The effect of information constraints on decision-making and economic behaviour

Roman V. Belavkin
Middlesex University

April 16, 2010

Introduction: Choice under Uncertainty

Paradoxes of Expected Utility

Optimisation of Information Utility

Results

Example: SPB Lottery
References106

Introduction: Choice under Uncertainty

Paradoxes of Expected Utility

Optimisation of Information Utility

Results

Example: SPB Lottery
 References106

Introduction: Choice under Uncertainty

Learning Systems

Learning Systems

Performance

Learning Systems

Information

Learning Systems

- Performance and information have orders, and the relation between them is monotonic.

Learning Systems

- Performance and information have orders, and the relation between them is monotonic.
- Complete partial orders, domain theory.

Learning Systems

- Performance and information have orders, and the relation between them is monotonic.
- Complete partial orders, domain theory.
- Utility theory, information theory

Learning Systems

- Performance and information have orders, and the relation between them is monotonic.
- Complete partial orders, domain theory.
- Utility theory, information theory
- Allows for treating both deterministic and non-deterministic case:

$$
x=f(\omega), \quad x=f(\omega)+\operatorname{rand}()
$$

Expected Utility Theory

- $f: \Omega \rightarrow \mathbb{R}$ a utility function.

Expected Utility Theory

- $f: \Omega \rightarrow \mathbb{R}$ a utility function.
- $p: \Re \rightarrow[0,1]$ a probability measure on (Ω, \mathfrak{R}).

Expected Utility Theory

- $f: \Omega \rightarrow \mathbb{R}$ a utility function.
- $p: \mathfrak{R} \rightarrow[0,1]$ a probability measure on (Ω, \mathfrak{R}).
- The expected utility

$$
\mathbb{E}_{p}\{x\}:=\sum_{\omega \in \Omega} x(\omega) p(\omega)
$$

Expected Utility Theory

- $f: \Omega \rightarrow \mathbb{R}$ a utility function.
- $p: \mathfrak{R} \rightarrow[0,1]$ a probability measure on (Ω, \mathfrak{R}).
- The expected utility

$$
\mathbb{E}_{p}\{x\}:=\int_{\Omega} x(\omega) d p(\omega)
$$

- Choice under uncertainty

$$
q \lesssim p \quad \Longleftrightarrow \mathbb{E}_{q}\{f\} \leq \mathbb{E}_{p}\{f\}
$$

Expected Utility Theory

- $f: \Omega \rightarrow \mathbb{R}$ a utility function.
- $p: \Re \rightarrow[0,1]$ a probability measure on (Ω, \mathfrak{R}).
- The expected utility

$$
\mathbb{E}_{p}\{x\}:=\int_{\Omega} x(\omega) d p(\omega)
$$

- Choice under uncertainty

$$
q \lesssim p \quad \Longleftrightarrow \mathbb{E}_{q}\{f\} \leq \mathbb{E}_{p}\{f\}
$$

Question (Why expected utility?)
(1) $\mathbb{E}_{y}\{f\}=f(\omega)$ if $y\left(\Omega^{\prime}\right)=\delta_{\omega}\left(\Omega^{\prime}\right)$.
(1) $x \lesssim y \quad \Longleftrightarrow \quad \lambda x \lesssim \lambda y, \forall \lambda>0$
(0) $x \lesssim y \quad x+z \lesssim y+z, \forall z \in Y$.

Introduction: Choice under Uncertainty

Paradoxes of Expected Utility

Optimisation of Information Utility

Results

Example: SPB Lottery
 References106

St. Petersburg lottery

Due to Nicolas Bernoulli (1713)

- The lottery is played by tossing a fair coin repeatedly until the first head appears.

St. Petersburg lottery

Due to Nicolas Bernoulli (1713)

- The lottery is played by tossing a fair coin repeatedly until the first head appears.
- If the head appeared on nth toss, then you win $£ 2^{n}$.

St. Petersburg lottery

Due to Nicolas Bernoulli (1713)

- The lottery is played by tossing a fair coin repeatedly until the first head appears.
- If the head appeared on nth toss, then you win $£ 2^{n}$.
- For example

$$
\begin{array}{lll}
n=3 & & £ 2^{3}=£ 8 \\
n=4 & & £ 2^{4}=£ 16 \\
& \ldots & \\
n=20 & & £ 2^{20}=£ 1,048,576
\end{array}
$$

St. Petersburg lottery

Due to Nicolas Bernoulli (1713)

- The lottery is played by tossing a fair coin repeatedly until the first head appears.
- If the head appeared on nth toss, then you win $£ 2^{n}$.
- For example

$$
\begin{array}{lll}
n=3 & & £ 2^{3}=£ 8 \\
n=4 & & £ 2^{4}=£ 16 \\
& \ldots & \\
n=20 & & £ 2^{20}=£ 1,048,576
\end{array}
$$

- To enter the lottery, you must pay a fee of $£ X$

St. Petersburg lottery

Due to Nicolas Bernoulli (1713)

- The lottery is played by tossing a fair coin repeatedly until the first head appears.
- If the head appeared on nth toss, then you win $£ 2^{n}$.
- For example

$$
\begin{array}{lll}
n=3 & & £ 2^{3}=£ 8 \\
n=4 & & £ 2^{4}=£ 16 \\
& \ldots & \\
n=20 & & £ 2^{20}=£ 1,048,576
\end{array}
$$

- To enter the lottery, you must pay a fee of $£ X$
- How much is $£ X$?

