

Comparing Risks by Acceptance and Rejection

Sergiu Hart

September 2009

This version: March 2010

SERGIU HART (C) 2009 - p. 1

Comparing Risks by Acceptance and Rejection

Sergiu Hart

Center for the Study of Rationality Dept of Economics Dept of Mathematics The Hebrew University of Jerusalem

hart@huji.ac.il

http://www.ma.huji.ac.il/hart

Dean Foster and Sergiu Hart "An Operational Measure of Riskiness" Journal of Political Economy (2009)

www.ma.huji.ac.il/hart/abs/risk.html

Dean Foster and Sergiu Hart "An Operational Measure of Riskiness" Journal of Political Economy (2009) www.ma.huji.ac.il/hart/abs/risk.html

Dean Foster and Sergiu Hart "A Reserve-Based Axiomatization of the Measure of Riskiness" (2008) www.ma.huji.ac.il/hart/abs/risk-ax.html

Papers (continued)

Sergiu Hart "A Simple Riskiness Order Leading to the Aumann–Serrano Index of Riskiness" (2008) www.ma.huji.ac.il/hart/abs/risk-as.html

Papers (continued)

- Sergiu Hart "A Simple Riskiness Order Leading to the Aumann–Serrano Index of Riskiness" (2008) www.ma.huji.ac.il/hart/abs/risk-as.html
- Sergiu Hart "Comparing Risks by Acceptance and Rejection" (2009) www.ma.huji.ac.il/hart/abs/risk-u.html

Net gains and losses

SERGIU HART (C) 2009 – p. 5

- Net gains and losses
- Positive expectation

- Net gains and losses
- Positive expectation
- Some losses

- Net gains and losses
- Positive expectation
- Some losses
- Pure risk (known probabilities)

SERGIU HART ⓒ 2009 – p. 6

Question:

SERGIU HART ⓒ 2009 – p. 6

Question:

When is g LESS RISKY THAN h?

SERGIU HART (C) 2009 - p. 6

Question:

When is g LESS RISKY THAN h?

Answer:

SERGIU HART C 2009 - p. 6

Question:

When is g LESS RISKY THAN h?

Answer:

When **RISK-AVERSE** decision-makers are **LESS AVERSE** to *g* than to *h* !

Comparing Risks

"risk-averse decision-makers are LESS AVERSE to g than to h" = ?

"risk-averse decision-makers are LESS AVERSE to g than to h"

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is PREFERRED to } h)$

$E[u(w+g)] \ge E[u(w+h)]$

for every (concave) utility \boldsymbol{u} and wealth \boldsymbol{w}

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is PREFERRED to } h)$

$E[u(w+g)] \ge E[u(w+h)]$

for every (concave) utility \boldsymbol{u} and wealth \boldsymbol{w}

g STOCHASTICALLY DOMINATES h (2nd-degree)

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is PREFERRED to } h)$

 $E[u(w+g)] \ge E[u(w+h)]$

for every (concave) utility \boldsymbol{u} and wealth \boldsymbol{w}

g STOCHASTICALLY DOMINATES h (2nd-degree)

g STOCHASTICALLY DOMINATES h (1st-degree)

 $g \geqslant_{\mathsf{S1}} h$

g STOCHASTICALLY DOMINATES h (1st-degree)

 $g \geqslant_{\mathsf{S1}} h$

g STOCHASTICALLY DOMINATES h (1st-degree)

 $g \geqslant_{\mathsf{S1}} h$

• $g' \geqslant h'$

- $\mathcal{D}istribution g = \mathcal{D}istribution g'$
- $\mathcal{D}istribution \mathbf{h} = \mathcal{D}istribution \mathbf{h}'$

g STOCHASTICALLY DOMINATES h (1st-degree)

 $g \geqslant_{\mathsf{S1}} h$

• $g' \geqslant h'$

- $\mathcal{D}istribution g = \mathcal{D}istribution g'$
- $\mathcal{D}istribution \mathbf{h} = \mathcal{D}istribution \mathbf{h}'$

g STOCHASTICALLY DOMINATES h (1st-degree)

 $g \geqslant_{\mathsf{S1}} h$

• $g' \geqslant h'$

- Distribution g = Distribution g'
- $\mathcal{D}istribution \mathbf{h} = \mathcal{D}istribution \mathbf{h}'$

g STOCHASTICALLY DOMINATES h (2nd-degree)

 $g \geqslant_{\mathsf{S2}} h$

g STOCHASTICALLY DOMINATES h (2nd-degree)

 $g \geqslant_{\mathsf{S2}} h$

g STOCHASTICALLY DOMINATES h (2nd-degree)

 $g \geqslant_{\mathsf{S2}} h$

from g to h: a MEAN-PRESERVING SPREAD

g STOCHASTICALLY DOMINATES h (2nd-degree)

 $g \geqslant_{\mathsf{S2}} h$

• from g to h: a MEAN-PRESERVING SPREAD • $\geq_{s_2} = \geq_{s_1}$ + mean-preserving spreads

Acceptance and Rejection

Let g be a gamble.

