How Hard is Competition for Rank?

Paul W. Goldberg

${ }^{1}$ Department of Computer Science
University of Liverpool, U. K.
University of Warwick
April 2010

Easy and hard problems

Input/output problems (e.g.: given a game, compute a NE): Some inputs are larger than others. Of course, larger inputs should be allowed to use more processing time.

Easy and hard problems

Input/output problems (e.g.: given a game, compute a NE): Some inputs are larger than others. Of course, larger inputs should be allowed to use more processing time.

Efficient algorithms

If the time taken by an algorithm is proportional to n (the input size), or n^{2} or n^{3} etc then the algorithm is "efficient" or "fast"; if it is something like 2^{n} then it is not efficient.

Easy and hard problems

Input/output problems (e.g.: given a game, compute a NE): Some inputs are larger than others. Of course, larger inputs should be allowed to use more processing time.

Efficient algorithms

If the time taken by an algorithm is proportional to n (the input size), or n^{2} or n^{3} etc then the algorithm is "efficient" or "fast"; if it is something like 2^{n} then it is not efficient.

A problem is "tractable" if it has an efficient algorithm, otherwise it is "hard" or "intractable".

Easy and hard problems

Input/output problems (e.g.: given a game, compute a NE): Some inputs are larger than others. Of course, larger inputs should be allowed to use more processing time.

Efficient algorithms

If the time taken by an algorithm is proportional to n (the input size), or n^{2} or n^{3} etc then the algorithm is "efficient" or "fast"; if it is something like 2^{n} then it is not efficient.

A problem is "tractable" if it has an efficient algorithm, otherwise it is "hard" or "intractable".

To prove problem P is hard, take a problem H that is already believed to be hard, and "efficiently encode" instances of H in terms of P so that the answer to P tells you the answer to $H \ldots$

Easy and hard problems

NP-complete problems: hard problems that encode CIRCUIT SAT (given a boolean circuit with one output, find an input vector that causes the output to be TRUE)

Easy and hard problems

NP-complete problems: hard problems that encode CIRCUIT SAT (given a boolean circuit with one output, find an input vector that causes the output to be TRUE)

NASH

Given a game, find a Nash equilibrium
We believe NASH is hard, but it is due to Nash's theorem that we "can't" encode CIRCUIT SAT in terms of NASH!

Easy and hard problems

NP-complete problems: hard problems that encode CIRCUIT SAT (given a boolean circuit with one output, find an input vector that causes the output to be TRUE)

NASH

Given a game, find a Nash equilibrium
We believe NASH is hard, but it is due to Nash's theorem that we "can't" encode CIRCUIT SAT in terms of NASH!We settle for PPAD-completeness...

END OF (THE) LINE (Papadimitriou 1991)

Given a graph G of indegree/outdegree at most 1, and a vertex of degree 1 , find another vertex of degree 1.

Easy and hard problems

NP-complete problems: hard problems that encode CIRCUIT SAT (given a boolean circuit with one output, find an input vector that causes the output to be TRUE)

NASH

Given a game, find a Nash equilibrium
We believe NASH is hard, but it is due to Nash's theorem that we "can't" encode CIRCUIT SAT in terms of NASH!We settle for PPAD-completeness...

END OF (THE) LINE (Papadimitriou 1991)

Given a graph G of indegree/outdegree at most 1, and a vertex of degree 1 , find another vertex of degree 1 . The catch is, G 's edges are represented by boolean circuits that take any pair of endpoints in $\{0,1\}^{n}$ and output whether an edge is present between them.

Overview

- Nash equilibria are "hard" to find

Overview

- Nash equilibria are "hard" to find
- Try looking for other solution concepts, e.g. correlated equilibria, approximate Nash equilibria
- Or, look for algorithms that are efficient and apply to limited kinds of game

Overview

- Nash equilibria are "hard" to find
- Try looking for other solution concepts, e.g. correlated equilibria, approximate Nash equilibria
- Or, look for algorithms that are efficient and apply to limited kinds of game

This talk

- Some intuition on the hardness of unrestricted NE
- A class of games that appears to be "realistic" for which we so far have some positive results

The "Dragons' Den" Game

Two entrepreneurs, Alice and Bob, want to raise £100,000 from a venture capitalist. Each of them may decide to spend $£ 2,000$ on image consulting. Alice has a better business idea, and the only way Bob will receive the investment is if he buys the image consulting and Alice does not.

