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OUTLINE �
•  Neutrality and non-classical information in 

control and dynamic games
•  Some caveats and counter-examples
•  Tractable problems with non-classical 

information
•  Limited action teams / games
•  Subtleties in games with noisy information 

channels (even with classical information)
•  Conclusions
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Neutrality
A stochastic control problem is neutral if, 
roughly speaking, the quality of information 
carried to future stages is independent of 
past controls. If control policies can shape
future information, then problem is non-neutral.
In this case, there is generally a conflict between 
action and probing roles of control -- dual control.
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Separation / Neutrality
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A stochastic decision problem is 
one with non-classical information,
if a decision unit, B, that follows 
another one, A, and whose actions
are coupled, does not have all the
information acquired and used by A.
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Non-classical

γ0 γ1+
w

yu0 u1x

x ~ N(0, σx
2)            w ~ N(0, σw

2) 

J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ]

J* = min min J(γ0 , γ1) 

A B



April 17, 2010  GAM

Witsenhausen (1968)

γ0 γ1+
w

yu0 u1x

QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2

optimal control law exists, but
its structure is not known
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Witsenhausen (1968)

γ0 γ1+
w

yu0 u1x

QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2

A control law that beats the best linear one: 
u0 = γ0(x) = ε sgn (x) + λ x
u1 = γ1(y) = E[ε sgn (x) + λ x | y]
   optimize wrt  ε and λ  
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Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

QTC(x, u0, u1) =  k0 (u0)2 + (u1 - x)2

optimal control law (encoder/decoder)
exists, and is linear
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Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

QGTC(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x

optimal control law (encoder/decoder)
exists, and is linear
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Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x
E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]
                        ≥ k0 α + β - sgn(b0) σx√ α
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Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x
E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]
                        ≥ k0 α + β - sgn(b0) σx√ α

DPT:          I(U0;Y) ≥ I(X;U1)
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Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x
E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]
                        ≥ k0 α + β - sgn(b0) σx√ α

(1/2)log (1+(α/ σw
2)) ≥ I(U0;Y) ≥ I(X;U1) ≥ (1/2)log (σx

2/ β) 
          C(α)                                               R(β)
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Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x
E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]
                        ≥ k0 α + β - sgn(b0) σx√ α

(1/2)log (1+(α/ σw
2)) ≥ I(U0;Y) ≥ I(X;U1) ≥ (1/2)log (σx

2/ β) 
==>          β ≥ σw

2 σx
2 / (σw

2 + α)



April 17, 2010  GAM

Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x
E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]
                        ≥ k0 α + β - sgn(b0) σx√ α

==>          β ≥ σw
2 σx

2 / (σw
2 + α)

Inequality is tight with γ0 (x) = -sgn(b0)(√ α / σx) x 
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Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x
E[Q]=F(γ0, γ1) ≥ k0 α + β - |b0| σx√ α
                        ≥ k0 α + σw

2 σx
2 / (σw

2 + α) - |b0| σx√ α

 Obtain the α that minimizes the bound --> α*
Then,   γ0

*
 (x) = -sgn(b0)(√ α* / σx) x, γ1

*(y) = E[x|y]
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Generalized Gaussian Test Channel

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x

 One of the few instances when static/causal 
 coding (and linear in this case) leads to  
attainment of equality in  C(α) ≥ R(β)
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Revisit: Witsenhausen (1968)

γ0 γ1+
w

yu0 u1x

Q(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2

Because of the product term u0 u1
the preceding analysis does not
apply here
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However, with Conflicting Objectives 

γ0 γ1+
w

yu0 u1x

QG(x, u0, u1) =  - k0 (u0 - x)2 + (u0 - u1)2

J*
 = min  max J(γ0 , γ1)

         γ1       γ0 
Unique saddle-point solution, 
control laws are linear
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However, with Conflicting Objectives 

γ0 γ1+
w

yu0 u1x

QG(x, u0, u1) =  - k0 (u0 - x)2 + (u0 - u1)2

J*
 = min  max J(γ0 , γ1)

         γ1       γ0 
γ0

*
 (x) = - [k0 / (k0 – (λ* -1)2)]x, γ1

*
 (y) = λ* y

where λ* uniquely solves the polynomial eq
f(λ) = (σw

2 / σx
2) λ[k0 – (λ -1)2]2 – k0

2(1-λ) = 0
in the open interval  (max(0, 1-√k0), 1)       
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Recap 

