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Introduction: Choice under Uncertainty

Learning Systems
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Performance and information have orders, and the relation between
them is monotonic.

Complete partial orders, domain theory.

Utility theory, information theory

Allows for treating both deterministic and non-deterministic case:

x = f(ω) , x = f(ω) + rand()
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Introduction: Choice under Uncertainty

Expected Utility Theory

f : Ω → R a utility function.

p : R → [0, 1] a probability measure on (Ω,R).

The expected utility

Choice under uncertainty

q . p ⇐⇒ Eq{f} ≤ Ep{f}

Question (Why expected utility?)

1 Ey{f} = f(ω) if y(Ω′) = δω(Ω′).

2 x . y ⇐⇒ λx . λy, ∀λ > 0

3 x . y ⇐⇒ x + z . y + z, ∀ z ∈ Y .
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Paradoxes of Expected Utility

St. Petersburg lottery

Due to Nicolas Bernoulli (1713)

The lottery is played by tossing a fair coin repeatedly until the first
head appears.

If the head appeared on nth toss, then you win £2n.

For example

n = 3 £23 = £8

n = 4 £24 = £16

· · ·
n = 20 £220 = £1, 048, 576

To enter the lottery, you must pay a fee of £X

How much is £X?
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Paradoxes of Expected Utility

Why is it a paradox?

We don’t want to pay more than expect to win:

X ≤ E{win}

How large is Ep{win}?
Let p(n) be the probability of n ∈ N

head 1 2 3 4 · · · n · · ·
win £2 £4 £8 £16 · · · 2n · · ·
p(n) 1

2
1
4

1
8

1
16 · · · 1

2n · · ·

It is easy to see that

Ep{win} = 2 · 1

2
+ 4 · 1

4
+ 8 · 1

8
+ 16 · 1

16
+ · · · =

∞∑
n=1

2n

2n
= ∞

One cannot buy what is not for sale.
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Paradoxes of Expected Utility

Classical solutions

Daniel Bernoulli (1738) proposed f(n) = log2 2n = n.

Note that for any f(n) we can introduce a lottery p(n) ∝ f−1(n):

Ep{f} ∝
∞∑

n=1

f(n)

f(n)
= ∞

Some suggest to use only f such that

‖f‖∞ := sup |f(ω)| < ∞
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Paradoxes of Expected Utility

Northern Rock lottery

Due to unknown author (2008)

You can borrow a mortgage of any amount £X

The amount you repay is decided by tossing a fair coin repeatedly
until the first head appears.

If the head appeared on nth toss, then you repay £2n.

For example

n = 3 £23 = £8

n = 4 £24 = £16

· · ·
n = 20 £220 = £1, 048, 576

How much would you borrow? (£X =?)
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Paradoxes of Expected Utility

The Allais (1953) paradox

Consider two lotteries:

A : p(£300) = 1
3 (and p(£0) = 2

3)

B : p(£100) = 1

Most of the people seem to prefer A . B

Note that

EA{x} = 300 · 1

3
+ 100 · 0 + 0 · 2

3
= 100

EB{x} = 300 · 0 + 100 · 1 + 0 · 0 = 100

Remark

Safety is preferred (i.e. risk averse).
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Paradoxes of Expected Utility

The Allais (1953) paradox (2)

Consider two lotteries:

C : p(−£300) = 1
3 (and p(£0) = 2

3)

D : p(−£100) = 1

Most of the people seem to prefer C & D

Note that

EC{x} = −300 · 1

3
− 100 · 0− 0 · 2

3
= −100

ED{x} = −300 · 0− 100 · 1− 0 · 0 = −100

Remark

Risk is preferred (i.e. risk taking).

Roman V. Belavkin (Middlesex University) The effect of information constraints on decision-making and economic behaviourApril 16, 2010 12 / 33
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Paradoxes of Expected Utility

Why is it a paradox?

10

1
U = {0, 1, 2}

E{u} =
P

i PiUi = const

Increasing

utility

E{u} = 1
2

P1

P3

Remark

Any linear functional (e.g. Ep{x}) has parallel level sets. If people use
expected utility to make choices, then they are either risk-averse or
risk-taking, but not both.
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Paradoxes of Expected Utility

Prospect theory

Due to Tversky and Kahneman (1981)

It was proposed that the utility is convex, when the choice is among
gains, and concave when the choice is among losses.

This would make the choice risk averse for gains and risk taking for
losses.

Remark

This theory is not normative (i.e. it is not derived using rational approach).
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Paradoxes of Expected Utility

The Ellsberg (1961) paradox

Consider two lotteries:

A : p(£100) = 1
2 (and p(£0) = 1

2)

B : p(£100) = unknown

Most of the people seem to prefer A & B

Note that

EA{x} = 100 · 1

2
+ 0 · 1

2
= 50

EB{x} =

∫ 1

0
(100 · p + 0 · (1− p)) dp = 50

Remark

More information is preferred.
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Optimisation of Information Utility

Extreme Value Problems

Unconditional extremum

Maximise f(y):
sup f(y)

Necessary condition ∂f(ȳ) 3 0.

