Non-Neutral Decision Making in Stochastic Teams and Games

TAMER BAȘAR
Beckman Institute Dept ECE, CAS, CSL and ITI, UIUC basar1@illinois.edu

GAM Workshop
University of Warwick, Coventry
April 14-17, 2010

OUTLINE

- Neutrality and non-classical information in control and dynamic games
- Some caveats and counter-examples
- Tractable problems with non-classical information
- Limited action teams / games
- Subtleties in games with noisy information channels (even with classical information)
- Conclusions

Neutrality

A stochastic control problem is neutral if, roughly speaking, the quality of information carried to future stages is independent of past controls. If control policies can shape future information, then problem is non-neutral. In this case, there is generally a conflict between action and probing roles of control -- dual control.

Separation / Neutrality

April 17, 2010 GAM

A stochastic decision problem is one with non-classical information, if a decision unit, B, that follows another one, \mathbf{A}, and whose actions are coupled, does not have all the information acquired and used by \mathbf{A}.

A stochastic decision problem is

 one with non-classical information, if a decision unit, \mathbf{B}, that follows another one, A, and whose actions are coupled, does not have all the information acquired and used by \mathbf{A}.

April 17, 2010 GAM

versus

April 17, 2010 GAM

Non-classical

$$
\mathrm{x} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{x}}^{2}\right) \quad \mathrm{w} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{w}}^{2}\right)
$$

$$
\mathrm{J}\left(\gamma_{0}, \gamma_{1}\right)=\mathrm{E}\left[\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right) \mid \gamma_{0}, \gamma_{1}\right]
$$

$\mathrm{J}^{*}=\min \min \mathrm{J}\left(\gamma_{0}, \gamma_{1}\right)$

Witsenhausen (1968)

$\mathrm{Q}_{\mathrm{W}}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}-\mathrm{x}\right)^{2}+\left(\mathrm{u}_{0}-\mathrm{u}_{1}\right)^{2}$
\square optimal control law exists, but its structure is not known

Witsenhausen (1968)

$\mathrm{Q}_{\mathrm{W}}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}-\mathrm{x}\right)^{2}+\left(\mathrm{u}_{0}-\mathrm{u}_{1}\right)^{2}$
A control law that beats the best linear one:
$\mathrm{u}_{0}=\gamma_{0}(\mathrm{x})=\varepsilon \operatorname{sgn}(\mathrm{x})+\lambda \mathrm{x}$
$\mathrm{u}_{1}=\gamma_{1}(\mathrm{y})=E[\varepsilon \operatorname{sgn}(\mathrm{x})+\lambda \mathrm{x} \mid \mathrm{y}]$
optimize wrt ε and

Gaussian Test Channel

$\mathrm{Q}_{\mathrm{TC}}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}$
\square optimal control law (encoder/decoder) exists, and is linear

Generalized Gaussian Test Channel

$\mathrm{Q}_{\mathrm{GTC}}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}$
\Longrightarrow optimal control law (encoder/decoder) exists, and is linear

Generalized Gaussian Test Channel

$\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}$
$\mathrm{E}[\mathrm{Q}]=\mathrm{F}\left(\gamma_{0}, \gamma_{1}\right) \geq \mathrm{k}_{0} \alpha+\beta+\inf _{\gamma} \mathrm{b}_{0} \mathrm{E}\left[\gamma_{0}(\mathrm{x}) \mathrm{x}\right]$
$\geq k_{0} \alpha+\beta-\operatorname{sgn}\left(b_{0}\right) \sigma_{x} \sqrt{ } \alpha$

Generalized Gaussian Test Channel

$\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}$ $\mathrm{E}[\mathrm{Q}]=\mathrm{F}\left(\gamma_{0}, \gamma_{1}\right) \geq \mathrm{k}_{0} \alpha+\beta+\inf _{\gamma} \mathrm{b}_{0} \mathrm{E}\left[\gamma_{0}(\mathrm{x}) \mathrm{x}\right]$
$\geq \mathrm{k}_{0} \alpha+\beta-\operatorname{sgn}\left(\mathrm{b}_{0}\right) \sigma_{\mathrm{x}} \sqrt{ } \alpha$
DPT: $\quad \mathrm{I}\left(\mathrm{U}_{0} ; \mathrm{Y}\right) \geq \mathrm{I}\left(\mathrm{X} ; \mathrm{U}_{1}\right)$