Acceptance and Rejection

Let g be a gamble.

• g is **ACCEPTED** by a decision-maker with utility u at wealth w if

E[u(w+g)] > u(w)

Acceptance and Rejection

Let g be a gamble.

• g is **ACCEPTED** by a decision-maker with utility u at wealth w if

$$E[u(w+g)] > u(w)$$

• g is **REJECTED** by a decision-maker with utility u at wealth w if

$$\mathrm{E}\left[\mathbf{u}(\mathbf{w}+\mathbf{g})\right] \leq \mathbf{u}(\mathbf{w})$$

Comparing Risks

"risk-averse decision-makers are LESS AVERSE to g than to h"

SERGIU HART (C) 2009 - p. 11

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $\left(g ext{ is REJECTED LESS } ext{than } h
ight)$
"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g \text{ is } \mathsf{REJECTED } \mathsf{LESS} \text{ than } h)$

IFg is rejected by u at wTHENh is rejected by u at w

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g \text{ is } \mathsf{REJECTED } \mathsf{LESS} \text{ than } h)$

IF
$$\operatorname{E}\left[u(w+g) \right] \leq u(w)$$

Then $\operatorname{E}\left[u(w+h) \right] \leq u(w)$

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g \text{ is } \mathsf{REJECTED } \mathsf{LESS} \text{ than } h)$

IFg is rejected by u at wTHENh is rejected by u at w

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g \text{ is } \mathsf{REJECTED } \mathsf{LESS} \text{ than } h)$

IFg is rejected by u at wTHENh is rejected by u at w

for every (concave) utility \boldsymbol{u} and wealth \boldsymbol{w}

 $oldsymbol{g}$ ACCEPTANCE DOMINATES h

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g \text{ is } \mathsf{REJECTED } \mathsf{LESS} \text{ than } h)$

IFg is rejected by u at wTHENh is rejected by u at w

Comparing Risks

"risk-averse decision-makers are LESS AVERSE to g than to h"

SERGIU HART (C) 2009 - p. 12

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is WEALTH-UNIFORMLY REJECTED LESS than }h)$

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is WEALTH-UNIFORMLY REJECTED LESS than }h)$

IFg is rejected by u at all wTHENh is rejected by u at all w

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is WEALTH-UNIFORMLY REJECTED LESS than }h)$

 $\begin{array}{ll} \text{IF} & \mathrm{E}\left[u(w+g) \right] \leq u(w) \text{ for all } w \\ \text{THEN} & \mathrm{E}\left[u(w+h) \right] \leq u(w) \text{ for all } w \end{array}$

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is WEALTH-UNIFORMLY REJECTED LESS than }h)$

IFg is rejected by u at all wTHENh is rejected by u at all w

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is WEALTH-UNIFORMLY REJECTED LESS than }h)$

IF g is rejected by u at all wTHEN h is rejected by u at all w

for every (concave) utility u

g wealth-uniformly dominates h

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(m{g} ext{ is WEALTH-UNIFORMLY REJECTED LESS than }m{h})$

IF g is rejected by u at all wTHEN h is rejected by u at all w

Comparing Risks

"risk-averse decision-makers are LESS AVERSE to g than to h"

SERGIU HART (C) 2009 - p. 13

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is UTILITY-UNIFORMLY REJECTED LESS than }h)$

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is UTILITY-UNIFORMLY REJECTED LESS than }h)$

IFg is rejected by all u at wTHENh is rejected by all u at w

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is UTILITY-UNIFORMLY REJECTED LESS than }h)$

 $\begin{array}{ll} \text{IF} & \mathrm{E}\left[u(w+g) \right] \leq u(w) \text{ for all } u \\ \text{THEN} & \mathrm{E}\left[u(w+h) \right] \leq u(w) \text{ for all } u \end{array}$

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is UTILITY-UNIFORMLY REJECTED LESS than }h)$

IFg is rejected by all u at wTHENh is rejected by all u at w

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is UTILITY-UNIFORMLY REJECTED LESS than }h)$

