

An Operational Measure of Riskiness

Sergiu Hart

April 2007

This version: September 2009

SERGIU HART ⓒ 2007 – p. 1

An Operational Measure of Riskiness

Sergiu Hart

Center for the Study of Rationality Dept of Economics Dept of Mathematics The Hebrew University of Jerusalem

hart@huji.ac.il

http://www.ma.huji.ac.il/hart

Joint work with

Dean P. Foster

The Wharton School University of Pennsylvania

SERGIU HART ⓒ 2007 – p. 3

Joint work with

Dean P. Foster

The Wharton School University of Pennsylvania

SERGIU HART ⓒ 2007 – p. 3

Dean Foster and Sergiu Hart "An Operational Measure of Riskiness" (2009) Journal of Political Economy

www.ma.huji.ac.il/hart/abs/risk.html

Dean Foster and Sergiu Hart "An Operational Measure of Riskiness" (2009) Journal of Political Economy www.ma.huji.ac.il/hart/abs/risk.html

Dean Foster and Sergiu Hart "A Reserve-Based Axiomatization of the Measure of Riskiness" (2008)

www.ma.huji.ac.il/hart/abs/risk-ax.html

Papers (continued)

Sergiu Hart "A Simple Riskiness Order Leading to the Aumann–Serrano Index of Riskiness" (2008) www.ma.huji.ac.il/hart/abs/risk-as.html

Papers (continued)

- Sergiu Hart "A Simple Riskiness Order Leading to the Aumann–Serrano Index of Riskiness" (2008) www.ma.huji.ac.il/hart/abs/risk-as.html
- Sergiu Hart "Comparing Risks by Acceptance and Rejection" (2009) www.ma.huji.ac.il/hart/abs/risk-u.html

I: Introduction

$$g = \left< \begin{array}{c} 1/2 \\ +\$120 \\ \\ \\ \\ \\ 1/2 \end{array} -\$100 \end{array} \right.$$

$$\mathrm{E}[g] = \$10$$

Sergiu HART ⓒ 2007 – p. 7

$$g = \left< \begin{array}{c} 1/2 \\ +\$120 \\ \\ -\$100 \end{array}
ight.$$

$$\mathrm{E}[g] = \$10$$

. ACCEPT g or reject g?

SERGIU HART ⓒ 2007 – p. 7

$$g = \left< \begin{array}{c} 1/2 \\ +\$120 \\ \\ -\$100 \end{array}
ight.$$

$$\mathrm{E}[g] = \$10$$

ACCEPT g or REJECT g?
What is the RISK in accepting g?

$$g = \left< \begin{array}{c} 1/2 \\ +\$120 \\ \\ -\$100 \end{array}
ight.$$

$$\mathrm{E}[g] = \$10$$

- **J** ACCEPT g or reject g?
- What is the **RISK** in accepting g ?
- What is the **RISKINESS** of g?

What is the **RISKINESS** of a gamble ?

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?
 - OBJECTIVE = depends only on the gamble, not on the decision-maker

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?
 - OBJECTIVE = depends only on the gamble, not on the decision-maker
 - **OBJECTIVE** measures:

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?
 - OBJECTIVE = depends only on the gamble, not on the decision-maker
 - **OBJECTIVE** measures:
 - **SETURN** = expectation (E[g])

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?
 - OBJECTIVE = depends only on the gamble, not on the decision-maker
 - **OBJECTIVE** measures:
 - **SETURN** = expectation (E[g])
 - **SPREAD** = standard deviation ($\sigma[g]$)

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?
 - OBJECTIVE = depends only on the gamble, not on the decision-maker
 - **OBJECTIVE** measures:
 - RETURN = expectation (E[g])
 - **SPREAD** = standard deviation ($\sigma[g]$)
 - RISKINESS = ?

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?
 - OBJECTIVE = depends only on the gamble, not on the decision-maker
 - **OBJECTIVE** measures:
 - **SETURN** = expectation (E[g])
 - **SPREAD** = standard deviation ($\sigma[g]$)
 - RISKINESS = ? $(\sigma ?)$

- What is the **RISKINESS** of a gamble ?
- Is there an **OBJECTIVE** way to measure the **RISKINESS** of a gamble ?
 - OBJECTIVE = depends only on the gamble, not on the decision-maker
 - **OBJECTIVE** measures:
 - **SETURN** = expectation (E[g])
 - **SPREAD** = standard deviation ($\sigma[g]$)
 - RISKINESS = ?
 - (σ ? **not** monotonic !)

Seeking a MEASURE OF RISKINESS that is:

Objective (depends only on the distribution of the gamble)

- Objective (depends only on the distribution of the gamble)
- Measured in the same *units* as the outcomes (*scale-invariant*)

- **Objective** (depends only on the distribution of the gamble) [like E, σ]
- Measured in the same *units* as the outcomes (*scale-invariant*) [like E, σ]

- **Objective** (depends only on the distribution of the gamble) [like E, σ]
- Measured in the same *units* as the outcomes (*scale-invariant*) [like E, σ]
- Monotonic (with respect to stochastic dominance)

- **Objective** (depends only on the distribution of the gamble) [like E, σ]
- Measured in the same *units* as the outcomes (*scale-invariant*) [like E, σ]
- Monotonic (with respect to stochastic dominance)
- Simple interpretation, formula [?]

- **Objective** (depends only on the distribution of the gamble) [like E, σ]
- Measured in the same *units* as the outcomes (*scale-invariant*) [like E, σ]
- Monotonic (with respect to stochastic dominance)
- Simple interpretation, formula [?]
- 9...

Accepting the gamble g when the wealth W is:

Accepting the gamble g when the wealth W is: • W = \$100: very risky (bankruptcy)

Accepting the gamble g when the wealth W is:

- W = \$100: very **risky** (bankruptcy)
- **W** = \$1000000: *not risky*

Accepting the gamble g when the wealth W is:

- W = \$100: very **risky** (bankruptcy)
- **W** = \$1000000: *not risky*

The risk of accepting a gamble depends on the current wealth

Accepting the gamble g when the wealth W is:

- W = \$100: very **risky** (bankruptcy)
- **W** = \$1000000: *not risky*

The risk of accepting a gamble depends on the current wealth

Is there a "cutoff point" ?

SERGIU HART ⓒ 2007 – p. 10
Given a gamble g:

Given a gamble g:

1. *Identify* the wealth levels where accepting the gamble g is **RISKY**

Given a gamble g:

- 1. *Identify* the wealth levels where accepting the gamble g is **RISKY**
- 2. **Define** the **RISKINESS** of the gamble g as:

Given a gamble g:

- 1. *Identify* the wealth levels where accepting the gamble g is **RISKY**
- 2. **Define** the **RISKINESS** of the gamble g as:

the CRITICAL WEALTH level

below which accepting g becomes **RISKY**

II: The Bankruptcy Model

• Positive expectation: E[g] > 0

- Positive expectation: E[g] > 0
- Some negative values: P[g < 0] > 0 (loss is possible)

- Positive expectation: E[g] > 0
- Some negative values: P[g < 0] > 0 (loss is possible)
- Itechnical] Finitely many values:
 g takes the values $x_1, x_2, ..., x_m$ with probabilities $p_1, p_2, ..., p_m$

• The initial wealth is $W_1 > 0$

- The initial wealth is $W_1 > 0$
- At every period t = 1, 2, ...:

