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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

Prior-Posterior

» let § € © be a parameter of a statistical model, say M(9).
E.g. O cRY, 0 e N, © € {0,1}4
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MAP and Bayesian estimators

Prior-Posterior

» let § € © be a parameter of a statistical model, say M(9).
E.g. O eRY, 0 e N O € {0,1}¢

» In Bayesian Statistics one assumes 6 is random, i.e. there exists a prior
probability distribution p(#) on © s.t. in absence of additional information

0 ~ p(0).
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

Prior-Posterior

» let § € © be a parameter of a statistical model, say M(9).
E.g. O eRY, 0 e N O € {0,1}¢

» In Bayesian Statistics one assumes 6 is random, i.e. there exists a prior
probability distribution p(#) on © s.t. in absence of additional information
0 ~ p(0).

> yi,...,y, € Y- data
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

Prior-Posterior

>

let 6 € © be a parameter of a statistical model, say M(9).

E.g. O eRY, 0 e N O € {0,1}¢

» In Bayesian Statistics one assumes 6 is random, i.e. there exists a prior
probability distribution p(#) on © s.t. in absence of additional information
0 ~ p(0).

Yi,.--,¥n € Y'- data

1(8]y1,...,yn) - the likelihood function for the model M(6)

vy
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

Prior-Posterior

>

let 6 € © be a parameter of a statistical model, say M(9).

E.g. O eRY, 0 e N O € {0,1}¢

» In Bayesian Statistics one assumes 6 is random, i.e. there exists a prior
probability distribution p(#) on © s.t. in absence of additional information
0 ~ p(0).

Yi,.--,¥n € Y'- data

1(8]y1,...,yn) - the likelihood function for the model M(6)

Example: Consider a diffusion model M(0) where 6 = (u, o)

vvyy

dX; = pdt + odB,
observed at discrete time points (fo, t1,...,ty) @S (X, Xzs - - - Xzy)
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

Prior-Posterior

» let § € © be a parameter of a statistical model, say M(9).
E.g. O eRY, 0 e N O € {0,1}¢

» In Bayesian Statistics one assumes 6 is random, i.e. there exists a prior
probability distribution p(#) on © s.t. in absence of additional information
0 ~ p(0).

> yi,...,y, € Y- data

1(0]y1, ..., y.) - the likelihood function for the model M(6)

» Example: Consider a diffusion model M(0) where 6 = (u, o)

v

dX; = pdt + odB,

observed at discrete time points (fo, t1,...,ty) @S (X, Xzs - - - Xzy)
» The likelihood function is

N N
l(0|xt07xt1 yoee e 7X[N) = H l(glxtiﬂ‘xfi—l) = H (bN(/.L(t,'ft,;l),o’z(fift,',l)) (xt, — Xy )
i=1

i=1
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

Posterior and uncertainty quantification

» The posterior distribution is then

__pO)Oly, .-, n)
JoPO)1(O]y1,.. ., ya)dO

7T(9) = 77(9|_)71, cee ,Yn)
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Uncertainty quantification
MAP and Bayesian estimators

Posterior and uncertainty quantification

» The posterior distribution is then

__pO)Oly, .-, n)
JoPO)1(O]y1,.. ., ya)dO

» This posterior summarises uncertainty about the parameter § € © and is used
for all inferential questions like credible sets, decision making, prediction,
model choice, etc.

7T(9) = 77(9|_)71, cee ,Yn)
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

Posterior and uncertainty quantification

» The posterior distribution is then

— p@)Oly1, ..., yn)
m(O) = w30 = GGyl

» This posterior summarises uncertainty about the parameter § € © and is used
for all inferential questions like credible sets, decision making, prediction,
model choice, etc.

» In the diffusion example predicting the value of the diffusion at time 7 > #y
would amount to repeating the following steps:

1. sample 0 = (u,0) ~ w(6)
2. sample X, ~ N(x,, + pu(t — tv), o*(t — tv))
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the MAP estimator

» One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say Oyap.
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the MAP estimator

» One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say Oyap.

