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OUTLINE �
•  Neutrality and non-classical information in 

control and dynamic games

•  Some caveats and counter-examples

•  Tractable problems with non-classical 

information

•  Limited action teams / games

•  Subtleties in games with noisy information 

channels (even with classical information)

•  Conclusions
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Neutrality

A stochastic control problem is neutral if, 

roughly speaking, the quality of information 

carried to future stages is independent of 

past controls. If control policies can shape

future information, then problem is non-neutral.

In this case, there is generally a conflict between 

action and probing roles of control -- dual control.
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Separation / Neutrality
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A stochastic decision problem is 

one with non-classical information,

if a decision unit, B, that follows 

another one, A, and whose actions

are coupled, does not have all the

information acquired and used by A.




April 17, 2010  GAM


A stochastic decision problem is 

one with non-classical information,

if a decision unit, B, that follows 

another one, A, and whose actions

are coupled, does not have all the

information acquired and used by A.




April 17, 2010  GAM


  A


yA


  B
   C


yB
 yC


Q(x, uA, uB, uC)




April 17, 2010  GAM


  A


yA


  B
   C


yB
 yC


Q(x, uA, uB, uC)

versus


  A
   B
   C




April 17, 2010  GAM


Non-classical
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x ~ N(0, σx
2)            w ~ N(0, σw

2) 


J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ]


J* = min min J(γ0 , γ1) 


A
 B
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Witsenhausen (1968)
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QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2


optimal control law exists, but

its structure is not known
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Witsenhausen (1968)
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QW(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2


A control law that beats the best linear one: 

u0 = γ0(x) = ε sgn (x) + λ x

u1 = γ1(y) = E[ε sgn (x) + λ x | y]

   optimize wrt  ε and λ  
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Gaussian Test Channel
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QTC(x, u0, u1) =  k0 (u0)2 + (u1 - x)2


optimal control law (encoder/decoder)

exists, and is linear




April 17, 2010  GAM


Generalized Gaussian Test Channel
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QGTC(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x


optimal control law (encoder/decoder)

exists, and is linear
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Generalized Gaussian Test Channel
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Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x

E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]

                        ≥ k0 α + β - sgn(b0) σx√ α
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Generalized Gaussian Test Channel


γ0
 γ1
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w


y
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 u1
x


Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x

E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]

                        ≥ k0 α + β - sgn(b0) σx√ α


DPT:          I(U0;Y) ≥ I(X;U1)
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Generalized Gaussian Test Channel
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Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x

E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]

                        ≥ k0 α + β - sgn(b0) σx√ α


(1/2)log (1+(α/ σw
2)) ≥ I(U0;Y) ≥ I(X;U1) ≥ (1/2)log (σx

2/ β) 

          C(α)                                               R(β)
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Generalized Gaussian Test Channel
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E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]

                        ≥ k0 α + β - sgn(b0) σx√ α


(1/2)log (1+(α/ σw
2)) ≥ I(U0;Y) ≥ I(X;U1) ≥ (1/2)log (σx

2/ β) 

==>          β ≥ σw

2 σx
2 / (σw

2 + α)
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Generalized Gaussian Test Channel


γ0
 γ1
+

w


y
u0
 u1
x


Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x

E[Q]=F(γ0, γ1) ≥ k0 α + β + infγ b0 E[ γ0(x)x]

                        ≥ k0 α + β - sgn(b0) σx√ α


==>          β ≥ σw
2 σx

2 / (σw
2 + α)


Inequality is tight with γ0 (x) = -sgn(b0)(√ α / σx) x 
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Generalized Gaussian Test Channel


γ0
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Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x

E[Q]=F(γ0, γ1) ≥ k0 α + β - |b0| σx√ α

                        ≥ k0 α + σw

2 σx
2 / (σw

2 + α) - |b0| σx√ α


 Obtain the α that minimizes the bound --> α*

Then,   γ0

*
 (x) = -sgn(b0)(√ α* / σx) x, γ1

*(y) = E[x|y]
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Generalized Gaussian Test Channel
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Q(x, u0, u1) =  k0 (u0)2 + (u1 - x)2 + b0 u0 x