IF g is rejected by all u at wTHEN h is rejected by all u at w

for every wealth w

g utility-uniformly dominates $m{h}$

"risk-averse decision-makers are LESS AVERSE to g than to h"

 $(g ext{ is UTILITY-UNIFORMLY REJECTED LESS than }h)$

IF g is rejected by all u at wTHEN h is rejected by all u at w

g is LESS RISKY than h $\Leftrightarrow g$ is REJECTED LESS than h

g is LESS RISKY than h $\Leftrightarrow g$ is REJECTED LESS than h

REJECTED =				

SERGIU HART © 2009 – p. 14

g is LESS RISKY than h $\Leftrightarrow g$ is REJECTED LESS than h

	REJECTED =
$g \geqslant_{A} h$	REJECTED by \boldsymbol{u} at \boldsymbol{w}

SERGIU HART (C) 2009 - p. 14

g is LESS RISKY than h $\Leftrightarrow g$ is REJECTED LESS than h

	REJECTED =
$g \geqslant_{A} h$	REJECTED by $oldsymbol{u}$ at $oldsymbol{w}$
$oldsymbol{g} \geqslant_{WU} oldsymbol{h}$	REJECTED by u at ALL w

SERGIU HART © 2009 – p. 14

g is LESS RISKY than h $\Leftrightarrow g$ is REJECTED LESS than h

	REJECTED =
$g \geqslant_{A} h$	REJECTED by $oldsymbol{u}$ at $oldsymbol{w}$
$oldsymbol{g} \geqslant_{WU} oldsymbol{h}$	REJECTED by $oldsymbol{u}$ at ALL $oldsymbol{w}$
$g \geqslant_{UU} h$	REJECTED by ALL u at w

SERGIU HART (C) 2009 - p. 14

Comparing "Comparing Risks"

SERGIU HART © 2009 – p. 15

SERGIU HART ⓒ 2009 – p. 15

• WEALTH-UNIFORM DOMINANCE:

JUTILITY-UNIFORM DOMINANCE:

SERGIU HART (C) 2009 - p. 16

WEALTH-UNIFORM DOMINANCE:

is a complete order

JUTILITY-UNIFORM DOMINANCE:

• WEALTH-UNIFORM DOMINANCE:

is a complete order : for every g, h either $g \ge_{WU} h$ or $h \ge_{WU} g$

JUTILITY-UNIFORM DOMINANCE:

WEALTH-UNIFORM DOMINANCE:

is a complete order

JUTILITY-UNIFORM DOMINANCE:

WEALTH-UNIFORM DOMINANCE:

is a complete order

UTILITY-UNIFORM DOMINANCE:

is a complete order

WEALTH-UNIFORM DOMINANCE:

- is a complete order
- is equivalent to the order induced by the Aumann–Serrano index of riskiness

- UTILITY-UNIFORM DOMINANCE:
 - is a complete order
Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:

- is a complete order
- is equivalent to the order induced by the Aumann–Serrano index of riskiness: $g \ge_{WU} h \iff R^{AS}(g) \le R^{AS}(h)$
- UTILITY-UNIFORM DOMINANCE:
 - is a complete order

Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:

- is a complete order
- is equivalent to the order induced by the Aumann–Serrano index of riskiness: $g \ge_{WU} h \iff R^{AS}(g) \le R^{AS}(h)$
- UTILITY-UNIFORM DOMINANCE:
 - is a complete order
 - is equivalent to the order induced by the Foster-Hart measure of riskiness

Riskiness Orders: Results

WEALTH-UNIFORM DOMINANCE:

- is a complete order
- is equivalent to the order induced by the Aumann–Serrano index of riskiness: $g \ge_{WU} h \iff R^{AS}(g) \le R^{AS}(h)$
- UTILITY-UNIFORM DOMINANCE:
 - is a complete order
 - is equivalent to the order induced by the Foster-Hart measure of riskiness: $g \ge_{UU} h \iff \mathbb{R}^{FH}(g) \le \mathbb{R}^{FH}(h)$

•		

Sergiu HART ⓒ 2009 – p. 17

$$\mathrm{E}\left[1-\exp\left(-rac{1}{\mathsf{R}^{\mathsf{AS}}(g)}g
ight)
ight]=0$$

$$\mathrm{E}\left[1-\exp\left(-rac{1}{\mathsf{R}^{\mathsf{AS}}(g)}g
ight)
ight]=0$$

Foster-Hart measure of riskiness R^{FH} : E $\left[\log \left(1 + \frac{1}{R^{FH}(g)} g \right) \right] = 0$