Opap = argmax,m(0) = argmax, {p(@)l(&\yl, e ,y,,)}
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the MAP estimator

» One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say Oyap.

Opap = argmax,m(0) = argmax, {p(@)l(&\yl, e ,y,,)}

» Computing 0y4p Mmay be nontrivial, especially if 7(6) is multimodal.
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the MAP estimator

>

One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say Oyap.

Opap = argmax,m(0) = argmax, {p(@)l(&\yl, e ,y,,)}

v

Computing 84 may be nontrivial, especially if 7(0) is multimodal.
There are specialised algorithms for doing this.

v
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the MAP estimator

>

One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say Oyap.

Opap = argmax,m(0) = argmax, {p(@)l(&\yl, e ,y,,)}

v

Computing 84 may be nontrivial, especially if 7(0) is multimodal.
There are specialised algorithms for doing this.

Some non-bayesian statistical inference approaches can be rewritten as
bayesian MAP estimators (for example the LASSO).

v

v
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MAP and Bayesian estimators

the Bayesian estimator

» Bayesian estimator is an estimator that minimizes the posterior expected
value of a loss function.
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the Bayesian estimator

» Bayesian estimator is an estimator that minimizes the posterior expected
value of a loss function.

» The loss function
L(,'):®x O =R
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the Bayesian estimator

» Bayesian estimator is an estimator that minimizes the posterior expected
value of a loss function.

» The loss function
L(,'):®x O =R

» After seeing data (y,...,y,) we choose an estimator A(yi,...,y,)
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the Bayesian estimator

» Bayesian estimator is an estimator that minimizes the posterior expected
value of a loss function.

» The loss function
L(,'):®x O =R

» After seeing data (y,...,y,) we choose an estimator A(yi,...,y,)
» lts expected loss is

EL(H,é(yh o 7yn)) = L(evé(ylv oo >Yn))m(Y1» s a)’n'e)p(e)
Y x©

_ / L0001, .., y2)m(O)p(dy)
Y2 x©
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the Bayesian estimator

» Bayesian estimator is an estimator that minimizes the posterior expected
value of a loss function.

» The loss function
L(,'):®x O =R

» After seeing data (y,...,y,) we choose an estimator A(yi,...,y,)
» lts expected loss is

EL(0,0(y1,...,yn)) = /Y @L(@,é(y1,--~7)’n))m()71»---ayn|6)p(9)
_ / L8801, ... y))m(0)p(dy)
Y'x©

> é(yl, ...,yn) is @ Bayesian estimator if it minimizes the above expected loss.
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the Bayesian estimator and computing integrals

» We consider only the most common choice of quadratic loss function
L(61,0,) = (6, — 62)°
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the Bayesian estimator and computing integrals

» We consider only the most common choice of quadratic loss function
L(61,0,) = (6, — 62)°
» in which case

9()’17 v 7yn) = Eﬂ'e
so it is the posterior mean.
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the Bayesian estimator and computing integrals

» We consider only the most common choice of quadratic loss function
L(61,0,) = (6, — 62)°
» in which case

e(ylv v 7yn) = Eﬂ'e
so it is the posterior mean.
» So computing the Bayesian estimator is computing the integral wrt the

posterior
/ O (0)
(S]
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The Bayesian setting Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the Bayesian estimator and computing integrals

» We consider only the most common choice of quadratic loss function
L(61,0,) = (6, — 62)°
» in which case

e(ylv v 7yn) = Eﬂ'e
so it is the posterior mean.
» So computing the Bayesian estimator is computing the integral wrt the

posterior
/ O (0)
(S]

» Similarly answering other inferential questions like credible sets, posterior
variance etc involve computing integrals of the form

f(0)m(0).
o
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
Importance Sampling
Sequential Importance Sampling

The Monte Carlo Method

1) = /@ F(0)r(0).

» Standard Monte Carlo amounts to
1. samplee[:wr for i=1,...,k
2. compute Ii(f) = ¢ >,/ (6:)
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
Importance Sampling
Sequential Importance Sampling

The Monte Carlo Method

1) = /@ F(0)r(0).

