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Abstract. Overtaking optimality (also known as catching—up opti-
mality) is a concept that can be traced back to a paper by Frank
P. Ramsey (1928) in the context of economic growth. At present,
however, we use a weaker form introduced independently by At-
sumi (1965) and von Weizacker (1965). The apparently different
concept of long—run expected average payoff (a.k.a. ergodic payoff)
was introduced by Richard Bellman (1957). In this talk we make a
description of how these concepts are related to other optimality
criteria, such as bias optimality and canonical strategies. In fact, we
show that
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We do this for a class of (discrete—or continuous—time) Markov
games,

e Part 1: Control problems

e Part 2: Markov games



PART 1. OPTIMAL CONTROL PROBLEMS

An optimal control problem has three main components:
1. A “controllable” dynamical system. Examples:
e discrete time:
T = Flrya, &) V=01, 7 <00
e continuous time: diffusion processes, say,
dry = F(xy, ap)dt + o(xg, a;)dWy V0O <t <71 <o0;
continuous—time controlled Markov chains; . ..

2. A family II of admissible control policies (or strategies) 7 =

{m}.

3. A performance index (or objective function) V : Il x X — R,

(m,x) — V(m, x).

The optimal control problem is then, for every initial state xy = z,

optimize 7 +— V(m,xz) over IL

Notation and terminology: Suppose “optimize” means “maxi-
mize”. Let
Vi) :=sup . Vim,x) V=2,
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be the control problem’s value function. If there exists 7* € II
such that

V(ir*,x)=V*(x) VzeX
then 7* is said to be an optimal control policy (or strategy).

EXAMPLES OF OBJECTIVE FUNCTIONS

e Finite-horizon 7" > 0:

Jr(m,z) = ET

z_: (s, at)] .

t=

¢ Discounted reward: given o > 0,

Z olr(xy, at)] .

This is, in fact, a medium-term reward criterion because, if V,, (7, x)
is finite, then

Vo(m,z) = ET

E;

Zatr(:ct,at)] —0 as T — oo.
t=T

e Long—run expected average (or ergodic) reward:

1

J(myx) = hTHLio%fT Jp(m, x)

| T-1

= liminf = E7
i inf -

x
T—o0

r(xy, at)] .

t=0



This criterion was introduced by Richard Bellman (1957), moti-
vated by the control of a manufacturing process. The terminology
in Bellman’s work originated the term Markov decision problem.

Bellman, R. (1957). A Markovian decision problem. J]. Math.
Mech. 6, pp. 679-684.

Typical applications of the average reward criterion
¢ Queueing systems

e Telecommunication networks (e.g., computer networks, satellite
networks, telephone networks, ...)

e Manufacturing processes

e Control of a satellite’s attitude

Remark 1. The average reward criterion, why is it called an er-
godic criterion? In general, an “ergodic” result refers to conver-
gence of averages, either pathwise averages (as in the Law of Large
Numbers or in Boltzmann's ergodic hypothesis)

1 T-1
3 / R(w)P(dw) = E(R) wp.1, (1)
=0 &



or expected averages

-1

% E — FE(R) (2)

Tt
t=0

Sometimes, “ergodic” means something stronger that (1) or (2),
for instance, as t — oc:

r, — E(R) wp.l or E(r;) — E(R).

Figure 1

Remark 2. The average criterion is extremely underselective, in
the sense that it ignores what happens in a finite horizon T, for
every I' > 0. For instance, one can have policies 7 and 7', and
v € (0, 1), such that



Jr(m,z) = Jp(7',x)+T7 VT >0.

Therefore,
o Jp(m,x) — Jp(n',x) — oo as T — oo; however,

e m and 7’ have the same long—run average reward: J(m,x) = J(n', ).

Problem in financial engineering. For some class II of portfolios
(or investment strategies) determine the “benchmark”

pi=supJ(m,x) VaeX

mell

Let 114 be the family of average optimal portfolios, and suppose
I140 1s nonempty.

Problem: Find 7* € 114 with the fastest growth rate.



OVERTAKING OPTIMALITY

Ramsey, EP. (1928). A mathematical theory of saving. The Eco-
nomic Journal 38, pp. 543-559.

A policy 7* overtakes (or catches—up) 7 if, for every z € X,
there exists 7(x, 7*, 7) such that

Jr(r*,x) > Jp(m,x) YT > 71(x, 7", 7).

Here we will use a weaker notion introduced independently by
several authors in the 1960s.

We will restrict ourselves to stationary strategies m € [I;, that
is, functions 7 : X — A, z; — w(x;) € A. (Sometimes we will
consider Markov strategies (¢, z;) — n(t,x;) € A.)

Definition [Atsumi 1965, von Weiszdcker 1965, ...] A stationary
strategy 7* € Il is overtaking optimal (in lI;) if, for every 7 € II;
and r € X,
li%n inf|Jp(7*, x) — Jp(m, z)] > 0;
equivalently, for every 7 € Il;, z € X, and € > 0 there exists
T. =T.(r",m, x,¢)
such that

Jr(r*,x) > Jp(m,x)—e VT > T, ().



Remark. (a) Observe that in overtaking optimality there isno “ob-
jective function” to be optimized.

(b) If (%) holds, then the average reward J(7n*,x) > J(m, z) for
every m € II; and x € X. Therefore

overtaking optimality = average optimality,

1.e.