April 17, 2010 GAM

Generalized Gaussian Test Channel

$\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}$
$\mathrm{E}[\mathrm{Q}]=\mathrm{F}\left(\gamma_{0}, \gamma_{1}\right) \geq \mathrm{k}_{0} \alpha+\beta+\mathrm{inf}_{\gamma} \mathrm{b}_{0} \mathrm{E}\left[\gamma_{0}(\mathrm{x}) \mathrm{x}\right]$
$\geq \mathrm{k}_{0} \alpha+\beta-\operatorname{sgn}\left(\mathrm{b}_{0}\right) \sigma_{\mathrm{x}} \sqrt{ } \alpha$
$(1 / 2) \log \left(1+\left(\alpha / \sigma_{w}{ }^{2}\right)\right) \geq \mathrm{I}\left(\mathrm{U}_{0} ; \mathrm{Y}\right) \geq \mathrm{I}\left(\mathrm{X} ; \mathrm{U}_{1}\right) \geq(1 / 2) \log \left(\sigma_{\mathrm{x}}{ }^{2} / \beta\right)$ $C(\alpha)$

Generalized Gaussian Test Channel

$\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}$
$\mathrm{E}[\mathrm{Q}]=\mathrm{F}\left(\gamma_{0}, \gamma_{1}\right) \geq \mathrm{k}_{0} \alpha+\beta+\mathrm{inf}_{\gamma} \mathrm{b}_{0} \mathrm{E}\left[\gamma_{0}(\mathrm{x}) \mathrm{x}\right]$
$\geq \mathrm{k}_{0} \alpha+\beta-\operatorname{sgn}\left(\mathrm{b}_{0}\right) \sigma_{\mathrm{x}} \sqrt{ } \alpha$
$(1 / 2) \log \left(1+\left(\alpha / \sigma_{w}{ }^{2}\right)\right) \geq \mathrm{I}\left(\mathrm{U}_{0} ; \mathrm{Y}\right) \geq \mathrm{I}\left(\mathrm{X} ; \mathrm{U}_{1}\right) \geq(1 / 2) \log \left(\mathrm{\sigma}_{\mathrm{x}}{ }^{2} / \beta\right)$ $\Rightarrow \quad \beta \geq \sigma_{w}^{2} \sigma_{x}^{2} /\left(\sigma_{w}^{2}+\alpha\right)$

Generalized Gaussian Test Channel

$\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}$
$\mathrm{E}[\mathrm{Q}]=\mathrm{F}\left(\gamma_{0}, \gamma_{1}\right) \geq \mathrm{k}_{0} \alpha+\beta+\inf _{\gamma} \mathrm{b}_{0} \mathrm{E}\left[\gamma_{0}(\mathrm{x}) \mathrm{x}\right]$
$\geq \mathrm{k}_{0} \alpha+\beta-\operatorname{sgn}\left(\mathrm{b}_{0}\right) \sigma_{\mathrm{x}} \sqrt{ } \alpha$
$\Rightarrow \quad \beta \geq \sigma_{\mathrm{w}}{ }^{2} \sigma_{\mathrm{x}}{ }^{2} /\left(\sigma_{\mathrm{w}}{ }^{2}+\alpha\right)$
Inequality is tight with $\gamma_{0}(x)=-\operatorname{sgn}\left(b_{0}\right)\left(\sqrt{ } \alpha / \sigma_{x}\right) x$

