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Abstract. Overtaking optimality (also known as catching–up opti-

mality) is a concept that can be traced back to a paper by Frank

P. Ramsey (1928) in the context of economic growth. At present,

however, we use a weaker form introduced independently by At-

sumi (1965) and von Weizäcker (1965). The apparently different

concept of long–run expected average payoff (a.k.a. ergodic payoff)

was introduced by Richard Bellman (1957). In this talk we make a

description of how these concepts are related to other optimality

criteria, such as bias optimality and canonical strategies. In fact, we

show that

Π00 ⊂ Πbias ⊂ Πca ⊂ ΠA0

We do this for a class of (discrete–or continuous–time) Markov

games,

• Part 1: Control problems

• Part 2: Markov games
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PART 1. OPTIMAL CONTROL PROBLEMS

An optimal control problem has three main components:

1. A “controllable” dynamical system. Examples:

• discrete time:

xt+1 = F (xt, at, ξt) ∀ t = 0, 1, . . . , τ ≤ ∞

• continuous time: diffusion processes, say,

dxt = F (xt, at)dt + σ(xt, at)dWt ∀ 0 ≤ t ≤ τ ≤ ∞;

continuous–time controlled Markov chains; . . .

2. A family Π of admissible control policies (or strategies) π =

{πt}.

3. A performance index (or objective function) V : Π × X → R,

(π, x) 7→ V (π, x).

The optimal control problem is then, for every initial state x0 = x,

optimize π 7→ V (π, x) over Π.

Notation and terminology: Suppose “optimize” means “maxi-

mize”. Let

V ∗(x) := supπ∈Π V (π, x) ∀ x0 = x,
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be the control problem’s value function. If there exists π∗ ∈ Π

such that

V (π∗, x) = V ∗(x) ∀ x ∈ X,

then π∗ is said to be an optimal control policy (or strategy).

EXAMPLES OF OBJECTIVE FUNCTIONS

• Finite–horizon T > 0:

JT (π, x) := Eπ
x

[

T−1
∑

t=0

r(xt, at)

]

.

•Discounted reward: given α > 0,

Vα(π, x) := Eπ
x

[

∞
∑

t=0

αtr(xt, at)

]

.

This is, in fact, amedium–term reward criterion because, if Vα(π, x)

is finite, then

Eπ
x

[

∞
∑

t=T

αtr(xt, at)

]

→ 0 as T → ∞.

• Long–run expected average (or ergodic) reward:

J(π, x) := lim inf
T→∞

1

T
JT (π, x)

= lim inf
T→∞

1

T
Eπ

x

[

T−1
∑

t=0

r(xt, at)

]

.
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This criterion was introduced by Richard Bellman (1957), moti-

vated by the control of a manufacturing process. The terminology

in Bellman’s work originated the termMarkov decision problem.

Bellman, R. (1957). A Markovian decision problem. J. Math.

Mech. 6, pp. 679–684.

Typical applications of the average reward criterion

• Queueing systems

• Telecommunication networks (e.g., computer networks, satellite

networks, telephone networks, ...)

•Manufacturing processes

• Control of a satellite’s attitude

Remark 1. The average reward criterion, why is it called an er-

godic criterion? In general, an “ergodic” result refers to conver-

gence of averages, either pathwise averages (as in the Law of Large

Numbers or in Boltzmann’s ergodic hypothesis)

1

T

T−1
∑

t=0

rt →

∫

Ω

R(ω)P(dω) ≡ E(R) w.p.1, (1)
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or expected averages

1

T
E

[

T−1
∑

t=0

rt

]

→ E(R) (2)

Sometimes, “ergodic” means something stronger that (1) or (2),

for instance, as t → ∞:

rt → E(R) w.p.1 or E(rt) → E(R).

π

πusing

T

x

using    ’

Figure 1

Remark 2. The average criterion is extremely underselective, in

the sense that it ignores what happens in a finite horizon T , for

every T > 0. For instance, one can have policies π and π′, and

γ ∈ (0, 1), such that
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JT (π, x) = JT (π′, x) + T γ ∀ T > 0.

Therefore,

• JT (π, x) − JT (π′, x) → ∞ as T → ∞; however,

• π and π′ have the same long–run average reward: J(π, x) = J(π′, x).

