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GAMBLE g:

a real-valued random variable
E [g] > 0

P [g < 0] > 0

finitely many values

UTILITY u:
u : R+→ R (put u(x) = −∞ for x ≤ 0)
strictly increasing
concave
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g accepted ⇔ p ∗ g accepted
E[u(w+p∗g)] = pE[u(w+g)]+(1−p)u(w)

Theorem.
g ACCEPTANCE DOMINATES h

⇔
there exist p, q ∈ (0, 1] such that

p ∗ g STOCHASTICALLY DOMINATES q ∗ h
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Acceptance Dominance

For every g with E[g] > 0

g >A 2g :

2 u(w + x) ≥ u(w + 2x) + u(w)

2 E[u(w + g)] ≥ E[u(w + 2g)] + u(w)

IF E[u(w + g)] ≤ u(w)
THEN E[u(w + 2g)] ≤ u(w)

g ®S 2g :

E[g] < E[2g]
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Summary

g is LESS RISKY than h whenever risk-averse
agents are LESS AVERSE to g than to h

AVERSION to a gamble: REJECTION

rejection of different gambles should be
compared whenever it is SUBSTANTIVE:
UNIFORM over a range of decisions

g is less risky than h

whenever
g is uniformly rejected less than h

by risk-averse agents
SERGIU HART c© 2009 – p. 23



Summary

g >S h

⇓
g >A h

⇓ ⇓
g >WU h * g >UU h *

m m
RAS(g) ≤ RAS(h) RFH(g) ≤ RFH(h)

* = complete order
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Summary

ORDINAL approach to riskiness
(Aumann–Serrano and Foster–Hart: “cardinal")

OBJECTIVE: depends only on the gambles
(not on any specific decision-maker)

STATUS QUO: current wealth w
(in addition to the utility u)

g >A λg for every λ > 1

(ALL risk-averse agents reject λg more than g)

SERGIU HART c© 2009 – p. 25
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