Question: which of them will buy the image consulting?

The "Dragons' Den" Game

Two entrepreneurs, Alice and Bob, want to raise £100,000 from a venture capitalist. Each of them may decide to spend $£ 2,000$ on image consulting. Alice has a better business idea, and the only way Bob will receive the investment is if he buys the image consulting and Alice does not.

Question: which of them will buy the image consulting?
look for mixed (randomised) strategies; the problem becomes: compute the
 probabilities

Numbers are multiples of $£ 5,000$; assume it is worth $£ 50,000$ to win the investment.

"Incentive direction" of the players

Bob

don't spend
spend

spend

Alice

don't spend
"Incentive direction" of the players

Bob

don't spend spend

Alice
don't spend $\quad \because:,: B:$

Bob

don't spend
spend

Alice

don't spend

Nash equilibrium

Brouwer's fixpoint theorem: continuous functions from a compact domain to itself, have fixpoints. A non-constructive proof.

L.E.J. Brouwer (1881-1966)

Nash equilibrium

Brouwer's fixpoint theorem: continuous functions from a compact domain to itself, have fixpoints.
A non-constructive proof.
Nash's theorem: using Brouwer's FPT, there
always exists a solution, provided that players may randomize (any number of players, any number of actions).

John Forbes Nash

Nash equilibrium

Brouwer's fixpoint theorem: continuous functions from a compact domain to itself, have fixpoints.
A non-constructive proof.
Nash's theorem: using Brouwer's FPT, there
always exists a solution, provided that players may randomize (any number of players, any number of actions).

- standard notion of "outcome of the game"

John Forbes Nash

Nash equilibrium

Brouwer's fixpoint theorem: continuous functions from a compact domain to itself, have fixpoints.
A non-constructive proof.
Nash's theorem: using Brouwer's FPT, there
always exists a solution, provided that players may randomize (any number of players, any number of actions).

- standard notion of "outcome of the game"
- each player is receiving optimal expected payoff in the context of the other players' choices.

John Forbes Nash

Nash equilibrium

Brouwer's fixpoint theorem: continuous functions from a compact domain to itself, have fixpoints.
A non-constructive proof.
Nash's theorem: using Brouwer's FPT, there
always exists a solution, provided that players may randomize (any number of players, any number of actions).

- standard notion of "outcome of the game"
- each player is receiving optimal expected payoff in the context of the other players' choices.

But, how to compute the probabilities? We would like an "efficient algorithm". Next: how search for NE relates to search on large graphs

John Forbes Nash

Bob

don't spend
spend

Alice

don't spend

"Incentive direction", colour-coded
Bob

don't spend
 spend

Alice

don't spend

Now, pretend this triangle is high-dimension domain

Search for "trichromatic triangles" at higher resolution...

...converges to Brouwer fixpoint

The corresponding graph

The corresponding graph

From graph search to NE computation

- Papadimitriou (1991): generic "END OF LINE" graph search problems seem to be hard

From graph search to NE computation

- Papadimitriou (1991): generic "END OF LINE" graph search problems seem to be hard
- They can encode/represent the difficulty of finding fixpoints of certain Brouwer functions.

From graph search to NE computation

- Papadimitriou (1991): generic "END OF LINE" graph search problems seem to be hard
- They can encode/represent the difficulty of finding fixpoints of certain Brouwer functions.
- Daskalakis, G and Papadimitriou (2005-6) show that games can also represent/encode a class of Brouwer functions which themselves encode END OF LINE graph search. Basically, solving a game is equivalent to finding your way around a very large graph, one that allows efficient local exploration and consists of long paths.

From graph search to NE computation

- Papadimitriou (1991): generic "END OF LINE" graph search problems seem to be hard
- They can encode/represent the difficulty of finding fixpoints of certain Brouwer functions.
- Daskalakis, G and Papadimitriou (2005-6) show that games can also represent/encode a class of Brouwer functions which themselves encode END OF LINE graph search. Basically, solving a game is equivalent to finding your way around a very large graph, one that allows efficient local exploration and consists of long paths.
- 2-players (Chen, Deng and Teng '06); 2-players, 0/1-valued payoffs (Abbott, Kane and Valiant '05)

How to make a hard case of the problem

coming back to "Dragons' Den"

(Current work with colleagues at Liverpool)

coming back to "Dragons' Den"

(Current work with colleagues at Liverpool)
What if there are

- more than 2 competitors?

coming back to "Dragons' Den"

(Current work with colleagues at Liverpool)
What if there are

- more than 2 competitors?
- many choices per competitor?
- more than one "prize" for winning?