Problem in financial engineering. For some class Π of portfolios

(or investment strategies) determine the “benchmark”

ρ∗ := sup
π∈Π

J(π, x) ∀ x ∈ X.

Let ΠA0 be the family of average optimal portfolios, and suppose

ΠA0 is nonempty.

Problem: Find π∗ ∈ ΠA0 with the fastest growth rate.
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OVERTAKINGOPTIMALITY

Ramsey, F.P. (1928). A mathematical theory of saving. The Eco-

nomic Journal 38, pp. 543–559.

A policy π∗ overtakes (or catches–up) π if, for every x ∈ X,

there exists τ (x, π∗, π) such that

JT (π∗, x) ≥ JT (π, x) ∀ T ≥ τ (x, π∗, π).

Here we will use a weaker notion introduced independently by

several authors in the 1960s.

We will restrict ourselves to stationary strategies π ∈ Πs, that

is, functions π : X → A, xt → π(xt) ∈ A. (Sometimes we will

considerMarkov strategies (t, xt) 7→ π(t, xt) ∈ A.)

Definition [Atsumi 1965, von Weiszäcker 1965, ...] A stationary

strategy π∗ ∈ Πs is overtaking optimal (in Πs) if, for every π ∈ Πs

and x ∈ X,

lim inf
T→∞

[JT (π∗, x) − JT (π, x)] ≥ 0;

equivalently, for every π ∈ Πs, x ∈ X, and ε > 0 there exists

Tε = Tε(π
∗, π, x, ε)

such that

JT (π∗, x) ≥ JT (π, x)−ε ∀ T ≥ Tε. (∗).
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Remark. (a) Observe that in overtaking optimality there is no “ob-

jective function” to be optimized.

(b) If (∗) holds, then the average reward J(π∗, x) ≥ J(π, x) for

every π ∈ Πs and x ∈ X. Therefore

overtaking optimality =⇒ average optimality,

i.e.

Π00 ⊂ ΠA0.

(c) By (∗) again, if π∗ is overtaking optimal, then it has the fastest

growth rate.

How do we find π
∗?
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BIAS OPTIMALITY

Suppose that, for each π ∈ ΠA0, the bias function

b(π, x) := Eπ
x

∞
∑

t=0

[r(xt, at) − ρ∗]

is well defined, where ρ∗ := supπ∈Πs
J(π, x) for all x ∈ X. Then, for

every T > 0,

JT (π, x) = T · ρ∗ + b(π, x) + eT (π, x)

such that eT (π, x) → 0 as T → ∞.

• If π and π∗ are in ΠA0, then for every T > 0

JT (π∗, x) − JT (π, x) = b(π∗, x) − b(π, x) + eT (π∗, x) − eT (π, x).

Definition. π∗ ∈ Πs is bias optimal if

(a) π∗ is in ΠA0, and

(b) π∗ maximizes the bias, i.e.

b(π∗, x) = sup
π∈ΠA0

b(π, x) =: b̂(x) ∀ x ∈ X.

Observe that bias optimality is a lexicographical optimality cri-

terion.

Theorem. Under some assumptions, the following statements are

equivalent for π∗ ∈ Πs:
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(a) π∗ is overtaking optimal.

(b) π∗ is bias optimal.

(c) There is a constant ρ∗ and a function h that satisfy, for all x ∈ X,

ρ∗ + h(x) = max
a∈A(x)

[

r(x, a) +

∫

X

h(y)P(dy|x, a)

]

, (3)

and π∗ attains the maximum in (3), i.e.

ρ∗ + h(x) = r(x, π∗(x)) +

∫

X

h(y)P(dy|x, π∗(x)), (4)

and in addition
∫

X

b̂(x)µπ∗(dx) = 0.

A policy π∗ that satisfies (3) and (4) is called canonical. In brief,

we have

ΠA0 ⊃ Πca ⊃ Πbias = Π00.

For proofs and examples see, for instance: [5,7,11]. (The theorem

is not true for games [10].)
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PART 2. ZERO–SUMMARKOV GAMES

Consider a two–personMarkov game, for instance:

• discrete–time: xt+1 = F (xt, at, bt, ξt) ∀ t = 0, 1, . . . , τ ≤ ∞;

• stochastic differential game:

dxt = F (xt, at, bt)dt + σ(xt)dWt ∀ 0 ≤ t ≤ τ ≤ ∞;

• jump Markov game with a countable state space;...