HOO C HA().

(c) By (%) again, if 7* is overtaking optimal, then it has the fastest
growth rate.

How do we find ©*?



BIAS OPTIMALITY

Suppose that, for each 7 € 114, the bias function

o0

b(m,x) == E] > [r(z,a;) — p7]

t=0
is well defined, where p* := sup, .y J(7, z) for all x € X. Then, for
every 1" > 0,

Jr(m,x) =T - p" 4+ b(m,x) + ep(m, x)
such that ep(m,z) — 0as T — oc.

o If m and 7" are in Il 4, then for every 7" > 0

Jr(n*,x) — Jp(m,x) = b(n*, x) — b(mw, x) + ep(n*, x) — er(m, x).

Definition. 7* € I, is bias optimal if
(a) 7* is in 114, and
(b) 7" maximizes the bias, i.e.
b(r*,2) = sup b(m,z) = blz) VzeX

WEHAO

Observe that bias optimality is a lexicographical optimality cri-
terion.

Theorem. Under some assumptions, the following statements are
equivalent for 7* € Il:



(a) 7* is overtaking optimal.
(b) 7* is bias optimal.

(c) There is a constant p* and a function h that satisty, for all z € X,

g o) = s (et [ BPaisal . G)

and 7* attains the maximum in (3), i.e.

;f+mw—r@mﬂwwgéh@WMMawuw, 4)

and in addition

A

g b(z)pr+(dx) = 0.

A policy 7* that satisfies (3) and (4) is called canonical. In brief,
we have
HAO D) Hca D) Hbms — 1_[OO-

For proofs and examples see, for instance: [5,7,11]. (The theorem
is not true for games [10].)
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PART 2. ZERO-SUM MARKOV GAMES

Consider a two—person Markov game, for instance:
e discrete—time: ;1 = F(xy,a:,01,&) VE=0,1,...,7 < o0;
e stochastic differential game:

dflf't = F(Z’t, ag, bt)dt + U(Z’t)th V0 S t S T S o,

¢ jump Markov game with a countable state space;...

Let A (resp. B) be the action space of player 1 (resp. player 2).
Fori = 1,2, we denote by 11’ the family of (randomized) stationary
strategies 7' for player 1.

Letr : X x A x B — R be a measurable function (representing
the reward function for player 1, and the cost function for player
2), and define

Jr(tt,n% z) = E

T—
Z :Ct,at,bt ] .

The long—run expected average (or ergodlc) payoff is:

1
[ S 12
J(m, 7w x) = thllcng Jr(mh, 7 x)

Assumption: The ergodic game has a value V(-) that is, the lower

value
L(z) := supinf J(7', 7%, z)

2
ol
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and the upper value

U(x) := infsup J(7*, 7%, z)

2
’/T,ﬂ-l

coincide: L(-) =U(:) = V(-).
AVERAGE OPTIMALITY

Definition. A pair (7!, 7%) € II! x 112 is a pair of average optimal
strategies if

inf J(m}, 7%, 2) =V(z) VreX

72
and
supJ(7r w2 x)=V(z) VreX

) *
71'

Equivalently, (7}, ) is a saddle point, i.e.

J(rt, w2 x) < J(ml, w2 x) < J(rk, 7, x)

J * ) * ) * )

for every z € X and every (7', %) € I} x II2.

OVERTAKING OPTIMALITY

Definition [Rubinstein 1979]. A pair (7}, 72) € II! x TI? is over-
taking optimal (in II! x II?) if, for every z € X and every pair
(7!, 7?) € 11! x I12, we have

lim inf[Jp (7}, 72, 2) — Jp(rt, 72, 2)] > 0

%9 My RIS
T—0o0
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and
lim sup[Jp(wl, 72, x) — Jp(ml, 7%, 2)] < 0.

%) % )
T—00

Under some conditions,

Hoo C HA().

Question. Can we characterize I1y?
CANONICAL PAIRS

Definition. A pair (7}, 72) € II! x 12 is said to be canonical if there
is a number p* € R and a function h : X — R such that

g ) = vl + [ )Pyl e
1 h(y)P(dy|x, ,7r2)]

o
= mm[fr‘xﬁ 7’ —|—/h P(dy|z, 7., 2)]
X

» ko
T2

= max[rxﬂ 7T +
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Under some conditions,

gy C Iy C Hyp.

BIAS OPTIMALITY

Under some conditions, for every pair (7!, 7%) € II x II% there
exists a probability measure p™ ™ on X such that

J(mt, m? x) = / r(z, m, 7\ " (dx) p(rt, ) VazeX
X

Moreover, define the bias of (7!, 7%) as
b(ﬂJ) 7T27 CL’) = E;Tlﬂz Z [T(ﬂ?t, Qt, bt) o p(ﬂ-la 7T2)} :
=0
Definition. A pair (7}, 7%) € TI! x II? is said to be bias optimal if
itis in I1 4y and, in addition,

b(r', 72 x) < b(nl, 72, x) < b(nl, 72 x)

J * ) * *

1

for every x € X and every pair (7!, 72) in I14.

1_[00 C Hbias C Hca C HAO-

Partial converse: If (7}, 72) is in I, then it is overtaking optimal
in I1 A0-

14
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