» Standard Monte Carlo amounts to
1. sample 6, ~ for i=1,...,k
2. compute Ii(f) = + >2.f(6)

» Standard LLN and CLT apply.
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
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The Monte Carlo Method

1) = /@ F(0)r(0).

Standard Monte Carlo amounts to
1. sample 6, ~ for i=1,...,k
2. compute (f) = 1 3°,/(6)
Standard LLN and CLT apply.
In particular the CLT variance is Var.f

v

v

v
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The Monte Carlo Method

1) = /@ F(0)r(0).

Standard Monte Carlo amounts to
1. sample 6, ~ for i=1,...,k
2. compute (f) = 1 3°,/(6)
Standard LLN and CLT apply.
In particular the CLT variance is Var.f

v

v

v
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CLT for Monte Carlo
Inverse cdf method
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The Monte Carlo Method

1) = /@ F(0)r(0).

Standard Monte Carlo amounts to
1. sample 6, ~ for i=1,...,k
2. compute (f) = 1 3°,/(6)
Standard LLN and CLT apply.
In particular the CLT variance is Var.f

v

vV v v Yy

However sampling from = is typically not easy.
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
Importance Sampling
Sequential Importance Sampling

for toy distributions only

» Let F be the cdf of m and define its left continuous inverse version
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
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for toy distributions only

» Let F be the cdf of m and define its left continuous inverse version

>
F~ :=inf{x: F(x) > u} for O0<u<l.
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CLT for Monte Carlo
Inverse cdf method
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for toy distributions only

» Let F be the cdf of = and define its left continuous inverse version
>
F~ :=inf{x: F(x) > u} for O0<u<l.

» If U~ U(0,1) then
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
Importance Sampling
Sequential Importance Sampling

for toy distributions only

» Let F be the cdf of = and define its left continuous inverse version
F~ :=inf{x: F(x) > u} for 0<u<l.

» If U~ U(0,1) then

» F(U)~7
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
Importance Sampling
Sequential Importance Sampling

for toy distributions only

>

Let F be the cdf of = and define its left continuous inverse version

F~ :=inf{x: F(x) > u} for O<u<1l.
If U~ U(0,1) then
F-(U)~m
Verify the above as an exercise.

v

v

v
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Rejection sampling

» Sample candidate Y from density g(#) such that

w(0) < Cg(6) forsome C < oo
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
Importance Sampling
Sequential Importance Sampling

Rejection sampling

» Sample candidate Y from density g(#) such that
w(0) < Cg(6) forsome C < oo
» accept candidate Y as 6 with probability

m(Y)
Cg(Y)

otherwise start from the beginning.
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Rejection sampling

» Sample candidate Y from density g(#) such that
w(0) < Cg(6) forsome C < oo

» accept candidate Y as 6 with probability

m(Y)
Cg(Y)

otherwise start from the beginning.
» The accepted outcome is distributed as =
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CLT for Monte Carlo
Inverse cdf method
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Importance Sampling
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Rejection sampling

>

Sample candidate Y from density g(6) such that

w(0) < Cg(6) forsome C < oo

v

accept candidate Y as 6 with probability

m(Y)
Cg(Y)

otherwise start from the beginning.
The accepted outcome is distributed as 7
The average number of trials until acceptance is C.

v

v
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Rejection sampling

>

Sample candidate Y from density g(6) such that

w(0) < Cg(6) forsome C < oo

v

accept candidate Y as 6 with probability

m(Y)
Cg(Y)

otherwise start from the beginning.

The accepted outcome is distributed as 7

The average number of trials until acceptance is C.
Verify the above as an exercise.

v

v

v
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Importance sampling

» Let g be a density such that 7(6) >0 = g(0) >0
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Importance sampling

» Let g be a density such that 7(6) >0 = g(0) >0
» Then we can write

P ..
=B = [ 1O = | 10)Teab)as
= [1OWO)s(0)d0 = Epw.
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Importance sampling

» Let g be a density such that 7(6) >0 = g(0) >0
» Then we can write

P ..
=B = [ 1O = | 10)Teab)as
= [1OWO)s(0)d0 = Epw.

