Intro to Bayesian Computing

Krzysztof Latuszynski (University of Warwick, UK)

OxWaSP - module 1 - Oct 2018

The Bayesian setting

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Sampling Probability Distributions 1 - direct approaches

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Sampling Probability distributions 2 - Markov chains MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Sampling Probability Distributions 1 - direct approaches Sampling Probability distributions 2 - Markov chains Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Prior-Posterior

- ▶ let $\theta \in \Theta$ be a parameter of a statistical model, say $M(\theta)$.
 - $\mathsf{E.g.}\qquad \Theta\in\mathbb{R}^d,\qquad \Theta\in\mathbb{N}^d,\qquad \Theta\in\{0,1\}^d$
- In Bayesian Statistics one assumes θ is random, i.e. there exists a prior probability distribution p(θ) on Θ s.t. in absence of additional information θ ~ p(θ).
- ▶ $y_1, \ldots, y_n \in \mathbb{Y}^n$ data
- ► $l(\theta|y_1,...,y_n)$ the likelihood function for the model $M(\theta)$
- ► Example: Consider a diffusion model $M(\theta)$ where $\theta = (\mu, \sigma)$

$$dX_t = \mu dt + \sigma dB_t$$

observed at discrete time points (t_0, t_1, \ldots, t_N) as $(x_{t_0}, x_{t_1}, \ldots, x_{t_N})$

$$l(\theta|x_{t_0}, x_{t_1}, \dots, x_{t_N}) = \prod_{i=1}^N l(\theta|x_{t_i}, x_{t_{i-1}}) = \prod_{i=1}^N \phi_{N(\mu(t_i - t_{i-1}), \sigma^2(t_i - t_{i-1}))}(x_{t_i} - x_{t_{i-1}}).$$

Sampling Probability Distributions 1 - direct approaches Sampling Probability distributions 2 - Markov chains Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Prior-Posterior

▶ let $\theta \in \Theta$ be a parameter of a statistical model, say $M(\theta)$.

$$\mathsf{E.g.}\qquad \Theta\in\mathbb{R}^d,\qquad \Theta\in\mathbb{N}^d,\qquad \Theta\in\{0,1\}^d$$

- In Bayesian Statistics one assumes θ is random, i.e. there exists a prior probability distribution p(θ) on Θ s.t. in absence of additional information θ ~ p(θ).
- ▶ $y_1, \ldots, y_n \in \mathbb{Y}^n$ data
- ► $l(\theta|y_1,...,y_n)$ the likelihood function for the model $M(\theta)$
- Example: Consider a diffusion model $M(\theta)$ where $\theta = (\mu, \sigma)$

$$dX_t = \mu dt + \sigma dB_t$$

observed at discrete time points (t_0, t_1, \ldots, t_N) as $(x_{t_0}, x_{t_1}, \ldots, x_{t_N})$

$$l(\theta|x_{t_0}, x_{t_1}, \dots, x_{t_N}) = \prod_{i=1}^N l(\theta|x_{t_i}, x_{t_{i-1}}) = \prod_{i=1}^N \phi_N(\mu(t_i - t_{i-1}), \sigma^2(t_i - t_{i-1}))(x_{t_i} - x_{t_{i-1}}).$$

Sampling Probability Distributions 1 - direct approaches Sampling Probability distributions 2 - Markov chains Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Prior-Posterior

▶ let $\theta \in \Theta$ be a parameter of a statistical model, say $M(\theta)$.

$$\mathsf{E.g.}\qquad \Theta\in\mathbb{R}^d,\qquad \Theta\in\mathbb{N}^d,\qquad \Theta\in\{0,1\}^d$$

- In Bayesian Statistics one assumes θ is random, i.e. there exists a prior probability distribution p(θ) on Θ s.t. in absence of additional information θ ~ p(θ).
- ▶ $y_1, \ldots, y_n \in \mathbb{Y}^n$ data
- ► $l(\theta|y_1,...,y_n)$ the likelihood function for the model $M(\theta)$
- **Example:** Consider a diffusion model $M(\theta)$ where $\theta = (\mu, \sigma)$

$$dX_t = \mu dt + \sigma dB_t$$

observed at discrete time points (t_0, t_1, \ldots, t_N) as $(x_{t_0}, x_{t_1}, \ldots, x_{t_N})$

$$l(\theta|x_{t_0}, x_{t_1}, \dots, x_{t_N}) = \prod_{i=1}^N l(\theta|x_{t_i}, x_{t_{i-1}}) = \prod_{i=1}^N \phi_N(\mu(t_i - t_{i-1}), \sigma^2(t_i - t_{i-1}))(x_{t_i} - x_{t_{i-1}}).$$

Sampling Probability Distributions 1 - direct approaches Sampling Probability distributions 2 - Markov chains Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Prior-Posterior

▶ let $\theta \in \Theta$ be a parameter of a statistical model, say $M(\theta)$.