- The initial wealth is $W_1 > 0$
- At every period t = 1, 2, ...:
 - \blacksquare let $W_t > 0$ be the CURRENT WEALTH

- The initial wealth is $W_1 > 0$
- At every period t = 1, 2, ...:
 - let $W_t > 0$ be the CURRENT WEALTH
 - a gamble g_t is **OFFERED**

- The initial wealth is $W_1 > 0$
- At every period t = 1, 2, ...:
 - let $W_t > 0$ be the CURRENT WEALTH
 - a gamble g_t is **OFFERED**
 - g_t may be **ACCEPTED** or **REJECTED**

- The initial wealth is $W_1 > 0$
- At every period t = 1, 2, ...:
 - \blacksquare let $W_t > 0$ be the CURRENT WEALTH
 - a gamble g_t is **OFFERED**
 - g_t may be ACCEPTED or REJECTED • if ACCEPTED then $W_{t+1} = W_t + g_t$

- The initial wealth is $W_1 > 0$
- At every period t = 1, 2, ...:
 - ${\scriptstyle
 m {\scriptstyle I}}$ let $W_t > 0$ be the CURRENT WEALTH
 - a gamble g_t is **OFFERED**
 - g_t may be ACCEPTED or REJECTED • if ACCEPTED then $W_{t+1} = W_t + g_t$
 - if REJECTED then $W_{t+1} = W_t$

The initial wealth is $W_1 > 0$

- At every period t = 1, 2, ...:
 let $W_t > 0$ be the CURRENT WEALTH
 - a gamble g_t is OFFERED g_t may be ACCEPTED or REJECTED if ACCEPTED then $W_{t+1} = W_t + g_t$ if REJECTED then $W_{t+1} = W_t$

• a gamble g_t is **OFFERED**

SERGIU HART ⓒ 2007 – p. 15

• a gamble g_t is **OFFERED**:

- a gamble g_t is **OFFERED**:
 - the sequence $G = (g_1, g_2, ..., g_t, ...)$ is *arbitrary*

- a gamble g_t is **OFFERED**:
 - the sequence $G = (g_1, g_2, ..., g_t, ...)$ is *arbitrary*
 - g_t may depend on the past wealths, gambles, decisions

- a gamble g_t is **OFFERED**:
 - the sequence $G = (g_1, g_2, ..., g_t, ...)$ is *arbitrary*
 - g_t may **depend on the past** wealths, gambles, decisions

NOTE: not i.i.d., arbitrary dependence;

- a gamble g_t is **OFFERED**:
 - the sequence $G = (g_1, g_2, ..., g_t, ...)$ is *arbitrary*
 - g_t may **depend on the past** wealths, gambles, decisions

NOTE: not i.i.d., arbitrary dependence; non-Bayesian

- a gamble g_t is **OFFERED**:
 - the sequence $G = (g_1, g_2, ..., g_t, ...)$ is *arbitrary*
 - g_t may **depend on the past** wealths, gambles, decisions
- NOTE: not i.i.d., arbitrary dependence; non-Bayesian; "adversary"

- a gamble g_t is **OFFERED**:
 - the sequence $G = (g_1, g_2, ..., g_t, ...)$ is *arbitrary*
 - g_t may **depend on the past** wealths, gambles, decisions

NOTE: not i.i.d., arbitrary dependence; non-Bayesian; "adversary"

[technical] G is finitely generated: there is a finite collection of gambles such that every g_t is a multiple of one of them

Critical Wealth

SCRITICAL-WEALTH function Q:

SERGIU HART (C) 2007 - p. 17

• s accepts the gamble g at wealth W when $W \ge Q(g)$

BANKRUPTCY:

$W_t = 0$

SERGIU HART (C) 2007 – p. 18

BANKRUPTCY:

$\lim_{t \to \infty} W_t = 0$

SERGIU HART (C) 2007 – p. 18

NO-BANKRUPTCY:

$\{\lim_{t\to\infty} W_t = 0\}$ has probability 0

SERGIU HART (C) 2007 – p. 18

A strategy **GUARANTEES NO-BANKRUPTCY**:

 $\{\lim_{t\to\infty} W_t = 0\}$ has probability 0

for every $G = (g_1, g_2, ..., g_t, ...)$ and every $W_1 > 0$

SERGIU HART (C) 2007 - p. 18

Main Result

I		

For every gamble g there exists a unique positive number R(g) such that:

Main Result

Main Result

Main Result

if and only if

Main Result

if and only if

 $Q(g) \geq R(g)$ for every gamble g

Main Result

if and only if

 $Q(g) \geq \mathbf{R}(g)$ for every gamble g

Main Result

 $Q(g) \geq \mathbf{R}(g)$ for every gamble g

Main Result

$\rightarrow W$

Main Result

Main Result

Examples of such strategies:

Examples of such strategies:

• $Q(g) = \infty$ for all g: Always reject

Examples of such strategies:

- $Q(g) = \infty$ for all g: Always reject
- $Q(g) = \mathbf{R}(g)$ for all g: Reject $\Leftrightarrow W < \mathbf{R}(g)$

Examples of such strategies:

- $Q(g) = \infty$ for all g: Always reject
- $Q(g) = \mathbf{R}(g)$ for all g: Reject $\Leftrightarrow W < \mathbf{R}(g)$
- Anything in between

SERGIU HART (C) 2007 - p. 20

$\mathbf{R}(g)$ = the **RISKINESS** of g

if and only if

One never accepts gambles whose RISKINESS exceeds the current wealth

One never accepts gambles whose RISKINESS exceeds the current wealth

RISKINESS \sim "reserve"

Main Result (continued)

I		

Moreover, for every gamble g, its RISKINESS R(g)is the unique solution R > 0 of the equation

Moreover, for every gamble g, its RISKINESS R(g)is the unique solution R > 0 of the equation

$$\operatorname{E}\left[\log\left(1+rac{1}{R}g
ight)
ight]=0$$

SERGIU HART C 2007 – p. 22

X	$\mathrm{E}\left[g ight]$	$\mathbf{R}(\boldsymbol{g})$
\$120	\$10	\$600

X	$\mathrm{E}\left[g ight]$	$\mathbf{R}(\boldsymbol{g})$
\$200	\$50	\$200
\$120	\$10	\$600

X	$\mathrm{E}\left[g ight]$	$\mathbf{R}(\boldsymbol{g})$
\$300	\$100	\$150
\$200	\$50	\$200
\$120	\$10	\$600

X	$\mathrm{E}\left[g ight]$	$\mathbf{R}(\boldsymbol{g})$
\$300	\$100	\$150
\$200	\$50	\$200
\$120	\$10	\$600
\$105	\$2.5	\$2100

X	$\mathrm{E}\left[g ight]$	$\mathbf{R}(\boldsymbol{g})$
\$300	\$100	\$150
\$200	\$50	\$200
\$120	\$10	\$600
\$105	\$2.5	\$2100
\$102	\$ 1	\$5100
The Riskiness of Some Gambles

The Riskiness of Some Gambles

p	$\mathrm{E}\left[g ight]$	$\mathbf{R}(\boldsymbol{g})$
0.5	\$2.5	\$2100
0.6	\$23	\$235.23
0.8	\$64	\$106.93
0.9	\$84.5	\$100.16

SERGIU HART ⓒ 2007 – p. 25

is objective and universal

- is objective and universal
- is independent of utilities, risk aversion, ...

