve function Q satisfies the four axioms if and only if
$Q=\boldsymbol{R}_{\gamma}$ for some $\gamma \geq 1$

Reserve and Critical Wealth

THEOREM

The reserve function Q satisfies the four axioms if and only if
$Q=\boldsymbol{R}_{\gamma}$ for some $\gamma \geq 1$

- $\Rightarrow Q \geq R_{1}=R$

Reserve and Riskiness

THEOREM

The reserve function Q satisfies the four axioms

if and only if

$Q=\boldsymbol{R}_{\gamma}$ for some $\gamma \geq 1$

- $\Rightarrow Q \geq R_{1}=\mathrm{R}$
- THE MINIMAL RESERVE
$=$ the critical wealth R_{1} for $\operatorname{CRRA}(1)$
= THE RISKINESS MEASURE R

Reserve and Riskiness

THEOREM

The reserve function Q satisfies the four axioms

if and only if

$Q=\boldsymbol{R}_{\gamma}$ for some $\gamma \geq 1$

- $\Rightarrow Q \geq R_{1}=R$
- THE MINIMAL RESERVE
$=$ the critical wealth R_{1} for CRRA(1)
= THE RISKINESS MEASURE R

V: Connections

Aumann \& Serrano (2008)

Aumann \& Serrano (2008)

Index of Riskiness Q

Aumann \& Serrano (2008)

Index of Riskiness Q

- Duality: For gambles $\boldsymbol{g}, \boldsymbol{h}$ and agents $\boldsymbol{u}, \boldsymbol{v}$

Aumann \& Serrano (2008)

Index of Riskiness Q

- Duality: For gambles $\boldsymbol{g}, \boldsymbol{h}$ and agents $\boldsymbol{u}, \boldsymbol{v}$ If
- \boldsymbol{u} is uniformly more risk-averse than \boldsymbol{v}
- \boldsymbol{u} accepts \boldsymbol{g} at wealth \boldsymbol{W}
- $Q(g)>Q(h)$

Aumann \& Serrano (2008)

Index of Riskiness Q

- Duality: For gambles g, h and agents u, v If
- u is uniformly more risk-averse than v
- u accepts g at wealth W
- $Q(g)>Q(h)$

Then

- v accepts h at wealth W

Aumann \& Serrano (2008)

Index of Riskiness Q

- Duality: For gambles g, h and agents u, v If
- u is uniformly more risk-averse than v
- u accepts g at wealth W
- $Q(g)>Q(h)$

Then

- v accepts h at wealth W
- Homogeneity: $Q(\boldsymbol{\lambda} \boldsymbol{g})=\boldsymbol{\lambda} Q(\boldsymbol{g})$ for $\boldsymbol{\lambda}>\mathbf{0}$

Aumann \& Serrano (2008)

For each gamble g :

Aumann \& Serrano (2008)

For each gamble g :

- Let $\alpha^{*} \equiv \alpha^{*}(g)$ be the Arrow-Pratt coefficient of absolute risk-aversion of that agent $u(x)=-\exp \left(-\alpha^{*} x\right)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g

Aumann \& Serrano (2008)

For each gamble g :

- Let $\alpha^{*} \equiv \alpha^{*}(g)$ be the Arrow-Pratt coefficient of absolute risk-aversion of that agent $u(x)=-\exp \left(-\alpha^{*} x\right)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g
- Let $R^{A S}(g)=1 / \alpha^{*}$

Aumann \& Serrano (2008)

For each gamble g :

- Let $\alpha^{*} \equiv \alpha^{*}(g)$ be the Arrow-Pratt coefficient of absolute risk-aversion of that agent $u(x)=-\exp \left(-\alpha^{*} x\right)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g
- Let $R^{A S}(g)=1 / \alpha^{*}$
$R^{A S}(g)$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[\exp \left(-\frac{1}{R} g\right)\right]=\exp (0)=1
$$

Aumann \& Serrano (2008)

Theorem

Aumann \& Serrano (2008)

Theorem

Q satisfies DUALITY and HOMOGENEITY if and only if

Aumann \& Serrano (2008)

Theorem

Q satisfies dUALITY and HOMOGENEITY if and only if
Q is a positive multiple of $R^{A S}$

Aumann \& Serrano (2008)

Theorem

Q satisfies dUALITY and HOMOGENEITY if and only if
Q is a positive multiple of $R^{A S}$:

There is $c>0$ such that $Q(g)=c R^{A S}(g)$ for every gamble g

Duality

Duality

$\boldsymbol{u} \triangleright \boldsymbol{v}=" \boldsymbol{u}$ is uniformly more risk-averse than \boldsymbol{v} "

Duality

$u \triangleright v=" u$ is uniformly more risk-averse than v "

Riskiness Order

Alternative approach:

Riskiness Order

Alternative approach:

- Define a "more risky than" ORDER between gambles

Riskiness Order

Alternative approach:

- Define a "more risky than" ORDER between gambles
- Represent it by an "index"

Riskiness Order

Alternative approach:

- Define a "more risky than" ORDER between gambles
\leftrightarrow preference order
- Represent it by an "index"

Riskiness Order

Alternative approach:

- Define a "more risky than" ORDER between gambles
\leftrightarrow preference order
- Represent it by an "index"
\leftrightarrow utility function

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth:
- If \boldsymbol{u} accepts a gamble \boldsymbol{g} at wealth \boldsymbol{W}
- Then \boldsymbol{u} accepts g at any wealth $\boldsymbol{W}^{\prime}>\boldsymbol{W}$

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth:
- If \boldsymbol{u} accepts a gamble \boldsymbol{g} at wealth \boldsymbol{W}
- Then \boldsymbol{u} accepts g at any wealth $\boldsymbol{W}^{\prime}>\boldsymbol{W}$ (\Leftrightarrow coefficient of absolute risk-aversion is nonincreasing in wealth)

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth
- An agent u totally rejects g if \boldsymbol{u} rejects \boldsymbol{g} at every wealth \boldsymbol{W}

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth
- An agent u TOTALLY REJECTS g if \boldsymbol{u} rejects \boldsymbol{g} at every wealth \boldsymbol{W}
- A gamble g is RISKIER THAN a gamble h

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth
- An agent \boldsymbol{u} totally rejects \boldsymbol{g} if \boldsymbol{u} rejects \boldsymbol{g} at every wealth \boldsymbol{W}
- A gamble g is RISKIER THAN a gamble h if for any monotonic agent u :
- If \boldsymbol{u} totally rejects \boldsymbol{h}
- Then u totally rejects g

Riskiness Order

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth
- An agent \boldsymbol{u} totally rejects \boldsymbol{g} if \boldsymbol{u} rejects \boldsymbol{g} at every wealth \boldsymbol{W}
- A gamble g is RISKIER THAN a gamble h if for any monotonic agent u :
- If \boldsymbol{u} totally rejects \boldsymbol{h}
- Then u totally rejects g

$$
g \succsim h
$$

Riskiness Order

Theorem. The riskiness order is represented by the Aumann-Serrano index of riskiness:

$$
g \succsim h \quad \Longleftrightarrow \quad R^{A S}(g) \geq R^{A S}(h)
$$

Riskiness Order

Theorem. The riskiness order is represented by the Aumann-Serrano index of riskiness:

$$
g \succsim h \quad \Longleftrightarrow \quad R^{A S}(g) \geq R^{A S}(h)
$$

Corollary

- \succsim is a complete order

Riskiness Order

Theorem. The riskiness order is represented by the Aumann-Serrano index of riskiness:

$$
g \succsim h \quad \Longleftrightarrow \quad R^{A S}(g) \geq R^{A S}(h)
$$

Corollary

- \succsim is a complete order
- $R^{A S}$ is unique up to a monotonic transformation

Riskiness Order

Theorem. The riskiness order is represented by the Aumann-Serrano index of riskiness:

$$
g \succsim h \quad \Longleftrightarrow \quad R^{A S}(g) \geq R^{A S}(h)
$$

Corollary

- \succsim is a complete order
- $R^{A S}$ is unique up to a monotonic transformation
- Together with homogeneity: $R^{A S}$ is unique up to multiplication by a positive constant

Comparing R and $R^{A S}$

$R^{A S}(g)$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[1-\exp \left(-\frac{1}{R} g\right)\right]=0
$$

Comparing R and $R^{A S}$

$\mathrm{R}(g)$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[\log \left(1+\frac{1}{R} g\right)\right]=0
$$

$R^{A S}(g)$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[1-\exp \left(-\frac{1}{R} g\right)\right]=0
$$