E.g.
$$\Theta \in \mathbb{R}^d$$
, $\Theta \in \mathbb{N}^d$, $\Theta \in \{0,1\}^d$

- In Bayesian Statistics one assumes θ is random, i.e. there exists a prior probability distribution p(θ) on Θ s.t. in absence of additional information θ ~ p(θ).
- ▶ $y_1, \ldots, y_n \in \mathbb{Y}^n$ data
- ► $l(\theta|y_1,...,y_n)$ the likelihood function for the model $M(\theta)$
- Example: Consider a diffusion model $M(\theta)$ where $\theta = (\mu, \sigma)$

$$dX_t = \mu dt + \sigma dB_t$$

observed at discrete time points (t_0, t_1, \ldots, t_N) as $(x_{t_0}, x_{t_1}, \ldots, x_{t_N})$

$$l(\theta|x_{t_0}, x_{t_1}, \dots, x_{t_N}) = \prod_{i=1}^N l(\theta|x_{t_i}, x_{t_{i-1}}) = \prod_{i=1}^N \phi_{N(\mu(t_i - t_{i-1}), \sigma^2(t_i - t_{i-1}))}(x_{t_i} - x_{t_{i-1}}).$$

Sampling Probability Distributions 1 - direct approaches Sampling Probability distributions 2 - Markov chains Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Prior-Posterior

▶ let $\theta \in \Theta$ be a parameter of a statistical model, say $M(\theta)$.

$$\mathsf{E.g.}\qquad \Theta\in\mathbb{R}^d,\qquad \Theta\in\mathbb{N}^d,\qquad \Theta\in\{0,1\}^d$$

- In Bayesian Statistics one assumes θ is random, i.e. there exists a prior probability distribution p(θ) on Θ s.t. in absence of additional information θ ~ p(θ).
- ▶ $y_1, \ldots, y_n \in \mathbb{Y}^n$ data
- ► $l(\theta|y_1,...,y_n)$ the likelihood function for the model $M(\theta)$
- ► Example: Consider a diffusion model $M(\theta)$ where $\theta = (\mu, \sigma)$

$$dX_t = \mu dt + \sigma dB_t$$

observed at discrete time points (t_0, t_1, \ldots, t_N) as $(x_{t_0}, x_{t_1}, \ldots, x_{t_N})$

$$l(\theta|x_{t_0}, x_{t_1}, \dots, x_{t_N}) = \prod_{i=1}^N l(\theta|x_{t_i}, x_{t_{i-1}}) = \prod_{i=1}^N \phi_N(\mu(t_i - t_{i-1}), \sigma^2(t_i - t_{i-1}))(x_{t_i} - x_{t_{i-1}}).$$

Sampling Probability Distributions 1 - direct approaches Sampling Probability distributions 2 - Markov chains Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Prior-Posterior

▶ let $\theta \in \Theta$ be a parameter of a statistical model, say $M(\theta)$.

$$\mathsf{E.g.}\qquad \Theta\in\mathbb{R}^d,\qquad \Theta\in\mathbb{N}^d,\qquad \Theta\in\{0,1\}^d$$

- In Bayesian Statistics one assumes θ is random, i.e. there exists a prior probability distribution p(θ) on Θ s.t. in absence of additional information θ ~ p(θ).
- ▶ $y_1, \ldots, y_n \in \mathbb{Y}^n$ data
- ► $l(\theta|y_1,...,y_n)$ the likelihood function for the model $M(\theta)$
- ► Example: Consider a diffusion model $M(\theta)$ where $\theta = (\mu, \sigma)$

$$dX_t = \mu dt + \sigma dB_t$$

observed at discrete time points (t_0, t_1, \ldots, t_N) as $(x_{t_0}, x_{t_1}, \ldots, x_{t_N})$

$$l(\theta|x_{t_0}, x_{t_1}, \dots, x_{t_N}) = \prod_{i=1}^N l(\theta|x_{t_i}, x_{t_{i-1}}) = \prod_{i=1}^N \phi_N(\mu(t_i - t_{i-1}), \sigma^2(t_i - t_{i-1}))(x_{t_i} - x_{t_{i-1}}).$$