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- is defined for each gamble separately

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- is defined for each gamble separately
- is normalized (unit = \$)

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- is defined for each gamble separately
- is normalized (unit = \$)

(... more to follow ...)

III: The Shares Model

SERGIU HART ⓒ 2007 – p. 26

May take any proportion of the offered g_t (i.e., $\alpha_t g_t$ for $\alpha_t \ge 0$, instead of $\alpha_t = 0, 1$)

- May take any proportion of the offered g_t
 (i.e., $\alpha_t g_t$ for $\alpha_t \ge 0$, instead of $\alpha_t = 0, 1$)
- A simple shares strategy s_Q :

- May take any proportion of the offered g_t
 (i.e., $\alpha_t g_t$ for $\alpha_t \ge 0$, instead of $\alpha_t = 0, 1$)
- A simple shares strategy s_Q :
 - At W = Q(g) accept g (i.e., $\alpha = 1$)

- May take any proportion of the offered g_t
 (i.e., $\alpha_t g_t$ for $\alpha_t \ge 0$, instead of $\alpha_t = 0, 1$)
- A simple shares strategy s_Q :
 - At W = Q(g) accept g (i.e., $\alpha = 1$)
 - At any W accept αg where $\alpha = W/Q(g)$ $(Q(\alpha g) = W)$

- May take any proportion of the offered g_t
 (i.e., $\alpha_t g_t$ for $\alpha_t \ge 0$, instead of $\alpha_t = 0, 1$)
- A simple shares strategy s_Q :
 - At W = Q(g) accept g (i.e., $\alpha = 1$)
 - At any W accept αg where $\alpha = W/Q(g)$ $(Q(\alpha g) = W)$
- **•** Theorem Let s_Q be a simple shares strategy.

- May take any proportion of the offered g_t
 (i.e., $\alpha_t g_t$ for $\alpha_t \ge 0$, instead of $\alpha_t = 0, 1$)
- A simple shares strategy s_Q :
 - At W = Q(g) accept g (i.e., $\alpha = 1$)
 - At any W accept αg where $\alpha = W/Q(g)$ $(Q(\alpha g) = W)$
- **•** Theorem Let s_Q be a simple shares strategy.
 - $\lim_{t\to\infty} W_t = \infty$ (a.s.) for every process $\Leftrightarrow Q(g) > R(g)$ for every gamble g.

- May take any proportion of the offered g_t
 (i.e., $\alpha_t g_t$ for $\alpha_t \ge 0$, instead of $\alpha_t = 0, 1$)
- A simple shares strategy s_Q :
 - At W = Q(g) accept g (i.e., $\alpha = 1$)
 - At any W accept αg where $\alpha = W/Q(g)$ $(Q(\alpha g) = W)$
- **•** Theorem Let s_Q be a simple shares strategy.
 - $\lim_{t\to\infty} W_t = \infty$ (a.s.) for every process $\Leftrightarrow Q(g) > R(g)$ for every gamble g.
 - $\lim_{t\to\infty} W_t = 0$ (a.s.) for some process $\Leftrightarrow Q(g) < R(g)$ for some gamble g.

Therefore we may replace NO-BANKRUPTCY with other criteria, such as:

Therefore we may replace NO-BANKRUPTCY with other criteria, such as:

• NO-LOSS: $\liminf_t W_t \geq W_1$

- Therefore we may replace NO-BANKRUPTCY with other criteria, such as:
 - NO-LOSS: $\liminf_t W_t \geq W_1$
 - ${\scriptstyle
 m I}$ bounded loss: $\liminf_t W_t \geq W_1 C$

- Therefore we may replace NO-BANKRUPTCY with other criteria, such as:
 - NO-LOSS: $\liminf_t W_t \geq W_1$
 - \blacksquare bounded loss: $\liminf_t W_t \geq W_1 C$
 - \blacksquare ASSURED GAIN: $\liminf_t W_t \geq W_1 + C$

- Therefore we may replace NO-BANKRUPTCY with other criteria, such as:
 - ${\scriptstyle
 ightarrow}$ NO-LOSS: $\liminf_t W_t \geq W_1$
 - ${\scriptstyle
 m {\scriptstyle I}}$ bounded loss: $\liminf_t W_t \geq W_1 C$
 - \blacksquare ASSURED GAIN: $\liminf_t W_t \ge W_1 + C$

- Therefore we may replace NO-BANKRUPTCY with other criteria, such as:
 - NO-LOSS: $\liminf_t W_t \geq W_1$
 - ${\scriptstyle
 m {\small I}}$ bounded loss: $\liminf_t W_t \geq W_1 C$
 - \blacksquare ASSURED GAIN: $\liminf_t W_t \geq W_1 + C$
 - $\,$ $\,$ Infinite growth: $\lim_t W_t = \infty$

- Therefore we may replace NO-BANKRUPTCY with other criteria, such as:
 - ${\scriptstyle
 ightarrow}$ NO-LOSS: $\liminf_t W_t \geq W_1$
 - ${\scriptstyle
 m {\small I}}$ bounded loss: $\liminf_t W_t \geq W_1 C$
 - \blacksquare ASSURED GAIN: $\liminf_t W_t \ge W_1 + C$
 - ${}_{ullet}$ Infinite growth: $\lim_t W_t = \infty$
 - **_** . . .
- Corollary A simple shares strategy S_Q guarantees NO-LOSS

- Therefore we may replace NO-BANKRUPTCY with other criteria, such as:
 - ${\scriptstyle
 ightarrow}$ NO-LOSS: $\liminf_t W_t \geq W_1$
 - **s** bounded loss: $\liminf_t W_t \geq W_1 C$
 - \blacksquare ASSURED GAIN: $\liminf_t W_t \ge W_1 + C$
 - $\,$ Infinite growth: $\lim_t W_t = \infty$
 - **_** . . .
- Corollary A simple shares strategy S_Q guarantees NO-LOSS
 - if Q(g) > R(g) for every gamble g

- Therefore we may replace NO-BANKRUPTCY with other criteria, such as:
 - ${\scriptstyle
 ightarrow}$ NO-LOSS: $\liminf_t W_t \geq W_1$
 - ${\scriptstyle
 m {\small I}}$ bounded loss: $\liminf_t W_t \geq W_1 C$
 - \blacksquare ASSURED GAIN: $\liminf_t W_t \ge W_1 + C$
 - ${}_{ullet}$ Infinite growth: $\lim_t W_t = \infty$
 - **_** . . .
- Corollary A simple shares strategy S_Q guarantees NO-LOSS
 - if Q(g) > R(g) for every gamble g
 - only if $Q(g) \geq R(g)$ for every gamble g

Solution Consider an i.i.d. sequence $(g_t)_t$ with $g_t \sim g$

- Solution Consider an i.i.d. sequence $(g_t)_t$ with $g_t \sim g$
- Assume the critical wealth is Q(g) = \$200

- Solution Consider an i.i.d. sequence $(g_t)_t$ with $g_t \sim g_t$
- Assume the critical wealth is Q(g) = \$200
- At time t the gamble $(W_t/200)g_t$ is taken

Example: Q(g) = \$200

- Solution Consider an i.i.d. sequence $(g_t)_t$ with $g_t \sim g$
- Assume the critical wealth is Q(g) = \$200
- At time t the gamble $(W_t/200)g_t$ is taken

$$\Rightarrow W_{t+1} = W_t + \left(rac{W_t}{200}
ight) g_t = W_t \left(1 + rac{g_t}{200}
ight)$$

