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2 My personal fascination

Figure 1: The ten pound note guy.



Figure 2: Leon Walras: 1834-1910. Élements
d’Économie Politique Pure (1874).



3 Samuelson’s critique in economics

Stability analysis should be performed directly on the
dynamics instead of the underlying system.

Figure 3: Paul Samuelson, 1915-2009, winner of The
Sveriges Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel.



• Central questions:

— What will happen to a system in disequilibrium?

— What will happen if an equilibrium is perturbed?

• Focus on excess demand function:

f : Rn+1+ \{0n+1} → Rn+1.

• Sonnenschein-Mantel-Debreu-theorems: excess de-
mand functions are characterized by

— homogeneity of degree zero in prices, f(λx) =
f(x) for all λ > 0.

— continuity,

— complementarity, i.e., x·f(x) = 0 (Walras’law),

— desirability, i.e., fi(x) > 0 whenever xi = 0.



• Hom→ unit simplex (existence proofs a la Brouwer,
Kakutani).

• Des too strong.

• Given f : Sn → Rn+1, y ∈ Sn is a Walras equilib-
rium iff f(y) ≤ 0n+1.

• Implication of WARP:

(y − x) · f(x) > 0.

• Price-adjustment dynamics (Samuelson [1941,1947]):

dx

dt
= f(x).

• Sphere.



4 Evolutionary games

• Population with n+1 subgroups, population shares
x = (x1, ..., xn+1) ∈ Sn.

• Fitness function:

E(x) = (E1(x), ..., En+1(x)) .

• Relative fitness function:

f (x) = E(x)− (x · E (x)) 1n+1.

•

fi(x)


<
=
>

 0 ⇐⇒ Ei(x)


<
=
>

x · E (x) .



• Continuity of E implies continuity of f.

• Complementarity, i.e., x · f(x) = 0!

• Nash equilibrium:

f(y) ≤ 0n+1.

• Generalization: Saturated equilibrium if f is not of
the type

f(x) = Ax− x ·Ax



5 Main equilibrium concept

Evolutionarily stable strategy (state) (Maynard Smith
& Price [1973]): y ∈ Sn is an ESS if a neighborhood
U ⊆ Sn containing y exists such that for all x ∈ U\{y} :

y · E(x) > x · E(x).

• Rearrangeing:

(y − x) · E(x) > 0,

(y − x) · f(x) > 0.



6 Samuelson’s critique again

Stability analysis should be performed directly on the
dynamics instead of the underlying system.

• Elegant way out:

EE ASFP

Daniel Friedman [1991]

EV DYN

Figure 4: End of the discussion. End of this talk?



7 To the rescue?

• Replicator dynamics (Taylor & Jonker [1978]) for
every i ∈ In+1 given by

dxi
dt

= xifi (x) for all x ∈ Sn.

ESS + REPL ASFP

Taylor & Jonker [1978]
Zeeman [1980,1981]

Hofbauer, Schuster, Sigmund [1979]

Figure 5: Every ESS is asymptotically stable under the
replicator dynamics. Not vice versa.



• CFP-dynamics (Rosenmüller [1971], Brown [1951]),
BR-dynamics (Gilboa &Matsui [1991], Matsui [1992]),
logit-dynamics (Fudenberg & Levine [1998]).

• BVN-dynamics (Brown & Von Neumann [1950]):

dxi
dt

= max{0, fi(x)} − xi

∑
h

max{0, fh(x)}

 .
• Orthogonal projection dynamics of Lahkar & Sand-
holm:

h(x) = f(x)−

∑
h

f(x)

 1

n+ 1

n+1
.

• Ray projection dynamics of Joosten & Roorda:

h(x) = f(x)−

∑
h

f(x)

x.
• Basic idea: PROJECT Samuelson’s simultaneous tâ-
tonnement process unto the unit simplex.



ESS + REPL ASFP

BvN

BR

OPD

RPD

Figure 6: Extending dynamics for which ESS implies as-
ymptotical stability. Why replicator dynamics???



8 Other point-valued concepts

• Evolutionarily stable equilibrium: let dxdt = h(x)

for some h : Sn → Rn+1, then y is an ESE iff an
open neighborhood U containing y exists such that

(y − x) · h(x) > 0 for all x ∈ U\{y}.

• Compare:

ESE : (y − x) · h(x) > 0.