 One of the few instances when static/causal 

 coding (and linear in this case) leads to  
attainment of equality in  C(α) ≥ R(β)
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Revisit: Witsenhausen (1968)
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Q(x, u0, u1) =  k0 (u0 - x)2 + (u0 - u1)2


Because of the product term u0 u1

the preceding analysis does not

apply here
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However, with Conflicting Objectives 
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QG(x, u0, u1) =  - k0 (u0 - x)2 + (u0 - u1)2


J*
 = min  max J(γ0 , γ1)


         γ1       γ0 

Unique saddle-point solution, 
control laws are linear




April 17, 2010  GAM


However, with Conflicting Objectives 
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QG(x, u0, u1) =  - k0 (u0 - x)2 + (u0 - u1)2


J*
 = min  max J(γ0 , γ1)


         γ1       γ0 

γ0

*
 (x) = - [k0 / (k0 – (λ* -1)2)]x, γ1

*
 (y) = λ* y


where λ* uniquely solves the polynomial eq

f(λ) = (σw

2 / σx
2) λ[k0 – (λ -1)2]2 – k0

2(1-λ) = 0

in the open interval  (max(0, 1-√k0), 1)       
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Recap 


γ0
 γ1
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QW =   k0 (u0 - x)2 + (u0 - u1)2       conflicting roles

QG =  - k0 (u0 - x)2 + (u0 - u1)2        aligned roles

QTC =  k0 (u0)2 + (u1 - x)2                    aligned roles


Not only the information structure but also 
the cost function is a determining factor




Extensions of the Paradigm


•  Noise corrupted access to initial state

•  Vector-valued variables

•  Stochastic LQG teams

•  Non-cooperative games
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Noise Corrupted IS


γ0
 γ1
+

w


y
u0
 u1
x + v


x ~ N(0, σx
2),   w ~ N(0, σw

2),  v ~ N(0, σv
2)  


J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ]


     Similar structural results 
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Noise Corrupted IS
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 γ1
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GTC: for some unique positive α* 

γ0

*
 (z) = α*z,    γ1

*(y) = E[x|y];    z:= x+v


ZSSG:  for some λ*, root of  a 5th-order polynomial  

 γ0

*
 (z) = - [k0 / (k0 – (λ* -1)2)][σx

2/(σx
2 +σv

2)]z 

 γ1

*
 (y) = λ* y




Vector-Valued Variables


•  Additional difficulties even for GTC, unless 
decision variables are scalar but channels 
are vector-valued (next)


•  ZSSG is still tractable, and unique SP 
solution is linear  
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A multi-channel extension to GTC  
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λi’s are nonzero constants (gains); 

x, v, wi’s are independent, Gaussian random variables
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A multi-channel extension to GTC 
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u1 = γ1(y1,..,yn)




April 17, 2010  GAM


A multi-channel extension to GTC 
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A multi-channel extension to GTC 
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QGTC =  k0 (u0)2 + (u1 - x)2  + b0 u0 x


×
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wn
λn

+


v


yi = λi γ0(x+v) + wi

u0 = γ0(x+v) 


u1 = γ1(y1,..,yn)
Optimum E/D

pair is linear !!




Stochastic LQG Teams


•  To make tractable, one needs a forward 
channel that informs agents at the front end 
on garbled decentralized information 
received at the back end  quasi-classical


•  γ0i(zi)    at back end,  i=1, …, n

•  γ1i(yi, z)   at front end   i=1, …, n

•  For quadratic teams invoke Radner (62) and 

extensions

April 17, 2010  GAM




April 17, 2010  GAM


Vector-Valued Decision Variables�
(Decentralized)
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u0i = γ0i(zi) , zi = Cix + vi,    i=1, …, n  

u1i = γ1i(z, yi) , yi = Diu0 + wi,    i=1, …, n  

 z = (z1, … , zn);  w correlated with x

J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ]
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Q(x, uA, uB, uC)