Example: Q(g) = \$200

$$\Rightarrow W_{t+1} = W_t + \left(rac{W_t}{200}
ight) g_t = W_t \left(1 + rac{g_t}{200}
ight)$$

Example: Q(g) = \$200

 $W_{t+1} = W_t \left(1 + rac{g_t}{200}
ight)$

 $\frac{g}{200} =$

 $W_{t+1} = W_t \left(1 + rac{g_t}{200}
ight)$

Example: Q(g) = \$200

$$W_{t+1} = W_t \left(1 + rac{g_t}{200}
ight)$$

 $W_{t+1} = W_t \left(1+rac{g_t}{200}
ight)$

Example: Q(g) = \$200

• These are the *relative returns* from accepting g at W = \$200

$$W_{t+1} = W_t \left(1 + rac{g_t}{200}
ight)$$

Example:
$$Q(g) = $200$$

- These are the *relative returns* from accepting g at W = \$200
- These relative returns are obtained every period i.i.d.:

$$W_{t+1} = W_t \left(1 + rac{g_t}{200}
ight)$$

Example: Q(g) = \$200

Example: Q(g) = \$200

Example: Q(g) = \$200

Example: Q(g) = \$200

Proof.

Example: Q(g) = \$200

Example: Q(g) = \$200

- about half the days wealth is multiplied by 1.6
- \bullet about half the days wealth is multiplied by 0.5

Example: Q(g) = \$200

- about half the days wealth is multiplied by 1.6
- about half the days wealth is multiplied by 0.5
- \Rightarrow A factor of $\approx \sqrt{1.6 \cdot 0.5}$ per period

Example: Q(g) = \$200

- about half the days wealth is multiplied by 1.6
- \bullet about half the days wealth is multiplied by 0.5
- \Rightarrow A factor of $\approx \sqrt{1.6 \cdot 0.5} < 1$ per period

Example: Q(g) = \$200

- about half the days wealth is multiplied by 1.6
- \bullet about half the days wealth is multiplied by 0.5
- \Rightarrow A factor of $\approx \sqrt{1.6 \cdot 0.5} < 1$ per period
- $\Rightarrow W_t \rightarrow 0$ (a.s.)

Example: Q(g) = \$1000

Example: Q(g) = \$1000

SERGIU HART (C) 2007 - p. 32

Example: Q(g) = \$1000

 $\frac{g}{1000} =$

 $W_{t+1} = W_t \left(1+rac{g_t}{1000}
ight)$

Example: Q(g) =**\$**1000

$$W_{t+1} = W_t \left(1 + rac{g_t}{1000}
ight)$$

SERGIU HART ⓒ 2007 – p. 32

$$W_{t+1} = W_t \left(1 + rac{g_t}{1000}
ight)$$

These are the relative returns from accepting g at W = \$1000

$$W_{t+1} = W_t \left(1 + rac{g_t}{1000}
ight)$$

- These are the relative returns from accepting g at W = \$1000
- These relative returns are obtained every period i.i.d.:

$$W_{t+1} = W_t \left(1 + rac{g_t}{1000}
ight)$$

Example: Q(g) = \$1000

Example: Q(g) = \$1000

Example: Q(g) = \$1000

$$1/2 + 12\%$$
 -10%
 $1/2$

Example: Q(g) = \$1000

Example: Q(g) = \$1000

Proof.

Example: Q(g) = \$1000

- \square \approx half the days wealth is multiplied by 0.90

Example: Q(g) = \$1000

Proof. The Law of Large Numbers \Rightarrow • half the days wealth is multiplied by 1.12

- \sim half the days wealth is multiplied by 0.90
- \Rightarrow A factor of $\approx \sqrt{1.12 \cdot 0.90}$ per period

Example: Q(g) = \$1000

- \square \approx half the days wealth is multiplied by 0.90
- \Rightarrow A factor of $\approx \sqrt{1.12 \cdot 0.90} > 1$ per period

Example: Q(g) = \$1000

Proof. The Law of Large Numbers \Rightarrow • \approx half the days wealth is multiplied by 1.12 • \approx half the days wealth is multiplied by 0.90 \Rightarrow A factor of $\approx \sqrt{1.12 \cdot 0.90} > 1$ per period $\Rightarrow W_t \rightarrow \infty$ (a.s.)

 $1 + \frac{g}{600} =$

SERGIU HART ⓒ 2007 – p. 34

$$1 + \frac{g}{600} = \sqrt{\frac{1/2}{600}} = \frac{720}{600} = \frac{6}{5}$$
$$1 + \frac{g}{600} = \sqrt{\frac{500}{1/2}} = \frac{500}{600} = \frac{5}{6}$$
$$\Rightarrow \text{Factor of } \sqrt{\frac{6}{5} \cdot \frac{5}{6}} = 1 \text{ per period}$$
$$\Leftrightarrow \text{E} \left[\log \left(1 + \frac{1}{600} g \right) \right] = 0$$

SERGIU HART ⓒ 2007 – p. 34

$$1 + \frac{g}{600} = \sqrt{\frac{1/2}{600}} = \frac{720}{600} = \frac{6}{5}$$

$$1 + \frac{g}{600} = \sqrt{\frac{500}{1/2}} = \frac{500}{600} = \frac{5}{6}$$

$$\Rightarrow \text{Factor of } \sqrt{\frac{6}{5} \cdot \frac{5}{6}} = 1 \text{ per period}$$

$$\Leftrightarrow \text{E} \left[\log \left(1 + \frac{1}{600} g \right) \right] = 0$$

The **RISKINESS** of the gamble g is R(g) = \$600

The critical wealth level = \$600

The **RISKINESS** of the gamble g is R(g) = \$600
The critical wealth level = \$600

• Accepting the gamble g when the wealth is W < \$600 gives "bad" returns (a regime where $W_t \rightarrow 0$ a.s.)

The **RISKINESS** of the gamble g is $\mathbf{R}(g) = \$600$

The critical wealth level = \$600

- Accepting the gamble g when the wealth is W < \$600 gives "bad" returns (a regime where $W_t \rightarrow 0$ a.s.)
- Accepting the gamble g when the wealth is W > \$600 gives "good" returns: (a regime where $W_t \to \infty$ a.s.)

The RISKINESS of the gamble g is R(g) = \$600

• Up to now: limit as $t \to \infty$

Up to now: limit as $t \to \infty$

FINITE t: the distribution of wealth is quite different in the two regimes

- \checkmark Up to now: limit as $t \rightarrow \infty$
- FINITE t: the distribution of wealth is quite different in the two regimes
- Example: Probability of no-loss after t periods

t	Q(g)	$\mathbf{P}[W_{t+1} \geq W_1]$
100		
100		
1000		
1000		

- \checkmark Up to now: limit as $t \to \infty$
- FINITE t: the distribution of wealth is quite different in the two regimes
- Example: Probability of no-loss after t periods

t	Q(g)	$\mathbf{P}[W_{t+1} \geq W_1]$
100	\$200	2.7%
100	\$1000	64%
1000		
1000		

- \checkmark Up to now: limit as $t \rightarrow \infty$
- FINITE t: the distribution of wealth is quite different in the two regimes
- Example: Probability of no-loss after t periods

t	Q(g)	$\mathrm{P}[W_{t+1} \geq W_1]$
100	\$200	2.7%
100	\$1000	64%
1000	\$200	$10^{-7}\%$
1000	\$1000	87%