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Posterior and uncertainty quantification

The posterior distribution is then

$$\pi(\theta) = \pi(\theta|y_1,\ldots,y_n) = \frac{p(\theta)l(\theta|y_1,\ldots,y_n)}{\int_{\Theta} p(\theta)l(\theta|y_1,\ldots,y_n)d\theta}.$$

- ► This posterior summarises uncertainty about the parameter θ ∈ Θ and is used for all inferential questions like credible sets, decision making, prediction, model choice, etc.
- In the diffusion example predicting the value of the diffusion at time t > t_N would amount to repeating the following steps:
 - 1. sample $\theta = (\mu, \sigma) \sim \pi(\theta)$
 - 2. sample $X_t \sim N(x_{t_N} + \mu(t t_N), \sigma^2(t t_N))$

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Posterior and uncertainty quantification

The posterior distribution is then

$$\pi(\theta) = \pi(\theta|y_1,\ldots,y_n) = \frac{p(\theta)l(\theta|y_1,\ldots,y_n)}{\int_{\Theta} p(\theta)l(\theta|y_1,\ldots,y_n)d\theta}.$$

- ► This posterior summarises uncertainty about the parameter θ ∈ Θ and is used for all inferential questions like credible sets, decision making, prediction, model choice, etc.
- In the diffusion example predicting the value of the diffusion at time t > t_N would amount to repeating the following steps:

1. sample
$$\theta = (\mu, \sigma) \sim \pi(\theta)$$

2. sample $X_t \sim N(x_{t_N} + \mu(t - t_N), \sigma^2(t - t_N))$

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

Posterior and uncertainty quantification

The posterior distribution is then

$$\pi(\theta) = \pi(\theta|y_1,\ldots,y_n) = \frac{p(\theta)l(\theta|y_1,\ldots,y_n)}{\int_{\Theta} p(\theta)l(\theta|y_1,\ldots,y_n)d\theta}.$$

- ► This posterior summarises uncertainty about the parameter θ ∈ Θ and is used for all inferential questions like credible sets, decision making, prediction, model choice, etc.
- In the diffusion example predicting the value of the diffusion at time t > t_N would amount to repeating the following steps:

1. sample
$$\theta = (\mu, \sigma) \sim \pi(\theta)$$

2. sample $X_t \sim N(x_{t_N} + \mu(t - t_N), \sigma^2(t - t_N))$

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the MAP estimator

$$\theta_{MAP} := \operatorname{argmax}_{\theta} \pi(\theta) = \operatorname{argmax}_{\theta} \left\{ p(\theta) l(\theta|y_1, \dots, y_n) \right\}$$

- Computing θ_{MAP} may be nontrivial, especially if $\pi(\theta)$ is multimodal.
- There are specialised algorithms for doing this.
- Some non-bayesian statistical inference approaches can be rewritten as bayesian MAP estimators (for example the LASSO).

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the MAP estimator

$$\theta_{MAP} := \operatorname{argmax}_{\theta} \pi(\theta) = \operatorname{argmax}_{\theta} \left\{ p(\theta) l(\theta|y_1, \dots, y_n) \right\}$$

- Computing θ_{MAP} may be nontrivial, especially if $\pi(\theta)$ is multimodal.
- ► There are specialised algorithms for doing this.
- Some non-bayesian statistical inference approaches can be rewritten as bayesian MAP estimators (for example the LASSO).

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the MAP estimator

$$\theta_{MAP} := \operatorname{argmax}_{\theta} \pi(\theta) = \operatorname{argmax}_{\theta} \left\{ p(\theta) l(\theta|y_1, \dots, y_n) \right\}$$

- Computing θ_{MAP} may be nontrivial, especially if $\pi(\theta)$ is multimodal.
- There are specialised algorithms for doing this.
- Some non-bayesian statistical inference approaches can be rewritten as bayesian MAP estimators (for example the LASSO).