Radner (62): y’s jointly Gaussian distributed, 
Q strictly (jointly) convex 

          unique team optimal solution




Stochastic Nash Games


•  Again one needs a forward channel that 
informs agents at the front end on garbled 
decentralized information received at the 
back end (but not actions)  quasi-classical


•  γ0i(zi)    at back end,  i=1, …, n

•  γ1i(yi, z)   at front end   i=1, …, n

•  For quadratic games use  TB (74, 75, 78) as 

extension of Radner (62)
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Qi(x, uA, uB, uC),  i= A, B, C


Stochastic Nash Games


Nash eqm:   (ϒA, ϒB, ϒC)

     ϒA   minimizes   JA(ϒA, ϒB, ϒC);         

                     likewise for B, C
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Qi(x, uA, uB, uC),  i= A, B, C


TB (74, 75, 78):    y’s jointly Gaussian 
distributed, Qi strictly  convex + technical 
condition

          unique Nash eqm solution; linear


Stochastic Nash Games
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Extension to Multi-Stage 

Scenarios


 Dynamic Systems
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Remote Control Paradigm
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        Non-classical information!
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Limited Usage
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 Jammer 
disrupts 
intermittentlyi
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 Jammer 
disrupts 
intermittentlyi


 Threshold based 
optimal policies

Event generation
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Back to Separation / Neutrality�
Does it hold in games?
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Back to Separation / Neutrality�
Does it hold in games?
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reason for

neutrality in 

single player

games (control) 


implicit 

cooperation 

between F  & E




ZSSDG with common 
measurements


dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0

dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)


         ut = γt (y0
t)                  vt = µt (y0

t) 


PI = E{ ∫0tf [ |xt|Q2 + |ut|2 - |vt|2 ] dt + |xtf|Qf
2}


minγ maxµ  J(γ, µ)      (γ*, µ*)  say SP
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ZSSDG with common 
measurements


dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0

dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)


         ut = γt (y0
t)                  vt = µt (y0

t) 


PI = E{ ∫0tf [ |xt|Q2 + |ut|2 - |vt|2 ] dt + |xtf|Qf
2}


minγ maxµ  J(γ, µ)      (γ*, µ*) 

Does certainty equivalence hold?

  -- can SP policies from deterministic game be used?
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ZSSDG with common 
measurements


dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0

dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)


         ut = γt (y0
t)                  vt = µt (y0

t) 


PI = E{ ∫0tf [ |xt|Q2 + |ut|2 - |vt|2 ] dt + |xtf|Qf
2}


minγ maxµ  J(γ, µ)      (γ*, µ*) 

Does certainty equivalence hold?  Qualified NO

Building a common filter with u, v  requires cooperation
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ZSSDG with common 
measurements


dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0

dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)


         ut = γt (y0
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Still, there exists a common compensator, and

restricted CE/separation holds -- but not complete




NZSSDG with common 
measurements


dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0

dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)


         ut = γt (y0
t)                  vt = µt (y0

t) 


PIi = E{ ∫0tf [ |xt|Qi
2 + |ut|Ri

2 + |vt|Mi
2 ] dt + |xtf|Qfi

2}

  Ji(γ, µ)     Nash eqm (γ*, µ*) 
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NZSSDG with common 
measurements


dxt  = (Axt + But + Dvt) dt + F dξt ,  t ≥ 0

dyt  = Hxt dt + G dwt ,   y0 = 0  (common measurement)


         ut = γt (y0
t)                  vt = µt (y0

t) 


PIi = E{ ∫0tf [ |xt|Qi
2 + |ut|Ri

2 + |vt|Mi
2 ] dt + |xtf|Qfi

2}

  Ji(γ, µ)     Nash eqm (γ*, µ*) 
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CE/separation does not hold -- NE of deterministic

NZSDG cannot be used; not neutral
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Recap 



•  No general theory/approach to non-neutrality

•  Not all problems with non-classical information 

are intractable

•  It is not only the information structure but also the 

structure of the performance index that plays an 
important role in tractability vs intractability


•  With battery limitations and energy conservation 
in multi agent applications, further research on 
problems with non-classical information is needed
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