Why is it a paradox?

- We don't want to pay more than expect to win:

$$
X \leq \mathbb{E}\{\text { win }\}
$$

Why is it a paradox?

- We don't want to pay more than expect to win:

$$
X \leq \mathbb{E}\{\text { win }\}
$$

- How large is $\mathbb{E}_{p}\{$ win $\}$?

Why is it a paradox?

- We don't want to pay more than expect to win:

$$
X \leq \mathbb{E}\{\text { win }\}
$$

- How large is $\mathbb{E}_{p}\{$ win $\}$?
- Let $p(n)$ be the probability of $n \in \mathbb{N}$

head	1	2	3	4	\cdots	n	\cdots
win	$£ 2$	$£ 4$	$£ 8$	$£ 16$	\cdots	2^{n}	\cdots
$p(n)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	\cdots	$\frac{1}{2^{n}}$	\cdots

Why is it a paradox?

- We don't want to pay more than expect to win:

$$
X \leq \mathbb{E}\{\operatorname{win}\}
$$

- How large is $\mathbb{E}_{p}\{$ win $\}$?
- Let $p(n)$ be the probability of $n \in \mathbb{N}$

head	1	2	3	4	\cdots	n	\cdots
win	$£ 2$	$£ 4$	$£ 8$	$£ 16$	\cdots	2^{n}	\cdots
$p(n)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	\cdots	$\frac{1}{2^{n}}$	\cdots

- It is easy to see that

$$
\mathbb{E}_{p}\{\operatorname{win}\}=2 \cdot \frac{1}{2}+4 \cdot \frac{1}{4}+8 \cdot \frac{1}{8}+16 \cdot \frac{1}{16}+\cdots=\sum_{n=1}^{\infty} \frac{2^{n}}{2^{n}}=\infty
$$

Why is it a paradox?

- We don't want to pay more than expect to win:

$$
X \leq \mathbb{E}\{\operatorname{win}\}
$$

- How large is $\mathbb{E}_{p}\{$ win $\}$?
- Let $p(n)$ be the probability of $n \in \mathbb{N}$

head	1	2	3	4	\cdots	n	\cdots
win	$£ 2$	$£ 4$	$£ 8$	$£ 16$	\cdots	2^{n}	\cdots
$p(n)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	\cdots	$\frac{1}{2^{n}}$	\cdots

- It is easy to see that

$$
\mathbb{E}_{p}\{\operatorname{win}\}=2 \cdot \frac{1}{2}+4 \cdot \frac{1}{4}+8 \cdot \frac{1}{8}+16 \cdot \frac{1}{16}+\cdots=\sum_{n=1}^{\infty} \frac{2^{n}}{2^{n}}=\infty
$$

- One cannot buy what is not for sale.

Classical solutions

- Daniel Bernoulli (1738) proposed $f(n)=\log _{2} 2^{n}=n$.

Classical solutions

- Daniel Bernoulli (1738) proposed $f(n)=\log _{2} 2^{n}=n$.
- Note that for any $f(n)$ we can introduce a lottery $p(n) \propto f^{-1}(n)$:

$$
\mathbb{E}_{p}\{f\} \propto \sum_{n=1}^{\infty} \frac{f(n)}{f(n)}=\infty
$$

Classical solutions

- Daniel Bernoulli (1738) proposed $f(n)=\log _{2} 2^{n}=n$.
- Note that for any $f(n)$ we can introduce a lottery $p(n) \propto f^{-1}(n)$:

$$
\mathbb{E}_{p}\{f\} \propto \sum_{n=1}^{\infty} \frac{f(n)}{f(n)}=\infty
$$

- Some suggest to use only f such that

$$
\|f\|_{\infty}:=\sup |f(\omega)|<\infty
$$

Northern Rock lottery

Due to unknown author (2008)

- You can borrow a mortgage of any amount $£ X$

Northern Rock lottery

Due to unknown author (2008)

- You can borrow a mortgage of any amount $£ X$
- The amount you repay is decided by tossing a fair coin repeatedly until the first head appears.

Northern Rock lottery

Due to unknown author (2008)

- You can borrow a mortgage of any amount $£ X$
- The amount you repay is decided by tossing a fair coin repeatedly until the first head appears.
- If the head appeared on nth toss, then you repay $£ 2^{n}$.