Generalized Gaussian Test Channel

$\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}$
$\mathrm{E}[\mathrm{Q}]=\mathrm{F}\left(\gamma_{0}, \gamma_{1}\right) \geq \mathrm{k}_{0} \alpha+\beta-\left|\mathrm{b}_{0}\right| \sigma_{\mathrm{x}} \sqrt{ } \alpha$

$$
\geq k_{0} \alpha+\sigma_{w}{ }^{2} \sigma_{x}{ }^{2} /\left(\sigma_{w}{ }^{2}+\alpha\right)-\left|b_{0}\right| \sigma_{x} \sqrt{ } \alpha
$$

Obtain the α that minimizes the bound --> α^{4} Then, $\gamma_{0}{ }^{*}(\mathrm{x})=-\operatorname{sgn}\left(\mathrm{b}_{0}\right)\left(\sqrt{ } \alpha^{*} / \sigma_{x}\right) \mathrm{x}, \gamma_{1}{ }^{*}(\mathrm{y})=\mathrm{E}[\mathrm{x} \mid \mathrm{y}]$

Generalized Gaussian Test Channel

$$
\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2}+\mathrm{b}_{0} \mathrm{u}_{0} \mathrm{x}
$$

One of the few instances when static/causal coding (and linear in this case) leads to attainment of equality in $C(\alpha) \geq R(\beta)$

Revisit: Witsenhausen (1968)

$$
\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=\mathrm{k}_{0}\left(\mathrm{u}_{0}-\mathrm{x}\right)^{2}+\left(\mathrm{u}_{0}-\mathrm{u}_{1}\right)^{2}
$$

Because of the product term $\mathrm{u}_{0} \mathrm{u}_{1}$ the preceding analysis does not apply here

April 17, 2010 GAM

However, with Conflicting Objectives

$\mathrm{Q}_{\mathrm{G}}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=-\mathrm{k}_{0}\left(\mathrm{u}_{0}-\mathrm{x}\right)^{2}+\left(\mathrm{u}_{0}-\mathrm{u}_{1}\right)^{2}$
$\mathrm{J}_{*}=\min \max \mathrm{J}\left(\gamma_{0}, \gamma_{1}\right)$
$\gamma_{1} \quad \gamma_{0}$
\Rightarrow Unique saddle-point solution, control laws are linear

However, with Conflicting Objectives

$$
\mathrm{Q}_{\mathrm{G}}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right)=-\mathrm{k}_{0}\left(\mathrm{u}_{0}-\mathrm{x}\right)^{2}+\left(\mathrm{u}_{0}-\mathrm{u}_{1}\right)^{2}
$$

$$
\gamma_{0}^{*}(\mathbf{x})=-\left[\mathbf{k}_{0} /\left(\mathbf{k}_{0}-\left(\lambda^{*}-1\right)^{2}\right)\right] \mathbf{x}, \gamma_{1}^{*}(\mathbf{y})=\lambda^{*} \mathbf{y}
$$ where λ^{*} uniquely solves the polynomial eq $f(\lambda)=\left(\sigma_{w}{ }^{2} / \sigma_{x}^{2}\right) \lambda\left[k_{0}-(\lambda-1)^{2}\right]^{2}-k_{0}^{2}(1-\lambda)=0$ in the open interval $\left(\max \left(0,1-\sqrt{ } \mathrm{k}_{0}\right), 1\right)$

Recap

$\mathrm{Q}_{\mathrm{W}}=\mathrm{k}_{0}\left(\mathrm{u}_{0}-\mathrm{x}\right)^{2}+\left(\mathrm{u}_{0}-\mathrm{u}_{1}\right)^{2}$
conflicting roles
$\mathrm{Q}_{\mathrm{G}}=-\mathrm{k}_{0}\left(\mathrm{u}_{0}-\mathrm{x}\right)^{2}+\left(\mathrm{u}_{0}-\mathrm{u}_{1}\right)^{2} \quad$ aligned roles
$\mathrm{Q}_{\mathrm{TC}}=\mathrm{k}_{0}\left(\mathrm{u}_{0}\right)^{2}+\left(\mathrm{u}_{1}-\mathrm{x}\right)^{2} \quad$ aligned roles