- \checkmark Up to now: limit as $t \to \infty$
- FINITE t: the distribution of wealth is quite different in the two regimes
- Example: MED := Median of W_{t+1}/W_1

t	Q(g)	$P[W_{t+1} \geq W_1]$	MED
100	\$200	2.7%	0.0014%
100	\$1000	64%	148%
1000	\$200	$10^{-7}\%$	$10^{-46}\%$
1000	\$1000	87%	5373%

• Homogeneity: $\mathbf{R}(\lambda g) = \lambda \mathbf{R}(g)$ for $\lambda > 0$

- Homogeneity: $\mathbf{R}(\lambda g) = \lambda \mathbf{R}(g)$ for $\lambda > 0$
- Subadditivity: $\mathbf{R}(g+h) \leq \mathbf{R}(g) + \mathbf{R}(h)$

- Homogeneity: $\mathbf{R}(\lambda g) = \lambda \mathbf{R}(g)$ for $\lambda > 0$
- Subadditivity: $R(g+h) \leq R(g) + R(h)$
- Convexity: For $0 \le \lambda \le 1$ $\mathbf{R}(\lambda g + (1 - \lambda)h) \le \lambda \mathbf{R}(g) + (1 - \lambda)\mathbf{R}(h)$

- **•** Homogeneity: $\mathbf{R}(\lambda g) = \lambda \mathbf{R}(g)$ for $\lambda > 0$
- Subadditivity: $R(g+h) \leq R(g) + R(h)$
- Convexity: For $0 \le \lambda \le 1$ $\mathbf{R}(\lambda g + (1 - \lambda)h) \le \lambda \mathbf{R}(g) + (1 - \lambda)\mathbf{R}(h)$
- First order stochastic dominance: If $g \prec_{st_1} h$ then $\mathbf{R}(g) > \mathbf{R}(h)$

- **•** Homogeneity: $\mathbf{R}(\lambda g) = \lambda \mathbf{R}(g)$ for $\lambda > 0$
- Subadditivity: $R(g+h) \leq R(g) + R(h)$
- Convexity: For $0 \le \lambda \le 1$ $\mathbf{R}(\lambda g + (1 - \lambda)h) \le \lambda \mathbf{R}(g) + (1 - \lambda)\mathbf{R}(h)$
- First order stochastic dominance: If $g \prec_{st_1} h$ then $\mathbf{R}(g) > \mathbf{R}(h)$
- Second order stochastic dominance: If $g \prec_{st_2} h$ then $\mathbf{R}(g) > \mathbf{R}(h)$

- **•** Homogeneity: $\mathbf{R}(\lambda g) = \lambda \mathbf{R}(g)$ for $\lambda > 0$
- Subadditivity: $R(g+h) \leq R(g) + R(h)$
- Convexity: For $0 \le \lambda \le 1$ $\mathbf{R}(\lambda g + (1 - \lambda)h) \le \lambda \mathbf{R}(g) + (1 - \lambda)\mathbf{R}(h)$
- First order stochastic dominance: If $g \prec_{st_1} h$ then $\mathbf{R}(g) > \mathbf{R}(h)$
- Second order stochastic dominance: If $g \prec_{st_2} h$ then $\mathbf{R}(g) > \mathbf{R}(h)$

- **•** Homogeneity: $\mathbf{R}(\lambda g) = \lambda \mathbf{R}(g)$ for $\lambda > 0$
- Subadditivity: $R(g+h) \leq R(g) + R(h)$
- Convexity: For $0 \le \lambda \le 1$ $\mathbf{R}(\lambda g + (1 - \lambda)h) \le \lambda \mathbf{R}(g) + (1 - \lambda)\mathbf{R}(h)$
- First order stochastic dominance: If $g \prec_{st_1} h$ then $\mathbf{R}(g) > \mathbf{R}(h)$
- Second order stochastic dominance: If $g \prec_{st_2} h$ then $\mathbf{R}(g) > \mathbf{R}(h)$

Utility function u(x)

Expected Utility

Utility function u(x):

Accept g at W if and only if

$\mathrm{E}\left[u(W+g) ight]\geq u(W)$

Expected Utility

Utility function u(x):

• Accept g at W if and only if $\mathrm{E}\left[u(W+g) ight]\geq u(W)$

LOG UTILITY:

$$u(x) = \log(x)$$

SERGIU HART C 2007 - p. 39

Expected Utility

Utility function u(x):

Accept g at W if and only if $E\left[u(W+g)\right] \geq u(W)$

LOG UTILITY:

$$u(x) = \log(x)$$

• Constant Arrow–Pratt Relative Risk Aversion coefficient = 1 (CRRA-1)

$$\operatorname{E}\left[\log\left(1+rac{1}{\operatorname{R}(g)}g
ight)
ight]=0$$

$$\operatorname{E}\left[\log\left(1+\frac{1}{\operatorname{R}(g)}g\right)\right]=0$$

 $\mathrm{E}\left[\log(\mathrm{R}(g) + g)\right] = \log(\mathrm{R}(g))$

 \Leftrightarrow

 \Leftrightarrow

$$\operatorname{E}\left[\log\left(1+rac{1}{\operatorname{R}(g)}g\right)
ight]=0$$

 $\mathbf{E}\left[\log(\mathbf{R}(g) + g)\right] = \log(\mathbf{R}(g))$

LOG UTILITY rejects g when $W < \mathbf{R}(g)$ **LOG UTILITY** accepts g when $W \ge \mathbf{R}(g)$

$$\operatorname{E}\left[\log\left(1+rac{1}{\operatorname{R}(g)}g\right)
ight]=0$$

 $\mathbf{E}\left[\log(\mathbf{R}(g) + g)\right] = \log(\mathbf{R}(g))$

\Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

LOG UTILITY rejects g when $W < \mathbf{R}(g)$ **LOG UTILITY** accepts g when $W \ge \mathbf{R}(g)$

LOG UTILITY rejects g if and only if $W < \mathbf{R}(g)$

LOG UTILITY rejects g if and only if W < R(g)

SERGIU HART (C) 2007 – p. 40

LOG UTILITY rejects g if and only if $W < \mathbf{R}(g)$

OUR RESULT:

OUR RESULT:

No-bankruptcy is guaranteed

\Leftrightarrow reject when $W < \mathbf{R}(g)$

OUR RESULT:

No-bankruptcy is guaranteed

- \Leftrightarrow reject when $W < \mathbf{R}(g)$
- ⇔ reject at least as much as LOG UTILITY

OUR RESULT:

No-bankruptcy is guaranteed

- \Leftrightarrow reject when $W < \frac{R(g)}{R(g)}$
- ⇔ reject at least as much as LOG UTILITY

LOG UTILITY \Leftrightarrow relative risk aversion $\equiv 1$

OUR RESULT:

No-bankruptcy is guaranteed

- \Leftrightarrow reject when $W < \frac{R(g)}{2}$
- ↔ reject at least as much as LOG UTILITY

\thickapprox relative risk aversion ≥ 1

LOG UTILITY \Leftrightarrow relative risk aversion $\equiv 1$

No-bankruptcy and Risk Aversion

OUR RESULT:

No-bankruptcy is guaranteed

$$\Leftrightarrow$$
 reject when $W < \frac{R(g)}{2}$

⇔ reject at least as much as LOG UTILITY

 \approx relative risk aversion ≥ 1

LOG UTILITY \Leftrightarrow relative risk aversion $\equiv 1$

IV: Reserve

Every gamble g has a **RESERVE** Q(g) > 0
• **DISTRIBUTION**: If g and h have the same distribution then Q(g) = Q(h)