Northern Rock lottery

Due to unknown author (2008)

- You can borrow a mortgage of any amount $£ X$
- The amount you repay is decided by tossing a fair coin repeatedly until the first head appears.
- If the head appeared on nth toss, then you repay $£ 2^{n}$.
- For example

$$
\begin{array}{lll}
n=3 & & £ 2^{3}=£ 8 \\
n=4 & & £ 2^{4}=£ 16 \\
& \ldots & \\
n=20 & & £ 2^{20}=£ 1,048,576
\end{array}
$$

Northern Rock lottery

Due to unknown author (2008)

- You can borrow a mortgage of any amount $£ X$
- The amount you repay is decided by tossing a fair coin repeatedly until the first head appears.
- If the head appeared on nth toss, then you repay $£ 2^{n}$.
- For example

$$
\begin{array}{lll}
n=3 & & £ 2^{3}=£ 8 \\
n=4 & & £ 2^{4}=£ 16 \\
& \ldots & \\
n=20 & & £ 2^{20}=£ 1,048,576
\end{array}
$$

- How much would you borrow? $(£ X=$? $)$

The Allais (1953) paradox

Consider two lotteries:

$$
\begin{array}{ll}
\text { A }: p(£ 300)=\frac{1}{3} \quad\left(\text { and } p(£ 0)=\frac{2}{3}\right) \\
\text { B }: p(£ 100)=1
\end{array}
$$

The Allais (1953) paradox

Consider two lotteries:

$$
\begin{array}{ll}
\text { A }: p(£ 300)=\frac{1}{3} \quad\left(\text { and } p(£ 0)=\frac{2}{3}\right) \\
\text { B }: p(£ 100)=1
\end{array}
$$

- Most of the people seem to prefer $A \lesssim B$

The Allais (1953) paradox

Consider two lotteries:

$$
\begin{array}{ll}
\text { A }: p(£ 300)=\frac{1}{3} \quad\left(\text { and } p(£ 0)=\frac{2}{3}\right) \\
\text { B }: p(£ 100)=1
\end{array}
$$

- Most of the people seem to prefer $A \lesssim B$
- Note that

$$
\begin{aligned}
& \mathbb{E}_{A}\{x\}=300 \cdot \frac{1}{3}+100 \cdot 0+0 \cdot \frac{2}{3}=100 \\
& \mathbb{E}_{B}\{x\}=300 \cdot 0+100 \cdot 1+0 \cdot 0=100
\end{aligned}
$$

The Allais (1953) paradox

Consider two lotteries:

$$
\begin{array}{ll}
\text { A }: p(£ 300)=\frac{1}{3} & \left.\quad \text { (and } p(£ 0)=\frac{2}{3}\right) \\
\text { B }: p(£ 100)=1
\end{array}
$$

- Most of the people seem to prefer $A \lesssim B$
- Note that

$$
\begin{aligned}
& \mathbb{E}_{A}\{x\}=300 \cdot \frac{1}{3}+100 \cdot 0+0 \cdot \frac{2}{3}=100 \\
& \mathbb{E}_{B}\{x\}=300 \cdot 0+100 \cdot 1+0 \cdot 0=100
\end{aligned}
$$

Remark

Safety is preferred (i.e. risk averse).

The Allais (1953) paradox (2)

Consider two lotteries:

$$
\begin{array}{ll}
C: p(-£ 300)=\frac{1}{3} & \left(\text { and } p(£ 0)=\frac{2}{3}\right) \\
D: p(-£ 100)=1
\end{array}
$$

The Allais (1953) paradox (2)

Consider two lotteries:

$$
\begin{array}{ll}
C: p(-£ 300) & =\frac{1}{3} \quad\left(\text { and } p(£ 0)=\frac{2}{3}\right) \\
D: p(-£ 100) & =1
\end{array}
$$

- Most of the people seem to prefer $C \gtrsim D$

The Allais (1953) paradox (2)

Consider two lotteries:

$$
\begin{aligned}
& \text { C }: p(-£ 300)=\frac{1}{3} \quad\left(\text { and } p(£ 0)=\frac{2}{3}\right) \\
& \mathrm{D}: p(-£ 100)=1
\end{aligned}
$$

- Most of the people seem to prefer $C \gtrsim D$
- Note that

$$
\begin{aligned}
& \mathbb{E}_{C}\{x\}=-300 \cdot \frac{1}{3}-100 \cdot 0-0 \cdot \frac{2}{3}=-100 \\
& \mathbb{E}_{D}\{x\}=-300 \cdot 0-100 \cdot 1-0 \cdot 0=-100
\end{aligned}
$$

The Allais (1953) paradox (2)

Consider two lotteries:

$$
\begin{aligned}
& C: p(-£ 300)=\frac{1}{3} \quad\left(\text { and } p(£ 0)=\frac{2}{3}\right) \\
& D: p(-£ 100)=1
\end{aligned}
$$

- Most of the people seem to prefer $C \gtrsim D$
- Note that

$$
\begin{aligned}
& \mathbb{E}_{C}\{x\}=-300 \cdot \frac{1}{3}-100 \cdot 0-0 \cdot \frac{2}{3}=-100 \\
& \mathbb{E}_{D}\{x\}=-300 \cdot 0-100 \cdot 1-0 \cdot 0=-100
\end{aligned}
$$

Remark

Risk is preferred (i.e. risk taking).