Not only the information structure but also the cost function is a determining factor

Extensions of the Paradigm

- Noise corrupted access to initial state
- Vector-valued variables
- Stochastic LQG teams
- Non-cooperative games

Noise Corrupted IS

$$
\mathrm{x} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{x}}^{2}\right), \mathrm{w} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{w}}{ }^{2}\right), \mathrm{v} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{v}}{ }^{2}\right)
$$

$$
\mathrm{J}\left(\gamma_{0}, \gamma_{1}\right)=\mathrm{E}\left[\mathrm{Q}\left(\mathrm{x}, \mathrm{u}_{0}, \mathrm{u}_{1}\right) \mid \gamma_{0}, \gamma_{1}\right]
$$

\rightarrow Similar structural results

Noise Corrupted IS

GTC: for some unique positive α^{*}
$\gamma_{0}{ }^{*}(\mathrm{z})=\alpha^{*} \mathbf{z}, \quad \gamma_{1}{ }^{*}(\mathbf{y})=\mathrm{E}[\mathbf{x} \mid \mathbf{y}] ; \quad \mathbf{z}:=\mathbf{x}+\mathbf{v}$
ZSSG: for some λ^{*}, root of a $5^{\text {th }}$-order polynomial $\gamma_{0}{ }^{*}(\mathbf{z})=-\left[\mathrm{k}_{0} /\left(\mathrm{k}_{0}-\left(\lambda^{*}-1\right)^{2}\right)\right]\left[\sigma_{\mathrm{x}}^{2} /\left(\sigma_{\mathrm{x}}^{2}+\sigma_{\mathrm{v}}^{2}\right)\right] \mathbf{z}$
$\gamma_{1}{ }^{*}(\mathbf{y})=\lambda^{*} \mathbf{y}$

Vector-Valued Variables

- Additional difficulties even for GTC, unless decision variables are scalar but channels are vector-valued (next)
- ZSSG is still tractable, and unique SP solution is linear

A multi-channel extension to GTC

λ_{i} 's are nonzero constants (gains);
$\mathrm{x}, \mathrm{v}, \mathrm{w}_{\mathrm{i}}$'s are independent, Gaussian random variables

A multi-channel extension to GTC

April 17, 2010 GAM

A multi-channel extension to GTC

April 17, 2010 GAM

A multi-channel extension to GTC

Stochastic LQG Teams

- To make tractable, one needs a forward channel that informs agents at the front end on garbled decentralized information received at the back end $\boldsymbol{\rightarrow}$ quasi-classical
- $\gamma_{0 i}\left(\mathrm{z}_{\mathrm{i}}\right)$ at back end, $\mathrm{i}=1, \ldots, \mathrm{n}$
- $\gamma_{1 i}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{z}\right)$ at front end $\mathrm{i}=1, \ldots, \mathrm{n}$
- For quadratic teams invoke Radner (62) and extensions

Vector-Valued Decision Variables (Decentralized)

$$
\begin{aligned}
& u_{0 i}=\gamma_{0}\left(z_{i}\right), z_{i}=C_{i} x+v_{i}, \quad i=1, \ldots, n \\
& u_{1 i}=\gamma_{1 i}\left(z, y_{i}\right), y_{i}=D_{i} u_{0}+w_{i}, \quad i=1, \ldots, n \\
& z=\left(z_{1}, \ldots, z_{n}\right) ; \text { w correlated with } x \\
& \mathrm{z}\left(\gamma_{0}, \gamma_{1}\right)=E\left[Q\left(x, u_{0}, u_{1}\right) \mid \gamma_{0}, \gamma_{1}\right]
\end{aligned}
$$

