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A gamble

+$120
g =

−$100

1/2

1/2

E[g] = $10

ACCEPT g or REJECT g ?

What is the RISK in accepting g ?

What is the RISKINESS of g ?
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The Riskiness of a Gamble

What is the RISKINESS of a gamble ?

Is there an OBJECTIVE way to measure the
RISKINESS of a gamble ?

OBJECTIVE = depends only on the gamble,
not on the decision-maker
OBJECTIVE measures:

RETURN = expectation ( E[g] )
SPREAD = standard deviation ( σ[g] )
RISKINESS = ?
(σ ? not monotonic !)
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The Riskiness of a Gamble

Seeking a MEASURE OF RISKINESS that is:
Objective (depends only on the
distribution of the gamble) [like E, σ]
Measured in the same units as the
outcomes (scale-invariant ) [like E, σ]
Monotonic (with respect to stochastic
dominance) [ ? ]
Simple interpretation, formula [ ? ]
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The Risk of Accepting a Gamble

+$120
g =

−$100

1/2

1/2

Accepting the gamble g when the wealth W is:

W = $100: very risky (bankruptcy)

W = $1000000: not risky

The risk of accepting a gamble
depends on the current wealth

Is there a “cutoff point” ?
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The Measure of Riskiness

Given a gamble g:

1. Identify the wealth levels where
accepting the gamble g is RISKY

2. Define the RISKINESS of the gamble g as:

the CRITICAL WEALTH level
below which accepting g becomes RISKY
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Gambles

A gamble is a real-valued random variable g

Positive expectation: E[g] > 0

Some negative values: P[g < 0] > 0
(loss is possible)

[technical] Finitely many values:
g takes the values x1, x2, ..., xm

with probabilities p1, p2, ..., pm
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At every period t = 1, 2, ... :

let Wt > 0 be the CURRENT WEALTH

a gamble gt is OFFERED

gt may be ACCEPTED or REJECTED
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Gambles

At every period t = 1, 2, ...

a gamble gt is OFFERED:

the sequence G = (g1, g2, ..., gt, ...)
is arbitrary

gt may depend on the past
wealths, gambles, decisions

NOTE: not i.i.d., arbitrary dependence;
non-Bayesian; “adversary”

[technical] G is finitely generated: there
is a finite collection of gambles such that
every gt is a multiple of one of them
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Critical Wealth and Strategies

CRITICAL -WEALTH function Q:

Q : { the set of gambles } −→ [0, ∞]

Q(g) depends only on the distribution of g

Q(λg) = λQ(g) for λ > 0 (scaling)

SIMPLE STRATEGY s ≡ sQ:

s rejects the gamble g at wealth W
when W < Q(g)

s accepts the gamble g at wealth W
when W ≥ Q(g)
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No-Bankruptcy

A strategy GUARANTEES NO-BANKRUPTCY :

{ limt→∞ Wt = 0} has probability 0

for every G = (g1, g2, ..., gt, ...)

and every W1 > 0
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W
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Examples of such strategies:
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Main Result

A simple strategy sQ guarantees no-bankruptcy
if and only if Q(g) ≥ R(g) for every g

W
R(g)

REJECT ACCEPTACCEPT

Examples of such strategies:

Q(g) = ∞ for all g: Always reject

Q(g) = R(g) for all g: Reject ⇔ W < R(g)
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Main Result

A simple strategy sQ guarantees no-bankruptcy
if and only if Q(g) ≥ R(g) for every g

W
R(g)

REJECT ACCEPT

Q(g)

Examples of such strategies:

Q(g) = ∞ for all g: Always reject

Q(g) = R(g) for all g: Reject ⇔ W < R(g)

Anything in between
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Main Result

R(g) = the RISKINESS of g

No-bankruptcy is guaranteed

if and only if

One never accepts gambles whose RISKINESS
exceeds the current wealth

RISKINESS ∼ “reserve”
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Main Result (continued)

Moreover, for every gamble g,

its RISKINESS R(g)

is the unique solution R > 0 of the equation

SERGIU HART c© 2007 – p. 22



Main Result (continued)

Moreover, for every gamble g,

its RISKINESS R(g)

is the unique solution R > 0 of the equation

E

[

log

(

1 +
1

R
g

)]