Why is it a paradox?

Remark

Any linear functional (e.g. $\mathbb{E}_{p}\{x\}$) has parallel level sets. If people use expected utility to make choices, then they are either risk-averse or risk-taking, but not both.

Prospect theory

Due to Tversky and Kahneman (1981)

- It was proposed that the utility is convex, when the choice is among gains, and concave when the choice is among losses.

Prospect theory

Due to Tversky and Kahneman (1981)

- It was proposed that the utility is convex, when the choice is among gains, and concave when the choice is among losses.
- This would make the choice risk averse for gains and risk taking for losses.

Prospect theory

Due to Tversky and Kahneman (1981)

- It was proposed that the utility is convex, when the choice is among gains, and concave when the choice is among losses.
- This would make the choice risk averse for gains and risk taking for losses.

Remark

This theory is not normative (i.e. it is not derived using rational approach).

The Ellsberg (1961) paradox

Consider two lotteries:

$$
\begin{aligned}
& \text { A }: p(£ 100)=\frac{1}{2} \quad\left(\text { and } p(£ 0)=\frac{1}{2}\right) \\
& \text { B }: p(£ 100)=\text { unknown }
\end{aligned}
$$

The Ellsberg (1961) paradox

Consider two lotteries:

$$
\begin{aligned}
& \text { A }: p(£ 100)=\frac{1}{2} \quad\left(\text { and } p(£ 0)=\frac{1}{2}\right) \\
& \text { B }: p(£ 100)=\text { unknown }
\end{aligned}
$$

- Most of the people seem to prefer $A \gtrsim B$

The Ellsberg (1961) paradox

Consider two lotteries:

$$
\begin{aligned}
& \text { A }: p(£ 100)=\frac{1}{2} \quad\left(\text { and } p(£ 0)=\frac{1}{2}\right) \\
& \text { B }: p(£ 100)=\text { unknown }
\end{aligned}
$$

- Most of the people seem to prefer $A \gtrsim B$
- Note that

$$
\begin{aligned}
& \mathbb{E}_{A}\{x\}=100 \cdot \frac{1}{2}+0 \cdot \frac{1}{2}=50 \\
& \mathbb{E}_{B}\{x\}=\int_{0}^{1}(100 \cdot p+0 \cdot(1-p)) d p=50
\end{aligned}
$$

The Ellsberg (1961) paradox

Consider two lotteries:

$$
\begin{aligned}
& \text { A }: p(£ 100)=\frac{1}{2} \quad\left(\text { and } p(£ 0)=\frac{1}{2}\right) \\
& \text { B }: p(£ 100)=\text { unknown }
\end{aligned}
$$

- Most of the people seem to prefer $A \gtrsim B$
- Note that

$$
\begin{aligned}
& \mathbb{E}_{A}\{x\}=100 \cdot \frac{1}{2}+0 \cdot \frac{1}{2}=50 \\
& \mathbb{E}_{B}\{x\}=\int_{0}^{1}(100 \cdot p+0 \cdot(1-p)) d p=50
\end{aligned}
$$

Remark

More information is preferred.

Introduction: Choice under Uncertainty

Paradoxes of Expected Utility

Optimisation of Information Utility

Results

Example: SPB Lottery
 References106

Extreme Value Problems

Unconditional extremum

- Maximise $f(y)$:

$$
\sup f(y)
$$

Extreme Value Problems

Unconditional extremum

- Maximise $f(y)$:

$$
\sup f(y)
$$

- Necessary condition $\partial f(\bar{y}) \ni 0$.

Extreme Value Problems

Unconditional extremum

- Maximise $f(y)$:

$$
\sup f(y)
$$

- Necessary condition $\partial f(\bar{y}) \ni 0$.
- Sufficient, if f is concave.

Extreme Value Problems

Unconditional extremum

- Maximise $f(y)$:

$$
\sup f(y)
$$

- Necessary condition $\partial f(\bar{y}) \ni 0$.
- Sufficient, if f is concave.

Conditional extremum

- Maximise $f(y)$ subject to $g(y) \leq \lambda$:

$$
\bar{f}(\lambda):=\sup \{f(y): g(y) \leq \lambda\}
$$

Extreme Value Problems

Unconditional extremum

- Maximise $f(y)$:

$$
\sup f(y)
$$

- Necessary condition $\partial f(\bar{y}) \ni 0$.
- Sufficient, if f is concave.