» Hence the importance sampling Algorithm:
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Importance sampling

» Let g be a density such that 7(6) >0 = g(0) >0
» Then we can write

P ..
=B = [ 1O = | 10)Teab)as
= [1OWO)s(0)d0 = Epw.

» Hence the importance sampling Algorithm:
» 1. Sample 6;i=1,..., kiid from g
2. Estimate the integral by the unbiased, consistent estimator:

- 1
= SrOW(0).
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Importance sampling

» Let g be a density such that 7(6) >0 = g(0) >0
» Then we can write

P ..
=B = [ 1O = | 10)Teab)as
= [1OWO)s(0)d0 = Epw.

v

Hence the importance sampling Algorithm:

» 1. Sample 6;i=1,..., kiid from g
2. Estimate the integral by the unbiased, consistent estimator:
A 1
=7 Z F(0)IW(6).
» Note that compared to iid Monte Carlo the variance of the estimators changes

(typically increases) to Var, (fW).



CLT for Monte Carlo
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Sampling Probability Distributions 1 - direct approaches e mpling
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al Importance Sampling

sequential importance sampling

» The idea can be extended to a Markov process
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CLT for Monte Carlo
Inverse cdf method
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» The idea can be extended to a Markov process
» if the target distribution is of the form

p(Or,...,0,) = p(6) HP(9i|9i—1)
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sequential importance sampling

» The idea can be extended to a Markov process
» if the target distribution is of the form

p(Or,...,0,) = p(6) HP(9i|9i—1)

» We can use a proposal process defined by

4(91) and Q(0i|9i—l )
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sequential importance sampling

» to implement the SIS algorithm:
1. Sample Gfi) i=1,...,kiid from g, assign weight
wi” = p(0")/4(60")
2. Fort=2,...,nsimulate o A
6716, ~ q(6il6”,)
and update the weight according to
@) _ (D) p(gr(i)|9r(i>l)
R N OIPORY
q(6,”10,%,)
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CLT for Monte Carlo
Inverse cdf method
Sampling Probability Distributions 1 - direct approaches Rejection Sampling
Importance Sampling
Sequential Importance Sampling

sequential importance sampling

» to implement the SIS algorithm:
1. Sample Gfi) i=1,...,kiid from g, assign weight
wi = p(of")/a(0")
2. Fort=2,...,nsimulate o A
6716, ~ q(6il6”,)
and update the weight according to
@) _ (D) p(gr(i)|9r(i>l)
Wit =Wt 0100 y
q(6,”10,%,)
» The weakness of importance sampling and SIS is that it is difficult to choose
efficient proposal distributions, especially if © is high dimensional.
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Markov chains

» Let P = P(-,-) be a Markov operator on a general state space ©
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mMcmMmC

CLT for MCMC
Detailed balance
Metropolis-Hastings
Gibbs samplers
MALA

Sampling Probability distributions 2 - Markov chains

Markov chains

» Let P = P(-,-) be a Markov operator on a general state space ©
» This means P(x, -) is a probability measure for every x and for every
measurable set A the function P(-, A) is measurable.
» So if
9() ~ vV
thenforr=1,2,...
0; ~ P(6,_1,-)
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mMcmMmC

CLT for MCMC
Detailed balance
Metropolis-Hastings
Gibbs samplers
MALA

Sampling Probability distributions 2 - Markov chains

Markov chains

» Let P = P(-,-) be a Markov operator on a general state space ©
» This means P(x, -) is a probability measure for every x and for every
measurable set A the function P(-, A) is measurable.
» So if
9() ~ vV

thenforr=1,2,...
0[ ~ P(@,,lg)

» The distribution of 6, is vP i.e.
vP(A) = / P(6,A)v(0)do
(C]
and similarly the distribution of 6, is vP' i.e.

fo(A):LP(a,A)VP’*I(e)de
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MALA

Markov chains

» Under weak assumptions vP' converges as t — oo to the same measure, say
Ty fOr every initial distribution v.
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Markov chains

» Under weak assumptions vP' converges as t — oo to the same measure, say
Ty fOr every initial distribution v.