Players compete for rank.

Competition for rank

Competition for rank

- Who's Top Ten for their Subject University League Table 2010 2010
- University League ${ }_{\text {Published April 30th } 2009}$ Table Methelogy \& Create your own customised ranking, see the device below the main table.
Notes Compare Clear
- Universities by region
- University League Table 2009
- University League Table 2008
Web

To compare 2 or more universities, select the box next to the name and click Compare.
To create your own ranking see below

Auto Trader UK - Buy \& Sell New \& Used Cars, Car Loans, Car Insurance

The UK's \#1 site to buy and sell new and used cars, bikes, vans, trucks and caravans with over 350000 vehicles online. Check Car news, reviews and obtain ...
Buy Cars - Used - Van - Bikes
www.autotrader.co.uk/ - Cached - Similar

Buy a car. Buy New Car. Used Car, Buy Cheap Car. Second Hand Car

…
Our expert buying guide - the world of buying a car made easy ... Our expert advice and money-saving tips help you buy the car you want at the best possible ...
www.autotrader.co.uk/CARS/buying/buying_a_car.jsp - Cached - Similar
Show more results from www.autotrader.co.uk
Buy used cars | New cars | Second hand cars - exchangeandmart.co.uk
Search around 100000 new and used cars for sale in the UK, find your ideal second hand car online with Exchange \& Mart.

Car Infiniti

Infiniti Cars: Find models, prices and all the features online.
www. Infiniti.co.uk/car

Lexus New Cars

Explore our range of models online \& book a test drive today.
www.lexus.co.uk

Vauxhall's Autumn Deals

Check Out Our Fantastic Offers Inc. Free Insurance On Vauxhall Corsa! www.Vauxhall.co.uk/Offers

Mitsubishi Cars UK Site

See the full Mitsubishi range.
Download your free brochure. wow mitsubishi-cars co uk

Competition for rank

Competition for rank

- Who's Top Ten for their Subject University League Table 2010 2010
- University League ${ }_{\text {Published April 30th } 2009}$ Table Create your own customised ranking, see the device below the main table. | Methodology \& Compare Clear |
| :--- | :--- |
| Notes |

GNotes
Universities by region

- University League Table 2009
- University League Table 2008

Web

To compare 2 or more universities, select the box next to the name and click Compare. To create your own ranking see below

Ne ho Brac Coschy

Used Cars, Car Loans, Car Insurance
ed cars, bikes, vans, trucks and caravans with vs, reviews and obtain ...
recognised in the recent kesearch Assessment Exercises. Following a Grade 5 rating in 2001, 75\% of the Department's research activity was judged as 3^{*} or 4^{*} in 2008, putting it among the top 10 Computer Science departments in the country. All three research groups also won a best paper prize at a major conference in 2008.
or sale in the UK, find your ideal second hand car

Car Infiniti

Infiniti Cars: Find models, prices and all the features online.
www.Infiniti.co.uk/car

Lexus New Cars

Exblore our ranae of models online

See the full Mitsubishi range. Download your free brochure.
www mitsubishi-cars co uk

Competition for rank

lace race has -cs thinking the nthinkable 6
wuttimeshighereducation.co.uk

Six-figure scholars Membership of $£ 100 \mathrm{~K}$ club is growing 6

Cut and thrust
Mandelson steadfast at memorial conference 8

Tainted by Climategate Unfair suspicion falls on other UEA research 11

Critical dialogue How to cultivate the Socratic spirit 38

Competition for rank

Telegraph co.uk


```
HOME \(>\) FINANCE \(>\) PERSONAL FINANCE
```


Britain's quality of life worse than former Communist countries

Britain's has fallen to 25 th position on a list of best places in the world to live.

Some background on ranking games

> "Ranking games" (Brandt, Fisher, Harrenstein and Shoham) each combination of strategies results in a ranking of the players; every player has a monotonically decreasing function from rank to utility.

Problem: unrestricted ranking games are still hard: a 3-player ranking game can easily encode an unrestricted 2-player 0/1 game.
(as noted earlier, hard to solve)
Our idea: assume strategies are correlated with "competitiveness"

Each player has his own function from effort to performance.