Conditional extremum

- Maximise $f(y)$ subject to $g(y) \leq \lambda$:

$$
\bar{f}(\lambda):=\sup \{f(y): g(y) \leq \lambda\}
$$

- Necessary condition $\partial f(\bar{y})-\alpha \partial g(y) \ni 0$.

Extreme Value Problems

Unconditional extremum

- Maximise $f(y)$:

$$
\sup f(y)
$$

- Necessary condition $\partial f(\bar{y}) \ni 0$.
- Sufficient, if f is concave.

Conditional extremum

- Maximise $f(y)$ subject to $g(y) \leq \lambda$:

$$
\bar{f}(\lambda):=\sup \{f(y): g(y) \leq \lambda\}
$$

- Necessary condition $\partial f(\bar{y})-\alpha \partial g(y) \ni 0$.
- Sufficient if $K(y, \alpha):=f(y)+\alpha[\lambda-g(y)]$ is concave.

Representation in Paired Spaces

- $x \in X, y \in Y,\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{R}$

$$
\langle x, y\rangle:=\int_{\Omega} x(\omega) d y(\omega)
$$

Representation in Paired Spaces

- $x \in X, y \in Y,\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{R}$

$$
\langle x, y\rangle:=\int_{\Omega} x(\omega) d y(\omega)
$$

- Separation:

$$
\begin{array}{ll}
\langle x, y\rangle=0, & \forall x \in X \quad \Rightarrow y=0 \in Y \\
\langle x, y\rangle=0, & \forall y \in Y \quad \Rightarrow x=0 \in X
\end{array}
$$

Representation in Paired Spaces

- $x \in X, y \in Y,\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{R}$

$$
\langle x, y\rangle:=\int_{\Omega} x(\omega) d y(\omega)
$$

- Separation:

$$
\begin{array}{ll}
\langle x, y\rangle=0, & \forall x \in X
\end{array} \quad \Rightarrow y=0 \in Y,
$$

- Can equip X and Y with $\|x\|_{\infty}$ and $\|y\|_{1}$.

Representation in Paired Spaces

- $x \in X, y \in Y,\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{R}$

$$
\langle x, y\rangle:=\int_{\Omega} x(\omega) d y(\omega)
$$

- Separation:

$$
\begin{array}{ll}
\langle x, y\rangle=0, & \forall x \in X
\end{array} \quad \Rightarrow y=0 \in Y,
$$

- Can equip X and Y with $\|x\|_{\infty}$ and $\|y\|_{1}$.
- Statistical manifold:

$$
\mathcal{M}:=\left\{y \in Y: y \geq 0,\|y\|_{1}=1\right\}
$$

Representation in Paired Spaces

- $x \in X, y \in Y,\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{R}$

$$
\langle x, y\rangle:=\int_{\Omega} x(\omega) d y(\omega)
$$

- Separation:

$$
\begin{array}{ll}
\langle x, y\rangle=0, & \forall x \in X \quad \Rightarrow y=0 \in Y \\
\langle x, y\rangle=0, & \forall y \in Y \quad \Rightarrow x=0 \in X
\end{array}
$$

- Can equip X and Y with $\|x\|_{\infty}$ and $\|y\|_{1}$.
- Statistical manifold:

$$
\mathcal{M}:=\left\{y \in Y: y \geq 0,\|y\|_{1}=1\right\}
$$

- Expected value

$$
\mathbb{E}_{p}\{x\}=\left.\langle x, y\rangle\right|_{\mathcal{M}}
$$

Information

Definition (Information resource) a closed functional $F: Y \rightarrow \mathbb{R} \cup\{\infty\}$ with $\inf F=F(z)$.

Information

Definition (Information resource) a closed functional $F: Y \rightarrow \mathbb{R} \cup\{\infty\}$ with $\inf F=F(z)$.

Example (Relative Information (Belavkin, 2010b))

- For $z>0$, let

$$
F(y):= \begin{cases}\left\langle\ln \frac{y}{z}, y\right\rangle-\langle 1, y-z\rangle, & \text { if } y>0 \\ \langle 1, z\rangle, & \text { if } y=0 \\ \infty, & \text { if } y<0\end{cases}
$$

Information

Definition (Information resource) a closed functional $F: Y \rightarrow \mathbb{R} \cup\{\infty\}$ with $\inf F=F(z)$.

Example (Relative Information (Belavkin, 2010b))

- For $z>0$, let

$$
F(y):= \begin{cases}\left\langle\ln \frac{y}{z}, y\right\rangle-\langle 1, y-z\rangle, & \text { if } y>0 \\ \langle 1, z\rangle, & \text { if } y=0 \\ \infty, & \text { if } y<0\end{cases}
$$

- $\partial F(y)=\ln \frac{y}{z}=x \quad \Longleftrightarrow \quad y=e^{x} z=\partial F^{*}(x)$

Information

Definition (Information resource) a closed functional $F: Y \rightarrow \mathbb{R} \cup\{\infty\}$ with $\inf F=F(z)$.