(G)ESS : (y − x) · f(x) > 0.

• ESE inspired by WARP (Samuelson [1941]) + Samuel-
son’s tatonnement [1941,1947].

• Lahkar & Sandholm [2009]: Equivalence under or-
thogonal projection dynamics.



EV DYN
ASFP

Hybrid ESS, EE: Joosten [1996]

ESE

Figure 7: ESE inspired by early work in economics.



9 Why ESS?

Definition 1 Given relative fitness function f : Sn →
Rn+1 and evolutionary dynamics h : Sn → Rn+1,
let d : Rn+1 × Rn+1 → R be a distance function,
ξ : R+ ∪ {0} → R be differentiable, and monotonically
strictly either decreasing or increasing, with ξ (0) = ξ0.

Let furthermore, V : Rn+1 × Rn+1 → R be given by

V (x, y) = ξ (d(x, y)) for all x, y ∈ Rn+1.
Then, y ∈ Sn is a generalized evolutionarily stable
equilibrium if and only if an open neighborhood U ⊆ Sn
containing y, exists such that for all x ∈ U\{y} it holds
that [V (x, y)− ξ0] ·

·
V (x, y) < 0, where

·
V (x, y) =∑n+1

i=1
∂V
∂xi
hi (x) .

• Motivation: Samuelson’s critique and ESE too re-
strictive (Euclidean distance).

• Intuition: Monotone convergence for at least one
(monotone transformation of a) distance function.
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Figure 8: Nonequivalence of distance functions for
monotone convergence.



Definition 2 Let relative fitness function f : Sn →
Rn+1 and evolutionary dynamics h : Sn → Rn+1 be
given. Let furthermore C(z) = {i ∈ In+1| zi > 0}
for all z ∈ Sn and let Sn(S) = {x ∈ Sn| xi > 0 for
all i ∈ S ⊂ In+1}. Then, the state y ∈ Sn is a truly
evolutionarily stable state iff

a. h(y) = 0n+1;

b. a nonempty open neighborhood U ⊂ Sn(C(y)) contain-
ing y exists such that∑

i∈C(y)
(yi − xi)

hi(x)

xi
−

∑
i/∈C(y)

hi(x) > 0.

• Motivation: Samuelson’s critique and GESS too re-
strictive.

• Intuition: Behavior of the dynamics near TESS are
similar to behavior of replicator dynamics near ESS.
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Figure 9: Overview of connections between equilibrium
and fixed point concepts.



10 Concluding remarks

• We designed equilibrium concepts which can with-
stand Samuelson’s critique.

— The GESE generalizes the ESE of Joosten [1996].

— The TESS generalizes the ESS of Maynard Smith
& Price [1978] and GESS of Joosten [1996].

• GESE: monotone convergence in some (generalized)
distance function.

• TESS: behavior of dynamics nearby similar to behav-
ior of replicator dynamics near ESS.

• Future research:

— Examine further connections under classes of dy-
namics.



— Design new equilibrium notions?

— Set-valued concepts.

— Global stability.

• Huge literature on Samuelson’s process and related
ones in economics.



ND

SMON=LD

PMON=STAMON=NSD

WGS

general signcompatible dynamics
   Results available on global stability for

    SARP=S+NSD

S

   Results available on global stability for
special signcompatible dynamics
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SPMON=SSTA WARP DD
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Figure 10: Overview from Joosten [2006].



11 Generalized projection dynam-

ics

Here, we define some g : Sn → Rn+1. Dynamics in-
duced by g in two variants:

·
x
r
g =

g(x)−
n+1∑
i=1

gi(x)

x
 ,

·
x
o
g =

g(x)−
 1

n+ 1

n+1∑
i=1

gi(x)

 i
 .

• Non-negativity implies ‘nice’boundary behavior.

• g weakly compatible, then ray-projection dynamics
weakly compatible as well (orthogonal ???).

• g sign-compatible, then ray-projection dynamics weakly
compatible (orthogonal ???).



• Replicator dynamics: ray and orthogonal projection.

• Best-response dynamics: ray.

• Brown-von Neumann dynamics: ray.

• Generalizations of the latter: ray.

• ‘Logit-type’dynamics (Fudenberg & Levine [1998],
Cabrales & Sobel [1992], Björnerstedt & Weibull
[1996]): ray.

• For every function a ‘cousin’is generated.