Vector-Valued Decision Variables (Decentralized)

$$
\begin{aligned}
& u_{0 i}=\gamma_{0 i}\left(z_{i}\right), z_{i}=C_{i} x+v_{i}, \quad i=1, \ldots, n \\
& u_{1 i}=\gamma_{1 i}\left(z, y_{i}\right), y_{i}=D_{i} u_{0}+w_{i}, \quad i=1, \ldots, n \\
& z=\left(z_{1}, \ldots, z_{n}\right) ; \text { w correlated with } x \\
& J\left(\gamma_{0}, \gamma_{1}\right)=E\left[Q\left(x, u_{0}, u_{1}\right) \mid \gamma_{0}, \gamma_{1}\right]
\end{aligned}
$$

Radner (62): y's jointly Gaussian distributed, Q strictly (jointly) convex
\Rightarrow unique team optimal solution

Stochastic Nash Games

- Again one needs a forward channel that informs agents at the front end on garbled decentralized information received at the back end (but not actions) \rightarrow quasi-classical
- $\gamma_{0 i}\left(z_{i}\right)$ at back end, $\mathrm{i}=1, \ldots, \mathrm{n}$
- $\gamma_{1 i}\left(y_{i}, z\right)$ at front end $\mathrm{i}=1, \ldots, \mathrm{n}$
- For quadratic games use $T B(74,75,78)$ as extension of Radner (62)

Nash eqm: $\left(\Upsilon_{A}, \Upsilon_{B}, \Upsilon_{C}\right)$ Υ_{A} minimizes $J_{A}\left(\Upsilon_{A}, r_{B}, \Upsilon_{C}\right)$; likewise for B, C

TB (74, 75, 78): y's jointly Gaussian distributed, Q_{i} strictly convex + technical condition
\rightarrow unique Nash eqm solution; linear

Extension to Multi-Stage Scenarios Dynamic Systems

Remote Control Paradigm

PI (S, C) \rightarrow optimize
Non-classical information!
April 17, 2010 GAM

Limited Usage

PI \rightarrow optimize

Limited Usage

Controller communicates with Plant

PI \rightarrow optimize

April 17, 2010 GAM

Jammer
 disrupts
 Limited Usage

 intermittently
sensor

> Sensor communicates with Control sparingly: M out of N times

Controller communicates with Plant intermittently

PI \rightarrow optimize

April 17, 2010 GAM

Jammer
disrupts

Limited Usage

 intermittently
sensor

Sensor communicates with Control sparingly: M out of N times communicates with Plant

PI \rightarrow optimize intermittently

Back to Separation / Neutrality

 Does it hold in games?

April 17, 2010 GAM

Back to Separation / Neutrality

 Does it hold in games?

April 17, 2010 GAM

Back to Separation / Neutrality

April 17, 2010 GAM

Back to Separation / Neutrality

ZSSDG with common measurements

$$
\begin{aligned}
& \mathrm{dx}_{\mathrm{t}}=\left(\mathrm{Ax}_{\mathrm{t}}+\mathrm{Bu}_{\mathrm{t}}+\mathrm{Dv}_{\mathrm{t}}\right) \mathrm{dt}+\mathrm{Fd} \xi_{\mathrm{t}}, \mathrm{t} \geq 0 \\
& \mathrm{dy}_{\mathrm{t}}=\mathrm{Hx}_{\mathrm{t}} \mathrm{dt}^{2}+\mathrm{Gdw}_{\mathrm{t}}, \quad \mathrm{y}_{0}=0 \text { (common measurement) } \\
& \mathrm{u}_{\mathrm{t}}=\gamma_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right) \quad \mathrm{v}_{\mathrm{t}}=\mu_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right) \\
& \mathrm{PI}=\mathrm{E}\left\{\int_{0}^{\mathrm{tf}_{f}}\left[\left|\mathrm{x}_{\mathrm{t}} \mathrm{l}_{\mathrm{Q}}{ }^{2}+\left|\mathrm{u}_{\mathrm{t}}{ }^{2}-\left|\mathrm{v}_{\mathrm{t}}\right|^{2}\right] \mathrm{dt}+\right| \mathrm{xx}_{\mathrm{tt}} \mathrm{Q}_{\mathrm{i}}^{2}\right\}\right. \\
& \min _{\gamma} \max _{\mu} \mathrm{J}(\gamma, \mu) \rightarrow\left(\gamma^{*}, \mu^{*}\right) \text { say SP }
\end{aligned}
$$