- **DISTRIBUTION**: If g and h have the same distribution then Q(g) = Q(h)
- SCALING: $Q(\lambda \, g) = \lambda \, Q(g)$ for every $\lambda > 0$

- **DISTRIBUTION**: If g and h have the same distribution then Q(g) = Q(h)
- SCALING: $Q(\lambda \, g) = \lambda \, Q(g)$ for every $\lambda > 0$
- MONOTONICITY:
 - If $g \leq h$ and $g \neq h$ then Q(g) > Q(h)

- **DISTRIBUTION**: If g and h have the same distribution then Q(g) = Q(h)
- SCALING:
 $Q(\lambda \, g) = \lambda \, Q(g)$ for every $\lambda > 0$
- MONOTONICITY:

If $g \leq h$ and $g \neq h$ then Q(g) > Q(h)

SERGIU HART ⓒ 2007 – p. 44

 \blacksquare $g, h_1, h_2, ...$ independent gambles

SERGIU HART (C) 2007 - p. 44

- $g, h_1, h_2, ...$ independent gambles
- ${\scriptstyle
 ho}$ $f=g+\sum_i 1_{[g={\scriptstyle
 m m x}_i]} h_i$

- \blacksquare $g, h_1, h_2, ...$ independent gambles
- ${\scriptstyle
 ho}$ $f=g+\sum_i 1_{[g={\scriptstyle m x_i}]} h_i$
- for every i: $Q(h_i) = Q(g) + x_i$

• $g, h_1, h_2, ...$ independent gambles

$${\scriptstyle
ho}$$
 $f=g+\sum_i 1_{[g={\scriptstyle
m m z}_i]} h_i$

• for every *i*: $Q(h_i) = Q(g) + x_i$ $\Rightarrow Q(f) = Q(g)$

• $g, h_1, h_2, ...$ independent gambles • $f = g + \sum_i 1_{[g=x_i]} h_i$ • for every i: $Q(h_i) = Q(g) + x_i$ $\Rightarrow Q(f) = Q(g)$

SERGIU HART ⓒ 2007 – p. 44

• $g, h_1, h_2, ...$ independent gambles • $f = g + \sum_i 1_{[g=x_i]} h_i$ • for every i: $Q(h_i) = Q(g) + x_i$ $\Rightarrow Q(f) = Q(g)$

• $g, h_1, h_2, ...$ independent gambles

$${\scriptstyle
ho}$$
 $f=g+\sum_i 1_{[g={\scriptstyle m x_i}]}\,h_i$

• for every *i*: $Q(h_i) = Q(g) + x_i$ $\Rightarrow Q(f) = Q(g)$

The minimal reserve function Q that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE

The minimal reserve function *Q* that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure **R**

The minimal reserve function *Q* that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure **R**

The minimal reserve function *Q* that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure **R**

 $\mathbf{P} = \mathbf{R}$ satisfies the four axioms

The minimal reserve function *Q* that satisfies the four axioms DISTRIBUTION, SCALING, MONOTONICITY, COMPOUND GAMBLE is the riskiness measure **R**

$\mathbf{P} = \mathbf{R}$ satisfies the four axioms

If $Q \neq \mathbf{R}$ satisfies the four axioms then $Q(g) > \mathbf{R}(g)$ for every gamble g

• CRRA(γ): Utility function u_{γ} with constant relative risk aversion = γ

• CRRA(γ): Utility function u_{γ} with constant relative risk aversion = γ • $u_{\gamma}(x) = -x^{-(\gamma-1)}$ for $\gamma > 1$ • $u_{\gamma}(x) = \log(x)$ for $\gamma = 1$ • $u_{\gamma}(x) = x^{1-\gamma}$ for $0 < \gamma < 1$

• CRRA(γ): Utility function u_{γ} with constant relative risk aversion = γ

• γ -CRITICAL WEALTH $R_{\gamma}(g)$ of the gamble g:

• CRRA(γ): Utility function u_{γ} with constant relative risk aversion = γ

• γ -CRITICAL WEALTH $R_{\gamma}(g)$ of the gamble g:

 $\mathrm{E}\left[oldsymbol{u}_{\gamma}(oldsymbol{R}_{\gamma}(oldsymbol{g})+oldsymbol{g})
ight] = oldsymbol{u}_{\gamma}(oldsymbol{R}_{\gamma}(oldsymbol{g}))$

- CRRA(γ): Utility function u_{γ} with constant relative risk aversion = γ
- γ -CRITICAL WEALTH $R_{\gamma}(g)$ of the gamble g:

$$\mathrm{E}\left[oldsymbol{u}_{\gamma}(oldsymbol{R}_{\gamma}(oldsymbol{g})+oldsymbol{g})
ight] = oldsymbol{u}_{\gamma}(oldsymbol{R}_{\gamma}(oldsymbol{g}))$$

 $\mathsf{CRRA}(\gamma)$ accepts g at $W \Leftrightarrow W \geq R_{\gamma}(g)$

- CRRA(γ): Utility function u_{γ} with constant relative risk aversion = γ
- $\gamma ext{-CRITICAL WEALTH } R_\gamma(g)$ of the gamble g:

$$\mathrm{E}\left[oldsymbol{u}_{oldsymbol{\gamma}}(oldsymbol{R}_{\gamma}(oldsymbol{g})+oldsymbol{g})
ight] = oldsymbol{u}_{oldsymbol{\gamma}}(oldsymbol{R}_{\gamma}(oldsymbol{g}))$$

- $\mathsf{CRRA}(\gamma)$ accepts g at $W \Leftrightarrow W \geq R_{\gamma}(g)$
- $R_1(g) = \mathbf{R}(g)$ (for $\gamma = 1$: $u_1 = \log$)

- CRRA(γ): Utility function u_{γ} with constant relative risk aversion = γ
- γ -CRITICAL WEALTH $R_{\gamma}(g)$ of the gamble g:

$$\mathrm{E}\left[oldsymbol{u}_{oldsymbol{\gamma}}(oldsymbol{R}_{\gamma}(oldsymbol{g})+oldsymbol{g})
ight] = oldsymbol{u}_{oldsymbol{\gamma}}(oldsymbol{R}_{\gamma}(oldsymbol{g}))$$

 $\mathsf{CRRA}(\gamma)$ accepts g at $W \Leftrightarrow W \geq R_{\gamma}(g)$

- $R_1(g) = \mathbf{R}(g)$ (for $\gamma = 1$: $u_1 = \log$)
- $R_{\gamma}(g)$ increases with γ

THEOREM

THEOREM

The reserve function Q satisfies the four axioms

SERGIU HART ⓒ 2007 – p. 48

THEOREM

The reserve function Qsatisfies the four axioms if and only if $Q=R_\gamma$ for some $\gamma\geq 1$

THEOREM

The reserve function Qsatisfies the four axioms if and only if $Q=R_\gamma$ for some $\gamma\geq 1$

$\bullet \Rightarrow \mathbf{Q} \geq \mathbf{R}_1 = \mathbf{R}$

The reserve function Qsatisfies the four axioms if and only if $Q = R_{\gamma}$ for some $\gamma > 1$

$$oldsymbol{ heta} \Rightarrow oldsymbol{Q} \geq R_1 = \mathbf{R}$$

- **•** THE MINIMAL RESERVE
 - = the critical wealth R_1 for CRRA(1)
 - = THE RISKINESS MEASURE \boldsymbol{R}