Example (Relative Information (Belavkin, 2010b))

- For $z>0$, let

$$
F(y):= \begin{cases}\left\langle\ln \frac{y}{z}, y\right\rangle-\langle 1, y-z\rangle, & \text { if } y>0 \\ \langle 1, z\rangle, & \text { if } y=0 \\ \infty, & \text { if } y<0\end{cases}
$$

- $\partial F(y)=\ln \frac{y}{z}=x \quad \Longleftrightarrow \quad y=e^{x} z=\partial F^{*}(x)$
- The dual $F^{*}: X \rightarrow \mathbb{R} \cup\{\infty\}$ is

$$
F^{*}(x):=\left\langle 1, e^{x} z\right\rangle
$$

Utility of Information

- If $x \in X$ is utility, then the value of event y relative to z is

$$
\langle x, y-z\rangle=\mathbb{E}_{y}\{x\}-\mathbb{E}_{z}\{x\}
$$

Utility of Information

- If $x \in X$ is utility, then the value of event y relative to z is

$$
\langle x, y-z\rangle=\mathbb{E}_{y}\{x\}-\mathbb{E}_{z}\{x\}
$$

Definition (Utility of information)

$$
U_{x}(I):=\sup \{\langle x, y\rangle: F(y) \leq I\}
$$

Utility of Information

- If $x \in X$ is utility, then the value of event y relative to z is

$$
\langle x, y-z\rangle=\mathbb{E}_{y}\{x\}-\mathbb{E}_{z}\{x\}
$$

Definition (Utility of information)

$$
U_{x}(I):=\sup \{\langle x, y\rangle: F(y) \leq I\}
$$

- Stratonovich (1965) defined $U_{x}(I)$ for Shannon information.

Utility of Information

- If $x \in X$ is utility, then the value of event y relative to z is

$$
\langle x, y-z\rangle=\mathbb{E}_{y}\{x\}-\mathbb{E}_{z}\{x\}
$$

Definition (Utility of information)

$$
U_{x}(I):=\sup \{\langle x, y\rangle: F(y) \leq I\}
$$

- Stratonovich (1965) defined $U_{x}(I)$ for Shannon information.
- Related functions

$$
\begin{aligned}
-U_{-x}(I) & :=\inf \{\langle x, y\rangle: F(y) \leq I\} \\
I_{x}(U) & :=\inf \left\{F(y): U_{0} \leq U \leq\langle x, y\rangle\right\} \\
I_{x}(U) & :=\inf \left\{F(y):\langle x, y\rangle \leq U<U_{0}\right\}
\end{aligned}
$$

Introduction: Choice under Uncertainty

Paradoxes of Expected Utility

Optimisation of Information Utility

Results

Example: SPB Lottery References106

Information Bounded Utility

Definition (Information Bounded Utility)
A function $f: \Omega \rightarrow \mathbb{R}$ that admits a solution to the utility of information problem $U_{f}(I)$ for $I \in(\inf F, \sup F)$

Information Bounded Utility

Definition (Information Bounded Utility)
A function $f: \Omega \rightarrow \mathbb{R}$ that admits a solution to the utility of information problem $U_{f}(I)$ for $I \in(\inf F, \sup F)$

Theorem

A solution to $U_{f}(I)$ and $I_{f}(U)$ exists if and only if set $\left\{x: F_{q}^{*}(x) \leq I^{*}\right\}$ absorbs function f :

$$
\exists \beta^{-1}>0: F_{q}^{*}(\beta f)<\infty
$$

Information Bounded Utility

Definition (Information Bounded Utility)
A function $f: \Omega \rightarrow \mathbb{R}$ that admits a solution to the utility of information problem $U_{f}(I)$ for $I \in(\inf F, \sup F)$

Theorem
A solution to $U_{f}(I)$ and $I_{f}(U)$ exists if and only if set $\left\{x: F_{q}^{*}(x) \leq I^{*}\right\}$ absorbs function f :

$$
\exists \beta^{-1}>0: F_{q}^{*}(\beta f)<\infty
$$

Remark (Separation of information)
For all $I \in(\inf F, \sup F)$ there exist $\beta_{1}^{-1}, \beta_{2}^{-1}>0$:

$$
F_{q}\left(\partial F_{q}^{*}\left(\beta_{1} f\right)\right)<I<F_{q}\left(\partial F^{*}\left(\beta_{2} f\right)\right)
$$

Information Topology (Belavkin, 2010a)

- The topology is defined using an information resource:

$$
F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)
$$

Information Topology (Belavkin, 2010a)

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

Information Topology (Belavkin, 2010a)

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:
$F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)$
- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:

$$
F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)
$$

- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:

$$
F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)
$$

- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Information Topology (Belavkin, 2010a)

P_{1}

- The topology is defined using an information resource:

$$
F: L \rightarrow \mathbb{R} \cup\{\infty\}, \quad \inf F=F\left(y_{0}\right)
$$

- Neighbourhoods of y_{0} :

$$
C:=\{y: F(y) \leq I\}
$$

- The topology of information bounded functions:

$$
C^{\circ}:=\left\{x: F^{*}(x) \leq I^{*}\right\}
$$

- Generally, $f \in C^{\circ}$ does not imply $-f \in C^{\circ}$.