SERGIU HART (C) 2009 - p. 17

$$\mathrm{E}\left[1-\exp\left(-rac{1}{\mathsf{R}^{\mathsf{AS}}(g)}g
ight)
ight]=0$$

(1 / the CRITICAL RISK-AVERSION coefficient)

Foster–Hart measure of riskiness R^{FH}:

$$\mathrm{E}\left[\log\left(1+rac{1}{\mathsf{R}^{\mathsf{FH}}(g)}g
ight)
ight]=0$$

SERGIU HART (C) 2009 - p. 17

$$\mathrm{E}\left[1-\exp\left(-rac{1}{\mathsf{R}^{\mathsf{AS}}(g)}g
ight)
ight]=0$$

(1 / the CRITICAL RISK-AVERSION coefficient)

Foster–Hart measure of riskiness *R*^{FH} :

$$\mathrm{E}\left[\log\left(1+rac{1}{\mathsf{R}^{\mathsf{FH}}(g)}g
ight)
ight]=0$$

(the **CRITICAL WEALTH LEVEL**)

Riskiness Orders

SERGIU HART ⓒ 2009 – p. 18

Riskiness Orders

I			

GAMBLE *g*:

J GAMBLE *g*:

- a real-valued random variable
- E[g] > 0
- P[g < 0] > 0
- finitely many values

GAMBLE g:

- a real-valued random variable
- E[g] > 0
- P[g < 0] > 0
- finitely many values

D UTILITY **u**:

9 GAMBLE g:

- a real-valued random variable
- E[g] > 0
- P[g < 0] > 0
- finitely many values

D UTILITY **u**:

- ${\scriptstyle oldsymbol{ u}}$: ${\Bbb R}_+{
 ightarrow}{\Bbb R}$ (put ${\scriptstyle oldsymbol{u}}(x)=-\infty$ for $x\leq 0$)
- strictly increasing
- concave

JUTILITY *u* (continued):

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:

JUTILITY *u* (continued):

rejection decreases with wealth:

• g rejected at $w \Rightarrow$ g rejected at w', for w' < w

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:
 - *g* rejected at $w \Rightarrow$ *g* rejected at w', for w' < w
 - or: DARA (condition 2 of Arrow, 1965)

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:
 - *g* rejected at $w \Rightarrow$ *g* rejected at w', for w' < w
 - or: DARA (condition 2 of Arrow, 1965)
 - rejection increases with scale:

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:
 - g rejected at $w \Rightarrow$ g rejected at w', for w' < w
 - or: DARA (condition 2 of Arrow, 1965)
 - rejection increases with scale:
 - g rejected at $w \Rightarrow$ λg rejected at λw , for $\lambda > 1$

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:
 - g rejected at $w \Rightarrow$ g rejected at w', for w' < w
 - or: DARA (condition 2 of Arrow, 1965)
 - rejection increases with scale:
 - *g* rejected at $w \Rightarrow$ λg rejected at λw , for $\lambda > 1$
 - or: IRRA (condition 1 of Arrow, 1965)

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:
 - g rejected at $w \Rightarrow$ g rejected at w', for w' < w
 - or: DARA (condition 2 of Arrow, 1965)
 - rejection increases with scale:
 - g rejected at $w \Rightarrow$ λg rejected at λw , for $\lambda > 1$
 - or: IRRA (condition 1 of Arrow, 1965)
 - every gamble is sometimes rejected:

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:
 - g rejected at $w \Rightarrow$ g rejected at w', for w' < w
 - or: DARA (condition 2 of Arrow, 1965)
 - rejection increases with scale:
 - g rejected at $w \Rightarrow$ λg rejected at λw , for $\lambda > 1$
 - or: IRRA (condition 1 of Arrow, 1965)
 - every gamble is sometimes rejected:
 - ${}_{m{s}}$ for every ${}_{m{g}}$ there is ${}_{m{w}}$ where ${}_{m{g}}$ is rejected

- **JUTILITY** *u* (continued):
 - rejection decreases with wealth:
 - g rejected at $w \Rightarrow$ g rejected at w', for w' < w
 - or: DARA (condition 2 of Arrow, 1965)
 - rejection increases with scale:
 - g rejected at $w \Rightarrow$ λg rejected at λw , for $\lambda > 1$
 - or: IRRA (condition 1 of Arrow, 1965)
 - every gamble is sometimes rejected:
 - \mathbf{s} for every g there is w where g is rejected
 - \checkmark or: $u(0^+)=-\infty$