Comparing R and $R^{A S}$

$\mathrm{R}(g)$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[\log \left(1+\frac{1}{R} g\right)\right]=0
$$

$R^{A S}(g)$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[1-\exp \left(-\frac{1}{R} g\right)\right]=0
$$

$\log (1+x)=x-x^{2} / 2+x^{3} / 3-\ldots$

Comparing R and $R^{A S}$

$\mathrm{R}(\mathrm{g})$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[\log \left(1+\frac{1}{R} g\right)\right]=0
$$

$R^{A S}(g)$ is the unique solution $R>0$ of

$$
\mathrm{E}\left[1-\exp \left(-\frac{1}{R} g\right)\right]=0
$$

$$
\begin{aligned}
\log (1+x) & =x-x^{2} / 2+x^{3} / 3-\ldots \\
1-\exp (-x) & =x-x^{2} / 2+x^{3} / 6-\ldots
\end{aligned}
$$

Comparing R and $R^{A S}$

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{A S}(g)$

Comparing R and $R^{A S}$

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{A S}(g)$

Example

Comparing R and $R^{A S}$

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{A S}(g)$

Example

$R(g)=\$ 2100$

Comparing R and $R^{A S}$

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{A S}(g)$

Example

$$
g=\begin{array}{cc}
\frac{1 / 2}{\frac{1 / 2}{}}-\$ 105 \\
-\$ 100
\end{array}
$$

$$
\mathrm{R}(g)=\$ 2100 \quad R^{A S}(g)=\$ 2100.42 \ldots
$$

Comparing R and $\boldsymbol{R}^{A S}$

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion $R^{A S}$: critical risk aversion for any wealth

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion $R^{A S}$: critical risk aversion for any wealth
- R: measure (one gamble)

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion
$R^{A S}$: critical risk aversion for any wealth
- R: measure (one gamble)
$R^{A S}$: index (comparing gambles)

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion
$R^{A S}$: critical risk aversion for any wealth
- R: measure (one gamble)
$R^{A S}$: index (comparing gambles)
- R: no-bankruptcy, no-loss

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion
$R^{A S}$: critical risk aversion for any wealth
- R: measure (one gamble)
$R^{A S}$: index (comparing gambles)
- R: no-bankruptcy, no-loss
$R^{A S}$: expected utility, risk aversion

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion
$R^{A S}$: critical risk aversion for any wealth
- R: measure (one gamble)
$R^{A S}$: index (comparing gambles)
- R: no-bankruptcy, no-loss
$R^{A S}$: expected utility, risk aversion
- unit and operational interpretation

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion
$R^{A S}$: critical risk aversion for any wealth
- R: measure (one gamble)
$R^{A S}$: index (comparing gambles)
- R: no-bankruptcy, no-loss
$R^{A S}$: expected utility, risk aversion
- unit and operational interpretation
- continuity and "black swans"

Comparing R and $R^{A S}$

- R: critical wealth for any risk aversion
$R^{A S}$: critical risk aversion for any wealth
- R: measure (one gamble)
$R^{A S}$: index (comparing gambles)
- R: no-bankruptcy, no-loss
$R^{A S}$: expected utility, risk aversion
- unit and operational interpretation
- continuity and "black swans"

Nevertheless: similar in many respects !!

Rabin (2000): Calibration

Rabin (2000): Calibration

- If a risk-averse expected-utility agent rejects the gamble $g=[+\$ 105,1 / 2 ;-\$ 100,1 / 2]$ at all wealth levels $W<\$ 300000$

Rabin (2000): Calibration

- If a risk-averse expected-utility agent rejects the gamble $g=[+\$ 105,1 / 2 ;-\$ 100,1 / 2]$ at all wealth levels $W<\$ 300000$
- Then he must reject the gamble $h=[+\$ 5500000,1 / 2 ;-\$ 10000,1 / 2]$ at wealth level $W=\$ 290000$

Rabin (2000): Calibration

- If a risk-averse expected-utility agent rejects the gamble $g=[+\$ 105,1 / 2 ;-\$ 100,1 / 2]$ at all wealth levels $W<\$ 300000$
- Then he must reject the gamble $h=[+\$ 5500000,1 / 2 ;-\$ 10000,1 / 2]$ at wealth level $W=\$ 290000$