THEOREM

The reserve function Qsatisfies the four axioms if and only if $Q = R_{\gamma}$ for some $\gamma > 1$

$$oldsymbol{ heta} \Rightarrow oldsymbol{Q} \geq R_1 = \mathbf{R}$$

• THE MINIMAL RESERVE = the critical wealth R_1 for CRRA(1)

= THE RISKINESS MEASURE \mathbf{R}

V: Connections

Index of Riskiness Q

Index of Riskiness Q

DUALITY: For gambles g, h and agents u, v

Index of Riskiness Q

- DUALITY: For gambles g, h and agents u, vIf
 - ${\scriptstyle
 m \ }$ ${\scriptstyle u}$ is uniformly more risk-averse than v
 - ${\scriptstyle
 m I\!\!I}$ u accepts g at wealth W
 - Q(g) > Q(h)

Index of Riskiness Q

- DUALITY: For gambles g, h and agents u, vIf
 - ${\scriptstyle
 m \ }$ ${\scriptstyle u}$ is uniformly more risk-averse than v
 - ${\scriptstyle
 m {\scriptstyle I}} \,\, u$ accepts g at wealth W
 - Q(g) > Q(h)

Then

 ${\scriptstyle
m {\scriptstyle I}} v$ accepts h at wealth W

$\textit{Index of Riskiness}\ Q$

- DUALITY: For gambles g, h and agents u, vIf
 - Is uniformly more risk-averse than v
 - ${\scriptstyle
 m {\scriptstyle I}} \,\, u$ accepts g at wealth W
 - Q(g) > Q(h)

Then

- ${\scriptstyle
 m {\scriptstyle I}} v$ accepts h at wealth W
- HOMOGENEITY: $Q(\lambda \, g) = \lambda \, Q(g)$ for $\lambda > 0$

For each gamble g:

For each gamble g:

• Let $\alpha^* \equiv \alpha^*(g)$ be the Arrow–Pratt coefficient of absolute risk-aversion of that agent $u(x) = -\exp(-\alpha^* x)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g

For each gamble g:

• Let $\alpha^* \equiv \alpha^*(g)$ be the Arrow–Pratt coefficient of absolute risk-aversion of that agent $u(x) = -\exp(-\alpha^* x)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g

 \checkmark Let $R^{AS}(g) = 1/lpha^*$

For each gamble g:

• Let $\alpha^* \equiv \alpha^*(g)$ be the Arrow–Pratt coefficient of absolute risk-aversion of that agent $u(x) = -\exp(-\alpha^* x)$ with constant absolute risk aversion (CARA) who is indifferent between accepting and rejecting g

$${\scriptstyle
ightarrow}$$
 Let $R^{AS}(g)=1/lpha^{*}$

 $R^{AS}(g)$ is the unique solution R > 0 of

$$\mathrm{E}\left[\exp\left(-rac{1}{R}g
ight)
ight]=\exp(0)=1$$

Theorem

Theorem

Q satisfies **DUALITY** and **HOMOGENEITY** *if and only if*

Theorem

Q satisfies **DUALITY** and **HOMOGENEITY** if and only if Q is a positive multiple of \mathbf{R}^{AS}

Theorem

Q satisfies **DUALITY** and **HOMOGENEITY** if and only if Q is a positive multiple of \mathbf{R}^{AS} :

There is c > 0 such that $Q(g) = c \, \mathbb{R}^{AS}(g)$ for every gamble g

u accepts g

v accepts h

 $u \triangleright v = "u$ is uniformly more risk-averse than v"

 $u \triangleright v = "u$ is uniformly more risk-averse than v"

Alternative approach:

Alternative approach:

Define a "more risky than" ORDER between gambles

Alternative approach:

Define a "more risky than" ORDER between gambles

Represent it by an "INDEX"

Alternative approach:

- Define a "more risky than" ORDER between gambles ↔ preference order
- Represent it by an "INDEX"

Alternative approach:

- Define a "more risky than" ORDER between gambles ↔ preference order
- Represent it by an "INDEX" → utility function

An agent u is MONOTONIC if his decisions are monotonic relative to wealth

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth:
 - If u accepts a gamble g at wealth W
 - Then u accepts g at any wealth W' > W

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth:
 - If u accepts a gamble g at wealth W
 - Then u accepts g at any wealth W' > W(\Leftrightarrow coefficient of absolute risk-aversion is nonincreasing in wealth)

An agent u is MONOTONIC if his decisions are monotonic relative to wealth

- An agent u is **MONOTONIC** if his decisions are monotonic relative to wealth
- An agent u TOTALLY REJECTS g if u rejects g at every wealth W

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth
- An agent u TOTALLY REJECTS gif u rejects g at every wealth W
- A gamble g is **RISKIER THAN** a gamble h

- An agent u is MONOTONIC if his decisions are monotonic relative to wealth
- An agent u TOTALLY REJECTS gif u rejects g at every wealth W
- A gamble g is RISKIER THAN a gamble h if for any monotonic agent u:
 - If u totally rejects h
 - ${\scriptstyle
 m \ s}$ Then u totally rejects g

- An agent u is **MONOTONIC** if his decisions are monotonic relative to wealth
- An agent u TOTALLY REJECTS gif u rejects g at every wealth W
- A gamble g is RISKIER THAN a gamble h if for any monotonic agent u:
 - If u totally rejects h
 - ${\scriptstyle
 m \ s}$ Then u totally rejects g

 $oldsymbol{g} \succsim oldsymbol{h}$

Theorem. The riskiness order is represented by the Aumann–Serrano index of riskiness:

$$oldsymbol{g} \succsim oldsymbol{h} \quad \Longleftrightarrow \quad R^{AS}(oldsymbol{g}) \geq R^{AS}(oldsymbol{h})$$

Theorem. The riskiness order is represented by the Aumann–Serrano index of riskiness:

$$oldsymbol{g} \succsim oldsymbol{h} \quad \Longleftrightarrow \quad R^{AS}(oldsymbol{g}) \geq R^{AS}(oldsymbol{h})$$

Corollary

 \blacktriangleright is a *complete* order

Theorem. The riskiness order is represented by the Aumann–Serrano index of riskiness:

$$oldsymbol{g} \succsim oldsymbol{h} \quad \Longleftrightarrow \quad R^{AS}(oldsymbol{g}) \geq R^{AS}(oldsymbol{h})$$

Corollary

- \blacksquare \succeq is a *complete* order
- RAS is unique up to a monotonic transformation
Theorem. The riskiness order is represented by the Aumann–Serrano index of riskiness:

$$oldsymbol{g} \succsim oldsymbol{h} \quad \Longleftrightarrow \quad R^{AS}(oldsymbol{g}) \geq R^{AS}(oldsymbol{h})$$

Corollary

- \blacksquare \succeq is a *complete* order
- RAS is unique up to a monotonic transformation
- Together with homogeneity: RAS is unique up to multiplication by a positive constant

 $R^{AS}(g)$ is the unique solution R > 0 of $E\left[1 - \exp\left(-\frac{1}{R}g\right)\right] = 0$

SERGIU HART (C) 2007 - p. 57

$$\mathbf{R}(g)$$
 is the unique solution $\mathbf{R} > 0$ of
 $\mathbf{E}\left[\log\left(1 + \frac{1}{\mathbf{R}}g\right)\right] = 0$