The model
Player i has actions (pure strategies) $a_{1}^{i}, \ldots, a_{n}^{i}$

Player i has actions (pure strategies) $a_{1}^{i}, \ldots, a_{n}^{i}$ a_{j}^{i} has associated quantities c_{j}^{i} (the cost) and r_{j}^{i} (the "return", or level of performance).

Players get ranked on the r_{j}^{i}-values they obtain.

Player i has actions (pure strategies) $a_{1}^{i}, \ldots, a_{n}^{i}$ a_{j}^{i} has associated quantities c_{j}^{i} (the cost) and r_{j}^{i} (the "return", or level of performance).

Players get ranked on the r_{j}^{i}-values they obtain.
$c_{i}^{i} \leq c_{i+1}^{i}$ and $r_{i}^{i} \leq r_{i+1}^{i}$, i.e. lower-indexed strategies are less competitive.

The model

Player i has actions (pure strategies) $a_{1}^{i}, \ldots, a_{n}^{i}$
a_{j}^{i} has associated quantities c_{j}^{i} (the cost) and r_{j}^{i} (the "return", or level of performance).

Players get ranked on the r_{j}^{i}-values they obtain.
$c_{i}^{i} \leq c_{i+1}^{i}$ and $r_{i}^{i} \leq r_{i+1}^{i}$, i.e. lower-indexed strategies are less competitive.
There are "prizes" awarded to players according to rank; the k-th prize has value u_{k}.

If a player plays a_{j} and wins the k-th prize, his overall utility is $u_{k}-c_{j}$.

The model

Player i has actions (pure strategies) $a_{1}^{i}, \ldots, a_{n}^{i}$ a_{j}^{i} has associated quantities c_{j}^{i} (the cost) and r_{j}^{i} (the "return", or level of performance).

Players get ranked on the r_{j}^{i}-values they obtain.
$c_{i}^{i} \leq c_{i+1}^{i}$ and $r_{i}^{i} \leq r_{i+1}^{i}$, i.e. lower-indexed strategies are less competitive.
There are "prizes" awarded to players according to rank; the k-th prize has value u_{k}.

If a player plays a_{j} and wins the k-th prize, his overall utility is $u_{k}-c_{j}$.

Observation

We can concisely represent games with many players/strategies, in contrast with unrestricted ranking games.

Some results

We can pre-process a d-player game so as to assume that $u_{1}=1$, $u_{d}=0$; all costs c_{j}^{i} lie in range $[0,1]$; costs and returns are strictly monotonic in j, else we would have dominated actions; each player's weakest action has cost 0 .

Theorem

Suppose there is just one prize ($u_{1}>1 ; u_{j}=0$ for $\left.j>1\right)$. Suppose ties are impossible (if all r_{j}^{i}-values are distinct, or equivalently there is a tie-breaking rule).
Then there is just one player who gets positive payoff (all others get zero); namely the player who has the strongest action.

Some results

Proof.

- If a_{n}^{1} is the strongest action in the game, note that player 1 can ensure a payoff of $u_{1}-c_{n}^{1}$.

Some results

Proof.

- If a_{n}^{1} is the strongest action in the game, note that player 1 can ensure a payoff of $u_{1}-c_{n}^{1}$.
- In a NE, for each player i let a_{W}^{i} be the weakest action that i plays with positive probability. All but one of these actions are guaranteed to lose (payoff: $-c_{W}^{i}$)

Some results

Proof.

- If a_{n}^{1} is the strongest action in the game, note that player 1 can ensure a payoff of $u_{1}-c_{n}^{1}$.
- In a NE, for each player i let a_{W}^{i} be the weakest action that i plays with positive probability. All but one of these actions are guaranteed to lose (payoff: $-c_{W}^{i}$)
- So, all but one player get a non-positive payoff (since a player's payoff is his expected payoff for any action he uses with positive probability. i can get payoff 0 by playing a_{1}^{i}, so presumably his overall payoff is 0 .

Some results

Proof.