= 0

SERGIU HART c© 2007 – p. 22



The Riskiness of Some Gambles

+ X
g =

− $100

1/2

1/2

SERGIU HART c© 2007 – p. 23



The Riskiness of Some Gambles

+ X
g =

− $100

1/2

1/2

X E [g] R(g)

$300 $100 $150

$200 $50 $200

$120 $10 $600
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$102 $1 $5100
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g =
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The Riskiness of Some Gambles

+ $105
g =

− $100

p

1−p

p E [g] R(g)

0.5 $2.5 $2100

0.6 $23 $235.23

0.8 $64 $106.93

0.9 $84.5 $100.16
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The Riskiness Measure R

is objective and universal

is independent of utilities, risk aversion, ...

has a clear operational interpretation

is defined for each gamble separately

is normalized (unit = $)

(... more to follow ...)
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The Shares Model

May take any proportion of the offered gt

(i.e., αtgt for αt ≥ 0, instead of αt = 0, 1)

A simple shares strategy sQ:
At W = Q(g) accept g (i.e., α = 1)
At any W accept αg where α = W/Q(g)
(Q(αg) = W )

Theorem Let sQ be a simple shares strategy.
limt→∞ Wt = ∞ (a.s.) for every process
⇔ Q(g) > R(g) for every gamble g.
limt→∞ Wt = 0 (a.s.) for some process
⇔ Q(g) < R(g) for some gamble g.
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The Shares Model

Therefore we may replace NO-BANKRUPTCY
with other criteria, such as:

NO-LOSS: lim inf t Wt ≥ W1

BOUNDED LOSS : lim inf t Wt ≥ W1 − C

ASSURED GAIN : lim inf t Wt ≥ W1 + C

INFINITE GROWTH: limt Wt = ∞
. . .

Corollary A simple shares strategy sQ

guarantees NO-LOSS

if Q(g) > R(g) for every gamble g

only if Q(g) ≥ R(g) for every gamble g
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g =
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Consider an i.i.d. sequence (gt)t with gt ∼ g

Assume the critical wealth is Q(g) = $200

At time t the gamble (Wt/200)gt is taken

⇒ Wt+1 = Wt +

(

Wt

200

)

gt = Wt

(

1 +
gt

200

)
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Example: Riskiness R(g) = $600
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The critical wealth level = $600

Accepting the gamble g when the wealth is
W < $600 gives “bad” returns
(a regime where Wt → 0 a.s.)

Accepting the gamble g when the wealth is
W > $600 gives “good” returns:
(a regime where Wt → ∞ a.s.)

The RISKINESS of the gamble g is
R(g) = $600
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t Q(g) P[Wt+1 ≥ W1]
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100 $1000 64%
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Finite Time

Up to now: limit as t → ∞
FINITE t: the distribution of wealth is quite
different in the two regimes

Example: MED := Median of Wt+1/W1

t Q(g) P[Wt+1 ≥ W1] MED

100 $200 2.7% 0.0014%

100 $1000 64% 148%

1000 $200 10−7% 10−46%

1000 $1000 87% 5373%
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Expected Utility

Utility function u(x):

Accept g at W if and only if

E [u(W + g)] ≥ u(W )

LOG UTILITY :

u(x) = log(x)

Constant Arrow–Pratt Relative Risk Aversion
coefficient = 1 (CRRA-1)
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The Riskiness Measure Ry

E

[

log
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E

[

log

(

1 +
1

R(g)
g

)]

= 0

⇔
E [log(R(g) + g)] = log(R(g))

⇔
LOG UTILITY rejects g when W < R(g)
LOG UTILITY accepts g when W ≥ R(g)
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The Riskiness Measure Ry

E

[

log

(

1 +
1

R(g)
g

)]

= 0

⇔
E [log(R(g) + g)] = log(R(g))

⇔
LOG UTILITY rejects g when W < R(g)
LOG UTILITY accepts g when W ≥ R(g)

⇔
LOG UTILITY rejects g if and only if W < R(g)
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No-bankruptcy

LOG UTILITY rejects g if and only if W < R(g)

OUR RESULT:

No-bankruptcy is guaranteed

⇔ reject when W < R(g)