Rabin (2000): Calibration

- If a risk-averse expected-utility agent rejects the gamble $g=[+\$ 105,1 / 2 ;-\$ 100,1 / 2]$ at all wealth levels $W<\$ 300000$
- Then he must reject the gamble $h=[+\$ 5500000,1 / 2 ;-\$ 10000,1 / 2]$ at wealth level $W=\$ 290000$

OUR RESULT: reject g

at all wealth levels $W<\mathrm{R}(g)=\$ 2100$

Rabin (2000): Calibration

- If a risk-averse expected-utility agent rejects the gamble $g=[+\$ 105,1 / 2 ;-\$ 100,1 / 2]$ at all wealth levels $W<\$ 300000$
- Then he must reject the gamble $h=[+\$ 5500000,1 / 2 ;-\$ 10000,1 / 2]$ at wealth level $W=\$ 290000$

> OUR RESULT: reject g at all wealth levels $W<\mathrm{R}(g)=\$ 2100$

- no friction, no cheating

Rabin (2000): Calibration

- If a risk-averse expected-utility agent rejects the gamble $g=[+\$ 105,1 / 2 ;-\$ 100,1 / 2]$ at all wealth levels $W<\$ 300000$
- Then he must reject the gamble $h=[+\$ 5500000,1 / 2 ;-\$ 10000,1 / 2]$ at wealth level $W=\$ 290000$

> OUR RESULT: reject g at all wealth levels $W<\mathrm{R}(g)=\$ 2100$

- no friction, no cheating
- what is "wealth"?

What is Wealth?

What is Wealth?

Rejecting g when $W<\underline{W}+\mathrm{R}(g)$
Guarantees a minimal wealth level of \underline{W}

What is Wealth?

Rejecting g when $W<\underline{W}+\mathrm{R}(g)$
Guarantees a minimal wealth level of \underline{W}
(Proof: replace 0 with \underline{W})

What is Wealth?

Rejecting g when $W<\underline{W}+\mathrm{R}(g)$

Guarantees a minimal wealth level of \underline{W}

Back to calibration:

What is Wealth?

Rejecting g when $W<\underline{W}+\mathrm{R}(g)$
Guarantees a minimal wealth level of \underline{W}
Back to calibration:

- If $\boldsymbol{W}=$ "gambling / risky investment wealth", then $\$ 300000$ seems excessive for g (since $\mathrm{R}(g)=\$ 2100$)

What is Wealth?

Rejecting g when $W<\underline{W}+\mathrm{R}(g)$ Guarantees a minimal wealth level of \underline{W}

Back to calibration:

- If $\boldsymbol{W}=$ "gambling / risky investment wealth", then $\$ 300000$ seems excessive for g (since $\mathrm{R}(g)=\$ 2100$)
- If $W=$ total wealth, then rejecting g at all $W<\$ 300000$ is consistent with a required minimal wealth level $\underline{W} \geq \$ 297900$,

What is Wealth?

Rejecting g when $W<\underline{W}+\mathrm{R}(g)$ Guarantees a minimal wealth level of \underline{W}

Back to calibration:

- If $\boldsymbol{W}=$ "gambling / risky investment wealth", then $\$ 300000$ seems excessive for g (since $\mathrm{R}(g)=\$ 2100$)
- If $W=$ total wealth, then rejecting g at all $W<\$ 300000$ is consistent with a required minimal wealth level $\underline{W} \geq \$ 297900$, and then one rejects h at $\$ 290000$

Summary

The Riskiness measure R

The Riskiness measure R (recall)

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation

The Riskiness measure R

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)

The Riskiness measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)
- may replace measures of risk (σ-based, ...)

The Riskiness measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)
- may replace measures of risk (σ-based, ...)
- Markowitz, CAPM, ... : E vs $\sigma \rightarrow$ E vs R
- Sharpe ratio:
$\mathrm{E} / \sigma \quad \rightarrow \mathrm{E} / \mathrm{R}$

The Riskiness measure \mathbf{R}

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)
- may replace measures of risk (σ-based, ...)
- Markowitz, CAPM, ... : E vs $\sigma \rightarrow$ E vs R
- Sharpe ratio: $\mathrm{E} / \sigma \rightarrow \mathrm{E} / \mathrm{R}$
- may replace reserve measures (VaR, ...)

The End

"We're recommending a risky strategy for you; so we'd appreciate if you paid before you leave."

