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N = {1, 2, . . . , n}: the set of players.
S ⊆ N : a coalition.
S: the set of all coalitions from N .
S = A ∪ P such that A ∩ P = ∅ with the property:

if S ∈ A then ∀T ⊂ S ⇒ T ∈ A.

i ∈ A ∀i ∈ N .

∆(N): a partition of N such that

∆(N) = {S1, . . . , Sk} and Si ∩ Sj = ∅∀i, j = 1, . . . , k, i 6= j.

∆A(N): an admissible partition of N: Sj ∈ A∀j = 1, . . . , k.
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We consider an approach of an admissible partition formation in
multistage games with perfect information:

each player before acting has an option to cooperate or not to
cooperate (the decision to cooperate or not is the element of
players strategy). The player may enter any current coalition to
form an admissible one or stay individual player;

players who decide to cooperate, maximize the coalitional payoff,
and individual players maximize their own payoffs;

players from each admissible coalitions share the coalitional
payoff in accordance with some imputation.
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Graph tree G: W — the set of vertices of G
Γ(O′) = 〈N,G, P ′

1, . . . , P
′

n, P
′

n+1, h
′

1, . . . , h
′

n〉

W = P ′

1 ∪ . . . ∪ P ′

n+1, P
′

i ∩ P ′

j = ∅, i 6= j, i, j = 1, . . . , n+ 1

h′

i : P
′

n+1 7→ R, i = 1, . . . , n.

Graph tree G̃: X — the set of vertices of G̃
Γ̃(O) = 〈N, G̃, P1, . . . , Pn, Pn+1, h1, . . . , hn〉

X = P1 ∪ . . . ∪ Pn+1, Pi ∩ Pj = ∅, i 6= j, i, j = 1, . . . , n+ 1

hi : Pn+1 7→ R, i = 1, . . . , n.

Φ : W → X: a point-to-set mapping that to each w ∈ W assigns
Φ(w) ⊂ X.
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Graph tree G Graph tree G̃
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x: a vertex of a graph tree;

x has a rank k (k = 0, 1, 2, . . .) if this vertex can be reached from the
root of the graph tree exactly in k stages;

Fx: the set of vertices immediately following the vertex x;

i(x): player who makes decision in vertex x;

∆Ax
(N) = {S1, . . . , Sk(x)}: an admissible partition of N in the vertex x.
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∆Ax
(N) = {S1, . . . , Sk(x)}, x ∈ Pi.

i’s alternatives in x:

individual behavior;

announce cooperative behavior acting individually if he still
individual, and acting in cooperation if some other player joints to
i;

enter to any coalition S ∈ ∆Ax
(N) iff i ∪ S ∈ A and acting in

cooperation with players from S.

Suggestion. If player choose cooperative behavior he keeps this type
of behavior till the end of the game process.
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n-person game

Definition An n-person game in extensive form with perfect information
and admissible partition is a graph tree G̃ with the following properties:

Graph tree. A partition P1, P2, . . . , Pn, Pn+1 of the set of vertices
X is given. Here Pi, i ∈ N is the set of personal positions
(vertices) of player i, and Pn+1 is a set of terminal vetices such
that Pi = Φ(P ′

i ), i = 1, . . . , n+ 1.;

Partition. In each vertex x ∈ X the admissible partition
∆A(N, x) = {S1, . . . , Sk(x)} is uniquely defined where the coalition
S ∈ ∆A(N, x) consists of players who choose to enter to this
coalition along the path leading to x;

Payoffs. ∀w ∈ P ′

n+1 and ∀i ∈ N hi(x) = h′(w), ∀x ∈ Φ(w).
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A strategy

Definition The strategy ui(·) of player i ∈ N is the mapping which to
each position (vertex) x ∈ Pi assigns the vertex y ∈ Fx or probability
distribution px over Fx

px = {px(y)}, y ∈ Fx, p
x(y) > 0,

∑

y∈Fx

px(y) = 1.