- If a_{n}^{1} is the strongest action in the game, note that player 1 can ensure a payoff of $u_{1}-c_{n}^{1}$.
- In a NE, for each player i let a_{W}^{i} be the weakest action that i plays with positive probability. All but one of these actions are guaranteed to lose (payoff: $-c_{W}^{i}$)
- So, all but one player get a non-positive payoff (since a player's payoff is his expected payoff for any action he uses with positive probability. i can get payoff 0 by playing a_{1}^{i}, so presumably his overall payoff is 0 .
- Finally, we found precisely one player who can get positive payoff.

What if the strongest action has cost 1 ? What about >1 prizes?

Some results

Theorem

Suppose there is just one prize ($u_{1}>1 ; u_{j}=0$ for $j>1$). Suppose ties are impossible (if all r_{j}^{i}-values are distinct, or equivalently there is a tie-breaking rule).
Then if you know the support of the solution, you con compute it easily; also, the solution is all in rational numbers.

Some results

Theorem

Suppose there is just one prize ($u_{1}>1 ; u_{j}=0$ for $j>1$). Suppose ties are impossible (if all r_{j}^{i}-values are distinct, or equivalently there is a tie-breaking rule).
Then if you know the support of the solution, you con compute it easily; also, the solution is all in rational numbers.
(So, that's like 2-player normal-form games! Is that interesting?)

Some results

- How about poly-time algorithms? We have some for special cases...

Some results

- How about poly-time algorithms? We have some for special cases...
- 2-player games are easy; no, they are not zero-sum; it's quite a cute algorithm

Some results

- How about poly-time algorithms? We have some for special cases...
- 2-player games are easy; no, they are not zero-sum; it's quite a cute algorithm
- d-players, n actions, where d is constant: Approximate NE can be found in poly-in- n time by brute-force approach.

Some results

- How about poly-time algorithms? We have some for special cases...
- 2-player games are easy; no, they are not zero-sum; it's quite a cute algorithm
- d-players, n actions, where d is constant: Approximate NE can be found in poly-in- n time by brute-force approach.
- FPTAS for d players, 1 prize (in the paper, done for just 2 players) Dynamic programming approach

Linear-prize ranking games

Suppose the k-th prize has value $a-b k$ where a and b are positive constants. We can solve as follows.

Linear-prize ranking games

Suppose the k-th prize has value $a-b k$ where a and b are positive constants. We can solve as follows.
Each player gains b for every other player he beats. So, express his payoff as the negation of the cost of his action, plus the sum of payoffs from a bunch of zero-sum 2-player games.

Linear-prize ranking games

Suppose the k-th prize has value $a-b k$ where a and b are positive constants. We can solve as follows.
Each player gains b for every other player he beats. So, express his payoff as the negation of the cost of his action, plus the sum of payoffs from a bunch of zero-sum 2-player games. His payment of that cost can be considered as a 2-player game against "nature" (a dummy player) who collects the cost but does not influence the player.

Linear-prize ranking games

Suppose the k-th prize has value $a-b k$ where a and b are positive constants. We can solve as follows.
Each player gains b for every other player he beats. So, express his payoff as the negation of the cost of his action, plus the sum of payoffs from a bunch of zero-sum 2-player games. His payment of that cost can be considered as a 2-player game against "nature" (a dummy player) who collects the cost but does not influence the player.
So, we have reduced the game to a zero-sum polymatrix game, which is known to be solvable in poly-time (Daskalakis and Papadimitriou '09).

Conclusions and further work

- unrestricted games (designed by a notional adversary to be difficult to solve) indeed "cannot" be solved by efficient algorithms.

Conclusions and further work

- unrestricted games (designed by a notional adversary to be difficult to solve) indeed "cannot" be solved by efficient algorithms.
- focus on "natural" types of more tractable games

Conclusions and further work

- unrestricted games (designed by a notional adversary to be difficult to solve) indeed "cannot" be solved by efficient algorithms.
- focus on "natural" types of more tractable games
- For these games, continue by looking for decentralised algorithms (a solution is implausible if it needs to be found centrally and then handed out to the players).

Conclusions and further work

- unrestricted games (designed by a notional adversary to be difficult to solve) indeed "cannot" be solved by efficient algorithms.
- focus on "natural" types of more tractable games
- For these games, continue by looking for decentralised algorithms (a solution is implausible if it needs to be found centrally and then handed out to the players).
- Another direction: weaken the objective - "approximate equilibria" replace "no incentive for a player to change" with "only a small incentive to change" - an interesting and challenging problem, both for centralised and decentralised algorithms!