Sufficient, if f is concave.

Conditional extremum

Maximise f(y) subject to g(y) ≤ λ:

f(λ) := sup{f(y) : g(y) ≤ λ}

.

Necessary condition ∂f(ȳ)− α∂g(y) 3 0.

Sufficient if K(y, α) := f(y) + α[λ− g(y)] is concave.
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Sufficient if K(y, α) := f(y) + α[λ− g(y)] is concave.

Roman V. Belavkin (Middlesex University) The effect of information constraints on decision-making and economic behaviourApril 16, 2010 17 / 33



Optimisation of Information Utility

Extreme Value Problems

Unconditional extremum

Maximise f(y):
sup f(y)

Necessary condition ∂f(ȳ) 3 0.
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Optimisation of Information Utility

Representation in Paired Spaces

x ∈ X, y ∈ Y , 〈·, ·〉 : X × Y → R

〈x, y〉 :=

∫
Ω

x(ω) dy(ω)

Separation:

〈x, y〉 = 0 , ∀x ∈ X ⇒ y = 0 ∈ Y

〈x, y〉 = 0 , ∀ y ∈ Y ⇒ x = 0 ∈ X

Can equip X and Y with ‖x‖∞ and ‖y‖1.

Statistical manifold:

M := {y ∈ Y : y ≥ 0 , ‖y‖1 = 1}

Expected value
Ep{x} = 〈x, y〉|M
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Optimisation of Information Utility

Information

Definition (Information resource)

a closed functional F : Y → R ∪ {∞} with inf F = F (z).

Example (Relative Information (Belavkin, 2010b))

For z > 0, let

F (y) :=


〈
ln y

z , y
〉
− 〈1, y − z〉 , if y > 0

〈1, z〉 , if y = 0
∞ , if y < 0

∂F (y) = ln y
z = x ⇐⇒ y = ex z = ∂F ∗(x)

The dual F ∗ : X → R ∪ {∞} is

F ∗(x) := 〈1, ex z〉
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Optimisation of Information Utility

Utility of Information

If x ∈ X is utility, then the value of event y relative to z is

〈x, y − z〉 = Ey{x} − Ez{x}

Definition (Utility of information)

Ux(I) := sup{〈x, y〉 : F (y) ≤ I}

Stratonovich (1965) defined Ux(I) for Shannon information.

Related functions

−U−x(I) := inf{〈x, y〉 : F (y) ≤ I}
Ix(U) := inf{F (y) : U0 ≤ U ≤ 〈x, y〉}
Ix(U) := inf{F (y) : 〈x, y〉 ≤ U < U0}
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Results

Information Bounded Utility

Definition (Information Bounded Utility)

A function f : Ω → R that admits a solution to the utility of information
problem Uf (I) for I ∈ (inf F, supF )

Theorem

A solution to Uf (I) and If (U) exists if and only if set {x : F ∗
q (x) ≤ I∗}

absorbs function f :
∃β−1 > 0 : F ∗

q (βf) < ∞

Remark (Separation of information)

For all I ∈ (inf F, supF ) there exist β−1
1 , β−1

2 > 0:

Fq(∂F ∗
q (β1f)) < I < Fq(∂F ∗(β2f))
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Results

Information Topology (Belavkin, 2010a)

1

0
1

P
3

P1

y0

The topology is defined using an
information resource:

F : L → R∪{∞} , inf F = F (y0)

Neighbourhoods of y0:

C := {y : F (y) ≤ I}

The topology of information
bounded functions:

C◦ := {x : F ∗(x) ≤ I∗}

Generally, f ∈ C◦ does not imply
−f ∈ C◦.
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Results

Parametrisation by the Expected Utility

43210−1−2−3−4

1

0

−1

〈x
,
ŷ
〉
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Let F (y) be negative entropy (i.e. F (y) is minimised at y0(ω) = const)

x : Ω → {c− d, c + d} U(β) = Ψ′(β) = c + d tanh(β d)

x : Ω → [c− d, c + d] U(β) = Ψ′(β) = c + d coth(β d)− β−1
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Results

Parametrisation by Information
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Parametric Dependency
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Example: SPB Lottery

A Solution of the SPB Paradox

f : N → R is information bounded iff for some β−1 > 0:

F ∗(βf) =
∞∑

n=1

q(n)eβf(n) < ∞

Using
∑∞

n=1 rn < ∞

where z(n) = q(n)
∑

q(n).

Let q(n) = (e− 1)e−n (i.e. 2−n).

For f(n) = n, we have β < 1.
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Example: SPB Lottery

A Solution of the SPB Paradox

Using U = Ψ′
f (β) obtain

U =
1

1− eβ−1
, U0 =

1

1− e−1

The inverse of function U(β) is β = 1 + ln(1− U−1).

Using I = β(lnΨ(β))′ − lnΨ(β):

Change e to 2 (ln to log2).

For the information amount of 0 bits, the optimal entrance fee is
c ≤ U0 = 2.
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SPB Lottery
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SPB Lottery
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