Characteristic Function for Games with Prohibited Coalitions – p. 9/18



Let ui(·) be the strategy of player i ∈ N and Yi ⊂ Pi be the set of all
personal positions of i of odd rank which are possible if player i always
choose non-cooperative behavior.

Denote by Bi(ui(·)) the subset of strategies of player i which consists
of all strategies which differ from ui(·) only by choices in vertices
y ∈ Yi.

If ui(·) chooses cooperative behavior in some z ∈ Pi, suppose
Bi(ui(·)) = ∅.
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Payoff function

For each n-tuple of strategies ū(·)) = (ū1(·), . . . , ūn(·)) in G̃ define
players payoff functions in the following manner. Suppose in ū(·) the
admissible partition ∆A(N) = {S1, . . . , Sk} and the path {O, x1, . . . , xℓ}

are realized. Then

Ki(O; ū(·)) = hi(xℓ), |Sj | = i,

Ki(O; ū(·)) = Shi(y), i ∈ Sj ,

where Shi(y), i ∈ Sj is the Shapley value computed for the coalition Sj

in the subgame Γ̃(y), where y is the first vertex on the path
{O, x1, . . . , xl} in which the coalition partition ∆A(N) is formed.
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Weak equilibrium

Definition The n-tuple of strategies u∗(·) = (u∗

1(·), . . . , u
∗

i (·), . . . , u
∗

n(·)) is
called to be a weak equilibrium in G̃(O) if

Ki(O;u∗(·)||ui(·)) 6 Ki(O;u∗(·))

for i ∈ N \ (∪Sj), |Sj | > 1, ui ∈ Bi(u∗

i (·)).
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Constructing the weak equilibrium

Assumption: the player once entering a coalition cannot leave it till the
end of the game.
2ℓ+ 1: game length.
Step 0. γt

i (x): the Bellman function with the conditions

γ0
i (x) ≡ hi(x), ∀x ∈ Pn+1.
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Step t > 1.

C a s e 1. x, y ∈ Pi(x), y ∈ Fx, i(x) ≡ i(y) and i(y) ∈ S, but
i(x) /∈ S ∀S ∈ ∆Ay

(N).

max
z∈Fy

∑

i∈S

γt−1
i (z) =

∑

i∈S

γt−1
i (x̄).

v(S, y) =
∑

i∈S γt−1
i (x̄);

v(T, y) = max
u
y

T

min
u
y

N\T

∑
i∈T hi(y

∗), T ⊂ S;

v(∅, y) = 0.
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Shi(y) ∀S ∈ ∆Ay
(N), ∀y ∈ Fx.

γt
i (x) = max

y∈Fx

Shi(y) = Shi(ȳ), i ∈ S,

γt
j(x) = Shj(ȳ), j /∈ S,
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C a s e 2. x, y ∈ Pi(x), i(x) ≡ i(y) and i(x) ∈ S, S ∈ ∆Ay
(N).

γt
i (x) = Shi(y), i ∈ S,

γt
j(x) = Shj(y), j /∈ S,

The vector (γℓ
1(O), . . . , γℓ

n(O)) can be considered as the value of the
multistage game with admissible partitions.
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Theorem

There exists a weak subgame perfect equilibrium in the finite
multistage game with admissible partitions.
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Example

P1 = {O}, P2 = {w1}, P3 = {w3}, P4 = {w2, w4, w5, w6}.

A = {{1}, {2}, {3}}. ∆A(N) = {{1}, {2}, {3}}. Payoffs: (2, 2, 4).

A = {{1}, {2}, {3}, {1, 2}, {2, 3}. ∆A(N) = {{1}, {2}, {3}}.
Payoffs: (2, 2, 4).

A = {{1}, {2}, {3}, {1, 3}, {2, 3}. ∆A(N) = {{1, 3}, {2}}. Payoffs:
(2.5, 3, 4.5).

A = S. ∆A(N) = {{1, 3}, {2}}. Payoffs: (2.5, 3, 4.5).
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