ZSSDG with common measurements

$d x_{t}=\left(A x_{t}+B u_{t}+D v_{t}\right) d t+F d \xi_{t}, t \geq 0$
$\mathrm{dy}_{\mathrm{t}}=\mathrm{Hx}_{\mathrm{t}} \mathrm{dt}_{\mathrm{t}}+\mathrm{Gdw}_{\mathrm{t}}, \quad \mathrm{y}_{0}=0$ (common measurement)

$$
\mathrm{u}_{\mathrm{t}}=\mathrm{r}_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right) \quad \mathrm{v}_{\mathrm{t}}=\mu_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right)
$$

$\mathrm{PI}=\mathrm{E}\left\{\int_{0}^{\mathrm{tf}_{f}}\left[\left|\mathrm{x}_{\mathrm{t}}\right|_{\mathrm{Q}}{ }^{2}+\left|\mathrm{u}_{\mathrm{t}}{ }^{2}-\left|\mathrm{v}_{\mathrm{t}}\right|^{2}\right] \mathrm{dt}+\mid \mathrm{x}_{\mathrm{tt}} \mathrm{tef}_{\mathrm{i}}^{2}\right\}\right.$ $\min _{\gamma} \max _{\mu} \mathrm{J}(\gamma, \mu) \rightarrow\left(\gamma^{*}, \mu^{*}\right)$
Does certainty equivalence hold?
-- can SP policies from deterministic game be used?

ZSSDG with common measurements

$d x_{t}=\left(A x_{t}+B u_{t}+D v_{t}\right) d t+F d \xi_{t}, t \geq 0$
$\mathrm{dy}_{\mathrm{t}}=\mathrm{Hx}_{\mathrm{t}} \mathrm{dt}+\mathrm{Gdw}_{\mathrm{t}}, \quad \mathrm{y}_{0}=0$ (common measurement)

$$
\mathrm{u}_{\mathrm{t}}=\gamma_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right) \quad \mathrm{v}_{\mathrm{t}}=\mu_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right)
$$

$\mathrm{PI}=\mathrm{E}\left\{\int_{0}^{\mathrm{tf}}\left[\left|\mathrm{x}_{\mathrm{t}}\right|_{\mathrm{Q}}{ }^{2}+\left|\mathrm{u}_{\mathrm{t}}{ }^{2}-\left|\mathrm{v}_{\mathrm{t}}\right|^{2}\right] \mathrm{dt}+\left|\mathrm{x}_{\mathrm{tf}}\right|_{\mathrm{ef}}^{2}\right\}\right.$ $\min _{\gamma} \max _{\mu} \mathrm{J}(\gamma, \mu) \rightarrow\left(\gamma^{*}, \mu^{*}\right)$
Does certainty equivalence hold? Qualified NO
Building a common filter with u, v requires cooperation

ZSSDG with common measurements

$$
\begin{aligned}
& d x_{t}=\left(A x_{t}+B u_{t}+D v_{t}\right) d t+F d \xi_{t}, t \geq 0 \\
& \mathrm{dy}_{\mathrm{t}}=\mathrm{Hx}_{\mathrm{t}} \mathrm{dt}+\mathrm{Gdw}_{\mathrm{t}}, \quad \mathrm{y}_{0}=0 \text { (common measurement) } \\
& \mathrm{u}_{\mathrm{t}}=\gamma_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right) \quad \mathrm{v}_{\mathrm{t}}=\mu_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right) \\
& \mathrm{PI}=\mathrm{E}\left\{\int_{0}^{\mathrm{tf}^{2}}\left[\left|\mathrm{x}_{\mathrm{t}} \mathrm{Q}^{2}+\left|\mathrm{u}_{\mathrm{t}}{ }^{2}-\left|\mathrm{v}_{\mathrm{t}}\right|^{2}\right] \mathrm{dt}+\right| \mathrm{Ix}_{\mathrm{tt}} \mathrm{Qi}_{\mathrm{i}}^{2}\right\}\right. \\
& \min _{\gamma} \max _{\mu} \mathrm{J}(\gamma, \mu) \rightarrow\left(\gamma^{*}, \mu^{*}\right)
\end{aligned}
$$