» This 7, is called stationary or invariant measure and satisfies for every ¢

! __
7rinvP = Tiny
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mMcmMmC

CLT for MCMC
Detailed balance
Metropolis-Hastings
Gibbs samplers
MALA

Sampling Probability distributions 2 - Markov chains

Markov chains

» Under weak assumptions vP' converges as t — oo to the same measure, say
Ty fOr every initial distribution v.
» This 7, is called stationary or invariant measure and satisfies for every ¢

! __
7rinvP = Tiny

» So if ¢ is large enough
‘C(el) ~ Tiny
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mMcmMmC

CLT for MCMC
Detailed balance
Metropolis-Hastings
Gibbs samplers
MALA

Sampling Probability distributions 2 - Markov chains

Markov chains

» Under weak assumptions vP' converges as t — oo to the same measure, say
Ty fOr every initial distribution v.
» This 7, is called stationary or invariant measure and satisfies for every ¢

! __
7rinvP = Tiny

» So if ¢ is large enough
‘C(el) = Tipy
» STRATEGY: Take the posterior distribution = and try to design P so that

7P =m.
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CLT for MCMC
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Markov chains

» Under weak assumptions vP' converges as t — oo to the same measure, say
Ty fOr every initial distribution v.
» This 7, is called stationary or invariant measure and satisfies for every ¢

! __
7rinvP = Tiny

v

So if 7 is large enough
‘C(el) = Tipy
STRATEGY: Take the posterior distribution = and try to design P so that

v

7P =m.

v

This is feasible more often than you would expect!!!
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Markov chains

» Under weak assumptions vP' converges as t — oo to the same measure, say
Ty fOr every initial distribution v.
» This 7, is called stationary or invariant measure and satisfies for every ¢

! __
7rinvP = Tiny

v

So if 7 is large enough
‘C(el) = Tipy
STRATEGY: Take the posterior distribution = and try to design P so that

v

7P =m.

v

This is feasible more often than you would expect!!!
Under very mild conditions this implies

v

vP' — 7 forevery wv.

Krzysztof Latuszynski(University of Warwick, UK) Intro



mMcmMmC

CLT for MCMC
Detailed balance
Metropolis-Hastings
Gibbs samplers
MALA

Sampling Probability distributions 2 - Markov chains

Markov chains

» Under weak assumptions vP' converges as t — oo to the same measure, say
Ty fOr every initial distribution v.
» This 7, is called stationary or invariant measure and satisfies for every ¢

7rinth = Tiny
» So if ¢ is large enough
‘C(el) ~ Tiny
» STRATEGY: Take the posterior distribution = and try to design P so that
TP = .
» This is feasible more often than you would expect!!!
» Under very mild conditions this implies

vP' — 7 forevery wv.

» We then have for ¢ large enough approximately

Q
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CLT for MCMC

» The approach can be validated asymptotically for estimating

1) = /O F(6)n(6)do
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CLT for MCMC

» The approach can be validated asymptotically for estimating
1) = [ 10)(0)as

» if 69,01, ... is a Markov chain with dynamics P, then
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CLT for MCMC

» The approach can be validated asymptotically for estimating
1) = [ 10)(0)as

» if 69,01, ... is a Markov chain with dynamics P, then
» under very mild conditions LLN holds

1 t—1
- Zf(ai) —1(f)

t-
i=0
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v

The approach can be validated asymptotically for estimating

1) = /O F(6)n(6)do

» if 69,01, ... is a Markov chain with dynamics P, then
» under very mild conditions LLN holds
1 t—1
" Zf(ai) —1(f)
i=0