Parametrisation by the Expected Utility

Let $F(y)$ be negative entropy (i.e. $F(y)$ is minimised at $y_{0}(\omega)=$ const)

$$
\begin{aligned}
x: \Omega \rightarrow\{c-d, c+d\} & U(\beta) & =\Psi^{\prime}(\beta)=c+d \tanh (\beta d) \\
x: \Omega \rightarrow[c-d, c+d] & U(\beta) & =\Psi^{\prime}(\beta)=c+d \operatorname{coth}(\beta d)-\beta^{-1}
\end{aligned}
$$

Parametrisation by Information

Parametric Dependency

Introduction: Choice under Uncertainty

Paradoxes of Expected Utility

Optimisation of Information Utility

Results

Example: SPB Lottery References106

A Solution of the SPB Paradox

- $f: \mathbb{N} \rightarrow \mathbb{R}$ is information bounded iff for some $\beta^{-1}>0$:

$$
F^{*}(\beta f)=\sum_{n=1}^{\infty} q(n) e^{\beta f(n)}<\infty
$$

A Solution of the SPB Paradox

- $f: \mathbb{N} \rightarrow \mathbb{R}$ is information bounded iff for some $\beta^{-1}>0$:

$$
F^{*}(\beta f)=\sum_{n=1}^{\infty} q(n) e^{\beta f(n)}<\infty
$$

- Using $\sum_{n=1}^{\infty} r^{n}<\infty$

$$
\exists \beta^{-1}>0: \quad \beta f(n)<-\ln z(n), \quad \forall n \in \mathbb{N}
$$

A Solution of the SPB Paradox

- $f: \mathbb{N} \rightarrow \mathbb{R}$ is information bounded iff for some $\beta^{-1}>0$:

$$
F^{*}(\beta f)=\sum_{n=1}^{\infty} q(n) e^{\beta f(n)}<\infty
$$

- Using $\sum_{n=1}^{\infty} r^{n}<\infty$

$$
\exists \beta^{-1}>0: \quad \beta f(n)<-\ln z(n), \quad \forall n \in \mathbb{N}
$$

- where $z(n)=q(n) \sum q(n)$.

A Solution of the SPB Paradox

- $f: \mathbb{N} \rightarrow \mathbb{R}$ is information bounded iff for some $\beta^{-1}>0$:

$$
F^{*}(\beta f)=\sum_{n=1}^{\infty} q(n) e^{\beta f(n)}<\infty
$$

- Using $\sum_{n=1}^{\infty} r^{n}<\infty$

$$
\exists \beta^{-1}>0: \quad \beta f(n)<-\ln z(n), \quad \forall n \in \mathbb{N}
$$

- where $z(n)=q(n) \sum q(n)$.
- Let $q(n)=(e-1) e^{-n}\left(\right.$ i.e. $\left.2^{-n}\right)$.

A Solution of the SPB Paradox

- $f: \mathbb{N} \rightarrow \mathbb{R}$ is information bounded iff for some $\beta^{-1}>0$:

$$
F^{*}(\beta f)=(e-1) \sum_{n=1}^{\infty} e^{\beta f(n)-n}<\infty
$$

- Using $\sum_{n=1}^{\infty} r^{n}<\infty$

$$
\exists \beta^{-1}>0: \quad \beta f(n)<-\ln z(n), \quad \forall n \in \mathbb{N}
$$

- where $z(n)=q(n) \sum q(n)$.
- Let $q(n)=(e-1) e^{-n}\left(\right.$ i.e. $\left.2^{-n}\right)$.

A Solution of the SPB Paradox

- $f: \mathbb{N} \rightarrow \mathbb{R}$ is information bounded iff for some $\beta^{-1}>0$:

$$
F^{*}(\beta f)=(e-1) \sum_{n=1}^{\infty} e^{\beta f(n)-n}<\infty
$$

- Using $\sum_{n=1}^{\infty} r^{n}<\infty$

$$
\exists \beta^{-1}>0: \quad \beta f(n)<n, \quad \forall n \in \mathbb{N}
$$

- where $z(n)=q(n) \sum q(n)$.
- Let $q(n)=(e-1) e^{-n}\left(\right.$ i.e. $\left.2^{-n}\right)$.