Still, there exists a common compensator, and restricted CE/separation holds -- but not complete

NZSSDG with common

 measurements$$
d x_{t}=\left(A x_{t}+B u_{t}+D v_{t}\right) d t+F d \xi_{t}, t \geq 0
$$

$$
\mathrm{dy}_{\mathrm{t}}=\mathrm{Hx}_{\mathrm{t}} \mathrm{dt}+\mathrm{Gdw}_{\mathrm{t}}, \quad \mathrm{y}_{0}=0 \text { (common measurement) }
$$

$$
u_{t}=\gamma_{t}\left(y_{0}{ }^{t}\right) \quad v_{t}=\mu_{t}\left(y_{0}{ }^{t}\right)
$$

Pli $=E\left\{\int_{0}^{\mathrm{tf}_{f}}\left[\left|\mathrm{x}_{\mathrm{t}}\right|_{Q i}{ }^{2}+\left|\mathrm{u}_{\mathrm{t}}\right|_{\mathrm{Ri}}{ }^{2}+\left|\mathrm{v}_{\mathrm{t}}\right|_{\mathrm{Mi}}{ }^{2}\right] \mathrm{dt}+\left|\mathrm{X}_{\mathrm{tf}}\right|_{Q f i}{ }^{2}\right\}$
$\Rightarrow \mathrm{J}_{\mathrm{i}}(\gamma, \mu) \Rightarrow \operatorname{Nash} \operatorname{eqm}\left(\gamma^{*}, \mu^{*}\right)$

NZSSDG with common measurements

$$
\mathrm{PIi}=\mathrm{E}\left\{\int_{0}^{\mathrm{tf}_{f}}\left[\left|\mathrm{x}_{\mathrm{t}} \mathrm{l}_{\mathrm{i}}{ }^{2}+\left|\mathrm{u}_{\mathrm{t}}\right|\right|_{\mathrm{Ri}}{ }^{2}+\left|\mathrm{v}_{\mathrm{t}}\right|_{\mathrm{Mi}}^{2}\right] \mathrm{dt}+\left|\mathrm{x}_{\mathrm{tf}}\right|_{\mathrm{Qfi}}^{2}\right\}
$$

$$
\Rightarrow \mathrm{J}_{\mathrm{i}}(\gamma, \mu) \rightarrow \operatorname{Nash} \operatorname{eqm}\left(\gamma^{*}, \mu^{*}\right)
$$

CE/separation does not hold -- NE of deterministic NZSDG cannot be used; not neutral

$$
\begin{aligned}
& d x_{t}=\left(A x_{t}+B u_{t}+D v_{t}\right) d t+F d \xi_{t}, t \geq 0 \\
& \mathrm{dy}_{\mathrm{t}}=\mathrm{Hx}_{\mathrm{t}} \mathrm{dt}_{\mathrm{t}}+\mathrm{Gdw}_{\mathrm{t}}, \quad \mathrm{y}_{0}=0 \text { (common mesasurement) } \\
& \mathrm{u}_{\mathrm{t}}=\gamma_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right) \quad \mathrm{v}_{\mathrm{t}}=\mu_{\mathrm{t}}\left(\mathrm{y}_{0}{ }^{\mathrm{t}}\right)
\end{aligned}
$$

Recap

- No general theory/approach to non-neutrality
- Not all problems with non-classical information are intractable
- It is not only the information structure but also the structure of the performance index that plays an important role in tractability vs intractability
- With battery limitations and energy conservation in multi agent applications, further research on problems with non-classical information is needed

THANKS!

April 17, 2010 GAM