And also under suitable conditions a CLT holds

v

1 t—1
NG > F(6:) = NU(f), 00s(P,f))
i=0
where o, (P, f) is called asymptotic variance.
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v

The approach can be validated asymptotically for estimating

1) = /O F(6)n(6)do

» if 69,01, ... is a Markov chain with dynamics P, then
» under very mild conditions LLN holds
1 t—1
" Zf(ai) —1(f)
i=0

And also under suitable conditions a CLT holds

v

% i £(6:) = NU(f), 04s(P.f))
i=0

where o, (P, f) is called asymptotic variance.
» There is substantial effort devoted to reliable estimation.of o, (P, f).
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» One way of ensuring 7P = 7 is the detailed balance condition
m(601)P(01,02) = w(62)P(02,6)

formally understood as equivalence of measures on © x O.
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» One way of ensuring 7P = 7 is the detailed balance condition
m(601)P(01,02) = w(62)P(02,6)

formally understood as equivalence of measures on © x O.
» In particular consider moving according to some Markov kernel Q
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detailed balance and Metropolis Hastings

» One way of ensuring 7P = 7 is the detailed balance condition
m(601)P(01,02) = w(62)P(02,6)

formally understood as equivalence of measures on © x O.
» In particular consider moving according to some Markov kernel Q
» i.e. from 6, we propose to move to 6,1, ~ Q(6,, )
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detailed balance and Metropolis Hastings

» One way of ensuring 7P = 7 is the detailed balance condition
m(601)P(01,02) = w(62)P(02,6)

formally understood as equivalence of measures on © x O.
» In particular consider moving according to some Markov kernel O
» i.e. from 6, we propose to move to 6,1, ~ Q(6,, )
» And this move is accepted with probability «(6;,0,+1)
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detailed balance and Metropolis Hastings

» One way of ensuring 7P = 7 is the detailed balance condition
m(601)P(01,02) = w(62)P(02,6)

formally understood as equivalence of measures on © x O.

In particular consider moving according to some Markov kernel O

i.e. from 6, we propose to move to 6, ~ Q(6;,-)

And this move is accepted with probability «(¢;, 6;41)

Where a(6,,0,_1) is chosen in such a way that detailed balance holds.

vV Vv VvYyy
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» One way of ensuring 7P = 7 is the detailed balance condition
m(601)P(01,02) = w(62)P(02,6)

formally understood as equivalence of measures on © x O.

In particular consider moving according to some Markov kernel O

i.e. from 6, we propose to move to 6, ~ Q(6;,-)

And this move is accepted with probability «(¢;, 6;41)

Where a(6,,0,_1) is chosen in such a way that detailed balance holds.
Many such choices for «(6,, 6,—;) are possible
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detailed balance and Metropolis Hastings

» One way of ensuring 7P = 7 is the detailed balance condition
m(601)P(01,02) = w(62)P(02,6)

formally understood as equivalence of measures on © x O.

In particular consider moving according to some Markov kernel O

i.e. from 6, we propose to move to 6, ~ Q(6;,-)

And this move is accepted with probability «(¢;, 6;41)

Where a(6,,0,_1) is chosen in such a way that detailed balance holds.
Many such choices for «(6,, 6,—;) are possible

One particular (and optimal in a sense beyond the scope of today) is

7(0:11)q(0ry1,0;)
71'(91‘)61(9r7 0r11)

vV vV vVVvY VY Yy

a(by,60,41) = min{l,
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Metropolis-Hastings algorithm

» 1. Given the current state 6, sample the next step proposal
91*+1 ~ Q(Gh )

2. Set
041 = 071, with probability «(6;,6/,)
3. Otherwise set 6, = 6,.
» Exercise: verify the detailed balance for the Metropolis-Hastings algorithm.
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» ForO =0, x0; x---x 09y
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The Gibbs Sampler

» ForO =0, x0; x---x 09y
» denote the marginals of = as
7T(9k|97k)

where
Ok =01, 0k—1,0k11,...,0a)
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The Gibbs Sampler