⇔ reject at least as much as LOG UTILITY

≈ relative risk aversion ≥ 1

LOG UTILITY ⇔ relative risk aversion ≡ 1
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No-bankruptcy and Risk Aversion

LOG UTILITY rejects g if and only if W < R(g)

OUR RESULT:

No-bankruptcy is guaranteed

⇔ reject when W < R(g)

⇔ reject at least as much as LOG UTILITY

≈ relative risk aversion ≥ 1

LOG UTILITY ⇔ relative risk aversion ≡ 1
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SCALING :
Q(λ g) = λ Q(g) for every λ > 0
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i 1[g=xi] hi

for every i: Q(hi) = Q(g) + xi

⇒ Q(f) = Q(g)
SERGIU HART c© 2007 – p. 45



Reserve

SERGIU HART c© 2007 – p. 46



Reserve

THEOREM

The minimal reserve function Q

that satisfies the four axioms
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Reserve and Riskiness

THEOREM

The minimal reserve function Q

that satisfies the four axioms
DISTRIBUTION , SCALING ,

MONOTONICITY, COMPOUND GAMBLE

is the riskiness measure R

Q = R satisfies the four axioms

If Q 6= R satisfies the four axioms
then Q(g) > R(g) for every gamble g
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Critical Wealth

CRRA(γ): Utility function uγ with constant
relative risk aversion = γ

uγ(x) = −x−(γ−1) for γ > 1

uγ(x) = log(x) for γ = 1

uγ(x) = x1−γ for 0 < γ < 1
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Critical Wealth

CRRA(γ): Utility function uγ with constant
relative risk aversion = γ

γ-CRITICAL WEALTH Rγ(g) of the gamble g:

E [uγ(Rγ(g) + g)] = uγ(Rγ(g))

CRRA(γ) accepts g at W ⇔ W ≥ Rγ(g)

R1(g) = R(g) (for γ = 1: u1 = log)

Rγ(g) increases with γ
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THEOREM
The reserve function Q

satisfies the four axioms
if and only if

Q = Rγ for some γ ≥ 1

⇒ Q ≥ R1 = R

THE MINIMAL RESERVE
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Aumann & Serrano (2008)

Index of Riskiness Q

DUALITY : For gambles g, h and agents u, v

If
u is uniformly more risk-averse than v

u accepts g at wealth W

Q(g) > Q(h)

Then
v accepts h at wealth W

HOMOGENEITY: Q(λ g) = λ Q(g) for λ > 0
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Let α∗ ≡ α∗(g) be the Arrow–Pratt
coefficient of absolute risk-aversion of that
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absolute risk aversion (CARA) who is
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Aumann & Serrano (2008)

For each gamble g:

Let α∗ ≡ α∗(g) be the Arrow–Pratt
coefficient of absolute risk-aversion of that
agent u(x) = − exp(−α∗x) with constant
absolute risk aversion (CARA) who is
indifferent between accepting and rejecting g

Let RAS(g) = 1/α∗

RAS(g) is the unique solution R > 0 of

E

[

exp

(

− 1

R
g

)]

= exp(0) = 1
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Aumann & Serrano (2008)

Theorem

Q satisfies DUALITY and HOMOGENEITY
if and only if

Q is a positive multiple of RAS:

There is c > 0 such that
Q(g) = c RAS(g) for every gamble g
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Riskiness Order

Alternative approach:

Define a "more risky than" ORDER between
gambles
↔ preference order

Represent it by an " INDEX"
↔ utility function
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Riskiness Order

An agent u is MONOTONIC if his decisions are
monotonic relative to wealth:

If u accepts a gamble g at wealth W

Then u accepts g at any wealth W ′ > W

(⇔ coefficient of absolute risk-aversion is
nonincreasing in wealth)
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Riskiness Order

An agent u is MONOTONIC if his decisions are
monotonic relative to wealth

An agent u TOTALLY REJECTS g
if u rejects g at every wealth W

A gamble g is RISKIER THAN a gamble h
if for any monotonic agent u:

If u totally rejects h

Then u totally rejects g

g % h
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the Aumann–Serrano index of riskiness:
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Riskiness Order