 $R^{AS}(g)$ is the unique solution R > 0 of

$$\mathrm{E}\left[1-\exp\left(-rac{1}{R}g
ight)
ight]=0$$

Comparing R and R^{AS}

$$\mathbf{R}(g)$$
 is the unique solution $\mathbf{R} > 0$ of
 $\mathbf{E}\left[\log\left(1 + \frac{1}{\mathbf{R}}g\right)\right] = 0$

 $R^{AS}(g)$ is the unique solution R > 0 of

$$\mathrm{E}\left[1-\exp\left(-rac{1}{R}g
ight)
ight]=0$$

$$\log(1+x) = x - x^2/2 + x^3/3 - ...$$

SERGIU HART (C) 2007 – p. 57

Comparing R and R^{AS}

$$\mathbf{R}(g)$$
 is the unique solution $R > 0$ of
 $\mathbf{E}\left[\log\left(1 + \frac{1}{R}g\right)\right] = 0$

 $R^{AS}(g)$ is the unique solution R > 0 of

$$\mathrm{E}\left[1-\exp\left(-rac{1}{R}g
ight)
ight]=0$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
$$1 - \exp(-x) = x - \frac{x^2}{2} + \frac{x^3}{6} - \dots$$

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{AS}(g)$

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{AS}(g)$

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{AS}(g)$

 $\mathbf{R}(g) = \$2100$

SERGIU HART ⓒ 2007 – p. 58

Proposition

If $\mathrm{E}[g]$ is small relative to g then $\mathrm{R}(g) \sim R^{AS}(g)$

SERGIU HART ⓒ 2007 – p. 58

Comparing R and R^{AS}

Comparing R and R^{AS}

R: critical wealth for any risk aversion

• R: critical wealth for any risk aversion R^{AS} : critical risk aversion for any wealth

- R: critical wealth for any risk aversion
 R^{AS}: critical risk aversion for any wealth
- **R**: measure (one gamble)

- R: critical wealth for any risk aversion R^{AS} : critical risk aversion for any wealth
- R: measure (one gamble) **DAS** is dow (correspondent to the second sec
 - **R**^{AS}: index (comparing gambles)

- R: critical wealth for any risk aversion R^{AS} : critical risk aversion for any wealth
- R: measure (one gamble)
 R^{AS}: index (comparing gambles)
- R: no-bankruptcy, no-loss

- R: critical wealth for any risk aversion
 R^{AS}: critical risk aversion for any wealth
- R: measure (one gamble)
 R^{AS}: index (comparing gambles)
- R: no-bankruptcy, no-loss R^{AS} : expected utility, risk aversion

- R: critical wealth for any risk aversion
 R^{AS}: critical risk aversion for any wealth
- R: measure (one gamble)
 R^{AS}: index (comparing gambles)
- R: no-bankruptcy, no-loss R^{AS} : expected utility, risk aversion
- unit and operational interpretation

- R: critical wealth for any risk aversion
 R^{AS}: critical risk aversion for any wealth
- R: measure (one gamble)
 R^{AS}: index (comparing gambles)
- R: no-bankruptcy, no-loss R^{AS} : expected utility, risk aversion
- unit and operational interpretation
- continuity and "black swans"

- R: critical wealth for any risk aversion
 R^{AS}: critical risk aversion for any wealth
- R: measure (one gamble)
 R^{AS}: index (comparing gambles)
- R: no-bankruptcy, no-loss R^{AS} : expected utility, risk aversion
- unit and operational interpretation
- continuity and "black swans"

Nevertheless: similar in many respects !!

If a risk-averse expected-utility agent rejects the gamble g = [+\$105, 1/2; -\$100, 1/2]at all wealth levels $W < \$300\,000$

- If a risk-averse expected-utility agent rejects the gamble g = [+\$105, 1/2; -\$100, 1/2]at all wealth levels $W < \$300\,000$
- Then he must reject the gamble $h = [+\$5\,500\,000, 1/2; -\$10\,000, 1/2]$ at wealth level $W = \$290\,000$

- If a risk-averse expected-utility agent rejects the gamble g = [+\$105, 1/2; -\$100, 1/2]at all wealth levels $W < \$300\,000$
- Then he must reject the gamble $h = [+\$5\,500\,000, 1/2; -\$10\,000, 1/2]$ at wealth level $W = \$290\,000$

- If a risk-averse expected-utility agent rejects the gamble g = [+\$105, 1/2; -\$100, 1/2]at all wealth levels $W < \$300\,000$
- Then he must reject the gamble $h = [+\$5\,500\,000, 1/2; -\$10\,000, 1/2]$ at wealth level $W = \$290\,000$

OUR RESULT:reject gat all wealth levels W < R(g) = \$2100

- If a risk-averse expected-utility agent rejects the gamble g = [+\$105, 1/2; -\$100, 1/2]at all wealth levels $W < \$300\,000$
- Then he must reject the gamble $h = [+\$5\,500\,000, 1/2; -\$10\,000, 1/2]$ at wealth level $W = \$290\,000$

OUR RESULT: reject gat all wealth levels W < R(g) = \$2100

no friction, no cheating

- If a risk-averse expected-utility agent rejects the gamble g = [+\$105, 1/2; -\$100, 1/2]at all wealth levels $W < \$300\,000$
- Then he must reject the gamble $h = [+\$5\,500\,000, 1/2; -\$10\,000, 1/2]$ at wealth level $W = \$290\,000$

OUR RESULT:reject gat all wealth levels W < R(g) = \$2100

- no friction, no cheating
- what is "wealth"?

What is Wealth?

1		

What is Wealth?

What is Wealth?

(Proof: replace 0 with \underline{W})

What is Wealth?

Back to *calibration*:

What is Wealth?

Back to *calibration*:

If W = "gambling / risky investment wealth", then \$300 000 seems excessive for g(since R(g) = \$2100)

What is Wealth?

Back to *calibration*:

- If W = "gambling / risky investment wealth", then \$300 000 seems excessive for g(since R(g) = \$2100)
- If W = total wealth, then rejecting g at all $W < \$300\,000$ is consistent with a required minimal wealth level $\underline{W} \ge \$297\,900$,

What is Wealth?

Back to *calibration*:

- If W = "gambling / risky investment wealth", then \$300 000 seems excessive for g(since R(g) = \$2100)
- If W = total wealth, then rejecting g at all $W < \$300\,000$ is consistent with a required minimal wealth level $\underline{W} \ge \$297\,900$, and then one rejects h at \$290,000

Summary

The Riskiness measure R

The Riskiness measure R (recall)

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)
- may replace measures of risk (σ -based, ...)

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)
- may replace measures of risk (σ -based, ...)
 - Markowitz, CAPM, ... : E vs $\sigma \rightarrow E$ vs R
 - Sharpe ratio: $E/\sigma \rightarrow E/R$

- is objective and universal
- is independent of utilities, risk aversion, ...
- has a clear operational interpretation
- has good properties (e.g., monotonic with respect to first-order stochastic dominance)
- may replace measures of risk (σ -based, ...)
 - Markowitz, CAPM, ... : E vs $\sigma \rightarrow E$ vs R
 - Sharpe ratio: $E/\sigma \rightarrow E/R$
- may replace reserve measures (VaR, ...)

"We're recommending a risky strategy for you; so we'd appreciate if you paid before you leave."