•
$$p * g$$
 = the p -DILUTION of g =

p *
$$g$$
 = the p -DILUTION of g =
 g with probability p , and
0 with probability $1 - p$

- p * g = the p DILUTION of g = g with probability p, and 0 with probability 1 p
- g accepted $\Leftrightarrow p * g$ accepted

- p * g = the p DILUTION of g = g with probability p, and 0 with probability 1 p
- g accepted $\Leftrightarrow p * g$ accepted E[u(w+p*g)] = pE[u(w+g)] + (1-p)u(w)

- p * g = the p DILUTION of g = g with probability p, and 0 with probability 1 p
- g accepted $\Leftrightarrow p * g$ accepted E[u(w+p*g)] = pE[u(w+g)] + (1-p)u(w)

Theorem.

- p * g = the p DILUTION of g = g with probability p, and 0 with probability 1 p
- g accepted $\Leftrightarrow p * g$ accepted E[u(w+p*g)] = pE[u(w+g)] + (1-p)u(w)

- p * g = the p DILUTION of g = g with probability p, and 0 with probability 1 p
- g accepted $\Leftrightarrow p * g$ accepted E[u(w+p*g)] = pE[u(w+g)] + (1-p)u(w)

Theorem.g ACCEPTANCE DOMINATES h \Leftrightarrow there exist $p,q \in (0,1]$ such thatp * g STOCHASTICALLY DOMINATES q * h

For every g with $\mathrm{E}[g] > 0$

For every g with $\mathrm{E}[g] > 0$

SERGIU HART ⓒ 2009 – p. 22

For every g with $\mathrm{E}[g] > 0$

SERGIU HART ⓒ 2009 – p. 22

For every g with E[g] > 0

• $g \ge_A 2g$: • $2 u(w+x) \ge u(w+2x) + u(w)$

•
$$g \not\geqslant_{\mathsf{S}} 2g$$
 :
 $\mathrm{E}[g] < \mathrm{E}[2g]$

For every g with E[g] > 0

• $g \ge_A 2g$: • $2 u(w+x) \ge u(w+2x) + u(w)$ • $2 E[u(w+g)] \ge E[u(w+2g)] + u(w)$

•
$$g \not\geqslant_{\mathsf{S}} 2g$$
 :
 $\mathrm{E}[g] < \mathrm{E}[2g]$

For every g with E[g] > 0

9 $\geq_{A} 2g$:
2 $u(w + x) \geq u(w + 2x) + u(w)$ 2 $E[u(w + g)] \geq E[u(w + 2g)] + u(w)$ IF $E[u(w + g)] \leq u(w)$ THEN $E[u(w + 2g)] \leq u(w)$

• $g \not\geqslant_{\mathsf{S}} 2g$: $\mathrm{E}[g] < \mathrm{E}[2g]$

g is LESS RISKY than h whenever risk-averse agents are LESS AVERSE to g than to h

- g is LESS RISKY than h whenever risk-averse agents are LESS AVERSE to g than to h
- AVERSION to a gamble: REJECTION

- g is LESS RISKY than h whenever risk-averse agents are LESS AVERSE to g than to h
- AVERSION to a gamble: REJECTION
- rejection of different gambles should be compared whenever it is SUBSTANTIVE: UNIFORM over a range of decisions

- g is LESS RISKY than h whenever risk-averse agents are LESS AVERSE to g than to h
- AVERSION to a gamble: REJECTION
- rejection of different gambles should be compared whenever it is SUBSTANTIVE: UNIFORM over a range of decisions

* = complete order

ORDINAL approach to riskiness

OBJECTIVE: depends only on the gambles

ORDINAL approach to riskiness (Aumann–Serrano and Foster–Hart: "cardinal")

 OBJECTIVE: depends only on the gambles (not on any specific decision-maker)

- OBJECTIVE: depends only on the gambles (not on any specific decision-maker)
- STATUS QUO: current wealth w

- OBJECTIVE: depends only on the gambles (not on any specific decision-maker)
- STATUS QUO: current wealth w
 (in addition to the utility u)

- OBJECTIVE: depends only on the gambles (not on any specific decision-maker)
- STATUS QUO: current wealth w (in addition to the utility u)
- ${} {\scriptstyle
 ightarrow} \; g \geqslant_{\sf A} \lambda g \; \; {
 m for \, every} \; \lambda > 1$

- OBJECTIVE: depends only on the gambles (not on any specific decision-maker)
- STATUS QUO: current wealth w
 (in addition to the utility u)
- $g \ge_A \lambda g$ for every $\lambda > 1$ (ALL risk-averse agents reject λg more than g)