γ0 γ1+
w

yu0 u1x

QW =   k0 (u0 - x)2 + (u0 - u1)2       conflicting roles
QG =  - k0 (u0 - x)2 + (u0 - u1)2        aligned roles
QTC =  k0 (u0)2 + (u1 - x)2                    aligned roles

Not only the information structure but also 
the cost function is a determining factor



Extensions of the Paradigm

•  Noise corrupted access to initial state
•  Vector-valued variables
•  Stochastic LQG teams
•  Non-cooperative games

April 17, 2010  GAM
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Noise Corrupted IS

γ0 γ1+
w

yu0 u1x + v

x ~ N(0, σx
2),   w ~ N(0, σw

2),  v ~ N(0, σv
2)  

J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ]

     Similar structural results 
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Noise Corrupted IS

γ0 γ1+
w

yu0 u1x + v

GTC: for some unique positive α* 
γ0

*
 (z) = α*z,    γ1

*(y) = E[x|y];    z:= x+v

ZSSG:  for some λ*, root of  a 5th-order polynomial  
 γ0

*
 (z) = - [k0 / (k0 – (λ* -1)2)][σx

2/(σx
2 +σv

2)]z 
 γ1

*
 (y) = λ* y



Vector-Valued Variables

•  Additional difficulties even for GTC, unless 
decision variables are scalar but channels 
are vector-valued (next)

•  ZSSG is still tractable, and unique SP 
solution is linear  

April 17, 2010  GAM
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A multi-channel extension to GTC  

γ0 γ1

+
w1

y1

u0
u1x

×
λ1

y2

yn

+

+

×

×

wnλn
+

v

λi’s are nonzero constants (gains); 
x, v, wi’s are independent, Gaussian random variables
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A multi-channel extension to GTC 

γ0 γ1

+
w1

y1

u0
u1x

×
λ1

y2

yn

+

+

×

×

wnλn
+

v

yi = λi γ0(x+v) + wi
u0 = γ0(x+v) 

u1 = γ1(y1,..,yn)
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A multi-channel extension to GTC 

γ0 γ1

+
w1

y1

u0
u1x

QGTC =  k0 (u0)2 + (u1 - x)2  + b0 u0 x
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yn
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+
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A multi-channel extension to GTC 

γ0 γ1

+
w1

y1

u0
u1x

QGTC =  k0 (u0)2 + (u1 - x)2  + b0 u0 x

×
λ1

y2

yn

+

+

×

×

wnλn
+

v

yi = λi γ0(x+v) + wi
u0 = γ0(x+v) 

u1 = γ1(y1,..,yn)Optimum E/D
pair is linear !!



Stochastic LQG Teams

•  To make tractable, one needs a forward 
channel that informs agents at the front end 
on garbled decentralized information 
received at the back end  quasi-classical

•  γ0i(zi)    at back end,  i=1, …, n
•  γ1i(yi, z)   at front end   i=1, …, n
•  For quadratic teams invoke Radner (62) and 

extensions
April 17, 2010  GAM
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Vector-Valued Decision Variables�
(Decentralized)

γ0 γ1+
w

yu0 u1Cx + v 

u0i = γ0i(zi) , zi = Cix + vi,    i=1, …, n  
u1i = γ1i(z, yi) , yi = Diu0 + wi,    i=1, …, n  
 z = (z1, … , zn);  w correlated with x
J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ]
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Vector-Valued Decision Variables�
(Decentralized)

γ0 γ1+
w

yu0 u1Cx + v 

u0i = γ0i(zi) , zi = Cix + vi,    i=1, …, n  
u1i = γ1i(z, yi) , yi = Diu0 + wi,    i=1, …, n  
 z = (z1, … , zn); w correlated with x
J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ]
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  A

yA

  B   C

yB yC

Q(x, uA, uB, uC)

Radner (62): y’s jointly Gaussian distributed, 
Q strictly (jointly) convex 
          unique team optimal solution



Stochastic Nash Games

•  Again one needs a forward channel that 
informs agents at the front end on garbled 
decentralized information received at the 
back end (but not actions)  quasi-classical