Let A (resp. B) be the action space of player 1 (resp. player 2).

For i = 1, 2, we denote byΠi
s the family of (randomized) stationary

strategies πi for player i.

Let r : X × A × B → R be a measurable function (representing

the reward function for player 1, and the cost function for player

2), and define

JT (π1, π2, x) := Eπ1,π2

x

[

T−1
∑

t=0

r(xt, at, bt)

]

.

The long–run expected average (or ergodic) payoff is:

J(π1, π2, x) := lim inf
T→∞

1

T
JT (π1, π2, x)

Assumption: The ergodic game has a value V (·) that is, the lower

value

L(x) := sup
π1

inf
π2

J(π1, π2, x)
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and the upper value

U(x) := inf
π2

sup
π1

J(π1, π2, x)

coincide: L(·) = U(·) ≡ V (·).

AVERAGE OPTIMALITY

Definition. A pair (π1, π2) ∈ Π1
s × Π2

s is a pair of average optimal

strategies if

inf
π2

J(π1
∗, π

2, x) = V (x) ∀ x ∈ X,

and

sup
π1

J(π1, π2
∗, x) = V (x) ∀ x ∈ X.

Equivalently, (π1
∗, π

2
∗) is a saddle point, i.e.

J(π1, π2
∗, x) ≤ J(π1

∗, π
2
∗, x) ≤ J(π1

∗, π
2, x)

for every x ∈ X and every (π1, π2) ∈ Π1
s × Π2

s.

OVERTAKINGOPTIMALITY

Definition [Rubinstein 1979]. A pair (π1
∗, π

2
∗) ∈ Π1

s × Π2
s is over-

taking optimal (in Π1
s × Π2

s) if, for every x ∈ X and every pair

(π1, π2) ∈ Π1
s × Π2

s, we have

lim inf
T→∞

[JT (π1
∗, π

2
∗, x) − JT (π1, π2

∗, x)] ≥ 0
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and

lim sup
T→∞

[JT (π1
∗, π

2
∗, x) − JT (π1

∗, π
2, x)] ≤ 0.

Under some conditions,

Π00 ⊂ ΠA0.

Question. Can we characterize Π00?

CANONICAL PAIRS

Definition. A pair (π1
∗, π

2
∗) ∈ Π1

s×Π2
s is said to be canonical if there

is a number ρ∗ ∈ R and a function h : X → R such that

ρ∗ + h(x) = r(x, π1
∗, π

2
∗) +

∫

X

h(y)P (dy|x, π1
∗, π

2
∗)

= max
π1

[

r(x, π1, π2
∗) +

∫

X

h(y)P (dy|x, π1, π2
∗)

]

= min
π2

[

r(x, π1
∗, π

2) +

∫

X

h(y)P (dy|x, π1
∗, π

2)

]
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Under some conditions,

Π00 ⊂ Πca ⊂ ΠA0.

BIAS OPTIMALITY

Under some conditions, for every pair (π1, π2) ∈ Π1
s × Π2

s there

exists a probability measure µπ1,π2

on X such that

J(π1, π2, x) =

∫

X

r(x, π1, π2)µπ1,π2

(dx) =: ρ(π1, π2) ∀ x ∈ X.

Moreover, define the bias of (π1, π2) as

b(π1, π2, x) := Eπ1,π2

x

∞
∑

t=0

[

r(xt, at, bt) − ρ(π1, π2)
]

.

Definition. A pair (π1
∗, π

2
∗) ∈ Π1

s × Π2
s is said to be bias optimal if

it is in ΠA0 and, in addition,

b(π1, π2
∗, x) ≤ b(π1

∗, π
2
∗, x) ≤ b(π1

∗, π
2, x)

for every x ∈ X and every pair (π1, π2) in ΠA0.

Π00 ⊂ Πbias ⊂ Πca ⊂ ΠA0.

Partial converse: If (π1
∗, π

2
∗) is in Πbias, then it is overtaking optimal

in ΠA0.
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