A Solution of the SPB Paradox

- $f: \mathbb{N} \rightarrow \mathbb{R}$ is information bounded iff for some $\beta^{-1}>0$:

$$
F^{*}(\beta f)=(e-1) \sum_{n=1}^{\infty} e^{\beta f(n)-n}<\infty
$$

- Using $\sum_{n=1}^{\infty} r^{n}<\infty$

$$
\exists \beta^{-1}>0: \quad \beta f(n)<n, \quad \forall n \in \mathbb{N}
$$

- where $z(n)=q(n) \sum q(n)$.
- Let $q(n)=(e-1) e^{-n}\left(\right.$ i.e. $\left.2^{-n}\right)$.
- For $f(n)=n$, we have $\beta<1$.

A Solution of the SPB Paradox

- Using $U=\Psi_{f}^{\prime}(\beta)$ obtain

$$
U=\frac{1}{1-e^{\beta-1}}, \quad U_{0}=\frac{1}{1-e^{-1}}
$$

A Solution of the SPB Paradox

- Using $U=\Psi_{f}^{\prime}(\beta)$ obtain

$$
U=\frac{1}{1-e^{\beta-1}}, \quad U_{0}=\frac{1}{1-e^{-1}}
$$

- The inverse of function $U(\beta)$ is $\beta=1+\ln \left(1-U^{-1}\right)$.

A Solution of the SPB Paradox

- Using $U=\Psi_{f}^{\prime}(\beta)$ obtain

$$
U=\frac{1}{1-e^{\beta-1}}, \quad U_{0}=\frac{1}{1-e^{-1}}
$$

- The inverse of function $U(\beta)$ is $\beta=1+\ln \left(1-U^{-1}\right)$.
- Using $I=\beta(\ln \Psi(\beta))^{\prime}-\ln \Psi(\beta)$:

$$
I_{f}(U)=\left(1+\ln \left(1-U^{-1}\right)\right) U-\ln (e-1)-\ln (U-1)
$$

A Solution of the SPB Paradox

- Using $U=\Psi_{f}^{\prime}(\beta)$ obtain

$$
U=\frac{1}{1-e^{\beta-1}}, \quad U_{0}=\frac{1}{1-e^{-1}}
$$

- The inverse of function $U(\beta)$ is $\beta=1+\ln \left(1-U^{-1}\right)$.
- Using $I=\beta(\ln \Psi(\beta))^{\prime}-\ln \Psi(\beta)$:

$$
I_{f}(U)=\left(1+\ln \left(1-U^{-1}\right)\right) U-\ln (e-1)-\ln (U-1)
$$

- Change e to $2\left(\ln\right.$ to $\left.\log _{2}\right)$.

A Solution of the SPB Paradox

- Using $U=\Psi_{f}^{\prime}(\beta)$ obtain

$$
U=\frac{1}{1-2^{\beta-1}}, \quad U_{0}=2
$$

- The inverse of function $U(\beta)$ is $\beta=1+\ln \left(1-U^{-1}\right)$.
- Using $I=\beta(\ln \Psi(\beta))^{\prime}-\ln \Psi(\beta)$:

$$
I_{f}(U)=\left(1+\log _{2}\left(1-U^{-1}\right)\right) U-\log _{2}(U-1)
$$

- Change e to $2\left(\ln\right.$ to $\left.\log _{2}\right)$.

A Solution of the SPB Paradox

- Using $U=\Psi_{f}^{\prime}(\beta)$ obtain

$$
U=\frac{1}{1-2^{\beta-1}}, \quad U_{0}=2
$$

- The inverse of function $U(\beta)$ is $\beta=1+\ln \left(1-U^{-1}\right)$.
- Using $I=\beta(\ln \Psi(\beta))^{\prime}-\ln \Psi(\beta)$:

$$
I_{f}(U)=\left(1+\log _{2}\left(1-U^{-1}\right)\right) U-\log _{2}(U-1)
$$

- Change e to 2 (\ln to $\log _{2}$).
- For the information amount of 0 bits, the optimal entrance fee is $c \leq U_{0}=2$.

SPB Lottery

SPB Lottery

SPB Lottery

Introduction: Choice under Uncertainty

Paradoxes of Expected Utility

Optimisation of Information Utility

Results

Example: SPB Lottery References106

Allais, M. (1953). Le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'École americaine. Econometrica, 21, 503-546.
Belavkin, R. V. (2010a). Information trajectory of optimal learning. In M. J. Hirsch, P. M. Pardalos, \& R. Murphey (Eds.), Dynamics of information systems: Theory and applications (Vol. 40). Springer.
Belavkin, R. V. (2010b). Utility and value of information in cognitive science, biology and quantum theory. In L. Accardi, W. Freudenberg, \& M. Ohya (Eds.), Quantum Bio-Informatics III (Vol. 26). World Scientific.
Ellsberg, D. (1961, November). Risk, ambiguity, and the Savage axioms. The Quarterly Journal of Economics, 75(4), 643-669.
Stratonovich, R. L. (1965). On value of information. Izvestiya of USSR Academy of Sciences, Technical Cybernetics, 5, 3-12. (In Russian)
Tversky, A., \& Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453-458.