•  γ0i(zi)    at back end,  i=1, …, n
•  γ1i(yi, z)   at front end   i=1, …, n
•  For quadratic games use  TB (74, 75, 78) as 

extension of Radner (62)
April 17, 2010  GAM
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  A

yA

  B   C

yB yC

Qi(x, uA, uB, uC),  i= A, B, C

Stochastic Nash Games

Nash eqm:   (ϒA, ϒB, ϒC)
     ϒA   minimizes   JA(ϒA, ϒB, ϒC);         
                     likewise for B, C
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  A

yA

  B   C

yB yC

Qi(x, uA, uB, uC),  i= A, B, C

TB (74, 75, 78):    y’s jointly Gaussian 
distributed, Qi strictly  convex + technical 
condition
          unique Nash eqm solution; linear

Stochastic Nash Games
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Extension to Multi-Stage 
Scenarios

 Dynamic Systems
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Remote Control Paradigm

P

C

sensor

network

         PI (S, C) →  optimize
        Non-classical information!

S

NNN   FB

v z

u y



Limited Usage

P

C

sensor

 Sensor
communicates 
with Control 
sparingly: M 
out of N times

                  PI →  optimize

S

NNN

v z

u y
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 Jammer 
disrupts 
intermittentlyi



Limited Usage
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out of N times
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S

NNN
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 Jammer 
disrupts 
intermittentlyi

 Threshold based 
optimal policies
Event generation
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Back to Separation / Neutrality�
Does it hold in games?
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Does it hold in games?
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reason for
neutrality in 
single player
games (control) 
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Back to Separation / Neutrality�
Does it hold in games?

P

C

+

F E

reason for
neutrality in 
single player
games (control) 

implicit 
cooperation 
between F  & E



ZSSDG with common 
measurements

dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0
dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)

         ut = γt (y0
t)                  vt = µt (y0

t) 

PI = E{ ∫0tf [ |xt|Q2 + |ut|2 - |vt|2 ] dt + |xtf|Qf
2}

minγ maxµ  J(γ, µ)      (γ*, µ*)  say SP
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ZSSDG with common 
measurements

dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0
dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)

         ut = γt (y0
t)                  vt = µt (y0

t) 

PI = E{ ∫0tf [ |xt|Q2 + |ut|2 - |vt|2 ] dt + |xtf|Qf
2}

minγ maxµ  J(γ, µ)      (γ*, µ*) 
Does certainty equivalence hold?
  -- can SP policies from deterministic game be used?
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ZSSDG with common 
measurements

dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0
dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)

         ut = γt (y0
t)                  vt = µt (y0

t) 

PI = E{ ∫0tf [ |xt|Q2 + |ut|2 - |vt|2 ] dt + |xtf|Qf
2}

minγ maxµ  J(γ, µ)      (γ*, µ*) 
Does certainty equivalence hold?  Qualified NO
Building a common filter with u, v  requires cooperation

April 17, 2010  GAM



ZSSDG with common 
measurements

dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0
dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)

         ut = γt (y0
t)                  vt = µt (y0

t) 

PI = E{ ∫0tf [ |xt|Q2 + |ut|2 - |vt|2 ] dt + |xtf|Qf
2}

minγ maxµ  J(γ, µ)      (γ*, µ*) 
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Still, there exists a common compensator, and
restricted CE/separation holds -- but not complete



NZSSDG with common 
measurements

dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0
dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)

         ut = γt (y0
t)                  vt = µt (y0

t) 

PIi = E{ ∫0tf [ |xt|Qi
2 + |ut|Ri

2 + |vt|Mi
2 ] dt + |xtf|Qfi

2}
  Ji(γ, µ)     Nash eqm (γ*, µ*) 
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NZSSDG with common 
measurements

dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0
dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)

         ut = γt (y0
t)                  vt = µt (y0

t) 

PIi = E{ ∫0tf [ |xt|Qi
2 + |ut|Ri

2 + |vt|Mi
2 ] dt + |xtf|Qfi

2}
  Ji(γ, µ)     Nash eqm (γ*, µ*) 
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CE/separation does not hold -- NE of deterministic
NZSDG cannot be used; not neutral
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Recap 

•  No general theory/approach to non-neutrality
•  Not all problems with non-classical information 

are intractable
•  It is not only the information structure but also the 

structure of the performance index that plays an 
important role in tractability vs intractability

•  With battery limitations and energy conservation 
in multi agent applications, further research on 
problems with non-classical information is needed



April 17, 2010  GAM