Theorem. The riskiness order is represented by
the Aumann–Serrano index of riskiness:

g % h ⇐⇒ RAS(g) ≥ RAS(h)

Corollary

% is a complete order

RAS is unique up to a monotonic
transformation

Together with homogeneity: RAS is unique up
to multiplication by a positive constant
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Comparing R and RAS

RAS(g) is the unique solution R > 0 of

E
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1 − exp

(

− 1

R
g

)]

= 0
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Comparing R and RAS

R(g) is the unique solution R > 0 of

E

[

log

(

1 +
1

R
g

)]

= 0

RAS(g) is the unique solution R > 0 of

E

[

1 − exp

(

− 1

R
g

)]

= 0

log(1 + x) = x − x2/2 + x3/3 − ...

1 − exp(−x) = x − x2/2 + x3/6 − ...
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If E[g] is small relative to g then R(g) ∼ RAS(g)
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Comparing R and RAS

Proposition

If E[g] is small relative to g then R(g) ∼ RAS(g)

Example
+$105

g =
−$100

1/2

1/2

R(g) = $2100 RAS(g) = $2100.42...
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Comparing R and RAS

R: critical wealth for any risk aversion
RAS : critical risk aversion for any wealth

R: measure (one gamble)
RAS : index (comparing gambles)

R: no-bankruptcy, no-loss
RAS : expected utility, risk aversion

unit and operational interpretation

continuity and "black swans"

Nevertheless: similar in many respects !!
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Rabin (2000): Calibration

If a risk-averse expected-utility agent rejects
the gamble g = [+$105, 1/2; − $100, 1/2]
at all wealth levels W < $300 000

Then he must reject the gamble
h = [+$5 500 000, 1/2; − $10 000, 1/2]
at wealth level W = $290 000

OUR RESULT: reject g

at all wealth levels W < R(g) = $2100

no friction, no cheating
what is “wealth”?

SERGIU HART c© 2007 – p. 60
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What is Wealth?

Rejecting g when W < W + R(g)

Guarantees a minimal wealth level of W
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What is Wealth?

Rejecting g when W < W + R(g)

Guarantees a minimal wealth level of W

(Proof: replace 0 with W )
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Guarantees a minimal wealth level of W
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What is Wealth?

Rejecting g when W < W + R(g)

Guarantees a minimal wealth level of W

Back to calibration :

If W = “gambling / risky investment wealth”,
then $300 000 seems excessive for g
(since R(g) = $2100)
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What is Wealth?

Rejecting g when W < W + R(g)

Guarantees a minimal wealth level of W

Back to calibration :

If W = “gambling / risky investment wealth”,
then $300 000 seems excessive for g
(since R(g) = $2100)

If W = total wealth, then rejecting g at all
W < $300 000 is consistent with a required
minimal wealth level W ≥ $297 900,
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What is Wealth?

Rejecting g when W < W + R(g)

Guarantees a minimal wealth level of W

Back to calibration :

If W = “gambling / risky investment wealth”,
then $300 000 seems excessive for g
(since R(g) = $2100)

If W = total wealth, then rejecting g at all
W < $300 000 is consistent with a required
minimal wealth level W ≥ $297 900,
and then one rejects h at $290 000

SERGIU HART c© 2007 – p. 61



Summary
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The Riskiness measure R
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The Riskiness measure R (recall)

is objective and universal
is independent of utilities, risk aversion, ...
has a clear operational interpretation
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is independent of utilities, risk aversion, ...
has a clear operational interpretation
has good properties (e.g., monotonic with
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may replace measures of risk (σ-based, ...)
Markowitz, CAPM, ... : E vs σ → E vs R

Sharpe ratio: E/σ → E/R
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The Riskiness measure R

is objective and universal
is independent of utilities, risk aversion, ...
has a clear operational interpretation
has good properties (e.g., monotonic with
respect to first-order stochastic dominance)

may replace measures of risk (σ-based, ...)
Markowitz, CAPM, ... : E vs σ → E vs R

Sharpe ratio: E/σ → E/R

may replace reserve measures (VaR, ...)

SERGIU HART c© 2007 – p. 63



The End

"We’re recommending a risky strategy for you;
so we’d appreciate if you paid before you leave."

SERGIU HART c© 2007 – p. 64
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