» ForO =0, x0; x---x 09y
» denote the marginals of = as
7T(9k|97k)

where
Ok =01, 0k—1,0k11,...,0a)
» The Gibbs sampler algorithms iterates between updates of

9i|9—i ~ 77(91'|9—i)
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The Gibbs Sampler

» ForO =0, x0; x---x 09y
» denote the marginals of = as
7T(9k|97k)
where
9_k = (917 RN 7ek—179k+l7 ce ,9(1)
» The Gibbs sampler algorithms iterates between updates of

9i|9—i ~ 77(91'|9—i)

v

There are two basic strategies:
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The Gibbs Sampler

v

ForO =0, x0,; x -+ x 0y
denote the marginals of = as

v

(O] 0—-x)

where
Ok =01, 0k—1,0k11,...,0a)
The Gibbs sampler algorithms iterates between updates of

9i|9—i ~ 77(91'|9—i)

v

v

There are two basic strategies:
(1) in each step choosing a coordinate at random (Random Scan Gibbs
Sampler)

v
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The Gibbs Sampler

v

ForO =0, x0,; x -+ x 0y
denote the marginals of = as

v

(O] 0—-x)

where
Ok =01, 0k—1,0k11,...,0a)
The Gibbs sampler algorithms iterates between updates of

9i|9—i ~ 77(91'|9—i)

v

v

There are two basic strategies:

(1) in each step choosing a coordinate at random (Random Scan Gibbs
Sampler)

(2) Updating systematically one after another (Systematic Scan Gibbs
Sampler)

v

v
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The Gibbs Sampler

v

ForO =0, x0,; x -+ x 0y
denote the marginals of = as

v

(O] 0—-x)

where
Ok =01, 0k—1,0k11,...,0a)
The Gibbs sampler algorithms iterates between updates of

9i|9—i ~ 77(91'|9—i)

v

v

There are two basic strategies:

(1) in each step choosing a coordinate at random (Random Scan Gibbs
Sampler)

(2) Updating systematically one after another (Systematic Scan Gibbs
Sampler)

» Literature: Asmussen and Glynn Stochastic Simulation
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The MALA Algorithm

» |s based on the 7—limiting Langevin diffusion

1
dX, = EV log 7(X;)dt + dB;
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The MALA Algorithm

» |s based on the 7—limiting Langevin diffusion

1
dX, = iv log 7(X;)dt + dB;
» Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal
h
CI('|X(;171)> = X(nfl) + EVIOgﬂ-(X(nfl)) + hl/zN(Q Idxd)

with the usual accept-reject formula
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The MALA Algorithm

» |s based on the 7—limiting Langevin diffusion

1
dX, = iv log 7(X;)dt + dB;
» Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal
h
CI('|X(;171)> = X(nfl) + EVIOgﬂ-(X(nfl)) + hl/zN(Q Idxd)

with the usual accept-reject formula
» MALA works well for “nice” examples, but is unstable for light-tailed .
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The MALA Algorithm

» |s based on the 7—limiting Langevin diffusion

1
dX, = iv log 7(X;)dt + dB;
» Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal
h
CI('|X(;171)> = X(nfl) + EVIOgﬂ-(X(nfl)) + hl/zN(Q Idxd)

with the usual accept-reject formula
» MALA works well for “nice” examples, but is unstable for light-tailed .
» Manifold MALA is based on

X, — (“(ff)vmgw(x,w”(f’) )dt+ Vo (X,)dB,
'Yi(gz) = aa(‘;jg(jet)’

J
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The MALA Algorithm

» |s based on the 7—limiting Langevin diffusion

1
dX, = iv log 7(X;)dt + dB;
» Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal
h
CI('|X(;171)> = X(nfl) + EVIOgﬂ-(X(nfl)) + hl/zN(Q Idxd)

with the usual accept-reject formula
» MALA works well for “nice” examples, but is unstable for light-tailed .
» Manifold MALA is based on
a(X,) v(X;)

2

X, = ( Vlog 7(X,) + )dt+\/E(X,)dB,

2
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