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the MAP estimator

$$\theta_{MAP} := \operatorname{argmax}_{\theta} \pi(\theta) = \operatorname{argmax}_{\theta} \left\{ p(\theta) l(\theta|y_1, \dots, y_n) \right\}$$

- Computing θ_{MAP} may be nontrivial, especially if $\pi(\theta)$ is multimodal.
- There are specialised algorithms for doing this.
- Some non-bayesian statistical inference approaches can be rewritten as bayesian MAP estimators (for example the LASSO).

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the MAP estimator

$$\theta_{MAP} := \operatorname{argmax}_{\theta} \pi(\theta) = \operatorname{argmax}_{\theta} \left\{ p(\theta) l(\theta|y_1, \dots, y_n) \right\}$$

- Computing θ_{MAP} may be nontrivial, especially if $\pi(\theta)$ is multimodal.
- There are specialised algorithms for doing this.
- Some non-bayesian statistical inference approaches can be rewritten as bayesian MAP estimators (for example the LASSO).

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator

- Bayesian estimator is an estimator that minimizes the posterior expected value of a loss function.
- The loss function

 $L(\cdot,\cdot):\Theta\times\Theta\to\mathbb{R}$

- After seeing data (y_1, \ldots, y_n) we choose an estimator $\hat{\theta}(y_1, \ldots, y_n)$
- Its expected loss is

$$\mathbb{E}L(\theta, \hat{\theta}(y_1, \dots, y_n)) = \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) m(y_1, \dots, y_n | \theta) p(\theta)$$
$$= \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) \pi(\theta) p(dy)$$

 \bullet $\hat{\theta}(y_1, \ldots, y_n)$ is a Bayesian estimator if it minimizes the above expected loss.

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator

- Bayesian estimator is an estimator that minimizes the posterior expected value of a loss function.
- The loss function

$$L(\cdot,\cdot):\Theta\times\Theta\to\mathbb{R}$$

- After seeing data (y_1, \ldots, y_n) we choose an estimator $\hat{\theta}(y_1, \ldots, y_n)$
- Its expected loss is

$$\mathbb{E}L(\theta, \hat{\theta}(y_1, \dots, y_n)) = \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) m(y_1, \dots, y_n | \theta) p(\theta)$$
$$= \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) \pi(\theta) p(dy)$$

 \bullet $\hat{\theta}(y_1, \ldots, y_n)$ is a Bayesian estimator if it minimizes the above expected loss.

nac

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator

- Bayesian estimator is an estimator that minimizes the posterior expected value of a loss function.
- The loss function

$$L(\cdot,\cdot):\Theta\times\Theta\to\mathbb{R}$$

- After seeing data (y_1, \ldots, y_n) we choose an estimator $\hat{\theta}(y_1, \ldots, y_n)$
- Its expected loss is

$$\mathbb{E}L(\theta, \hat{\theta}(y_1, \dots, y_n)) = \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) m(y_1, \dots, y_n | \theta) p(\theta)$$
$$= \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) \pi(\theta) p(dy)$$

 $\hat{\theta}(y_1,\ldots,y_n)$ is a Bayesian estimator if it minimizes the above expected loss.

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator

- Bayesian estimator is an estimator that minimizes the posterior expected value of a loss function.
- The loss function

$$L(\cdot, \cdot): \Theta \times \Theta \to \mathbb{R}$$

- After seeing data (y_1, \ldots, y_n) we choose an estimator $\hat{\theta}(y_1, \ldots, y_n)$
- Its expected loss is

$$\mathbb{E}L(\theta, \hat{\theta}(y_1, \dots, y_n)) = \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) m(y_1, \dots, y_n | \theta) p(\theta)$$
$$= \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) \pi(\theta) p(dy)$$

 $\hat{\theta}(y_1,\ldots,y_n)$ is a Bayesian estimator if it minimizes the above expected loss.

nac

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator

- Bayesian estimator is an estimator that minimizes the posterior expected value of a loss function.
- The loss function

$$L(\cdot, \cdot): \Theta \times \Theta \to \mathbb{R}$$

- After seeing data (y_1, \ldots, y_n) we choose an estimator $\hat{\theta}(y_1, \ldots, y_n)$
- Its expected loss is

$$\mathbb{E}L(\theta, \hat{\theta}(y_1, \dots, y_n)) = \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) m(y_1, \dots, y_n | \theta) p(\theta)$$
$$= \int_{\mathbb{Y}^n \times \Theta} L(\theta, \hat{\theta}(y_1, \dots, y_n)) \pi(\theta) p(dy)$$

• $\hat{\theta}(y_1, \dots, y_n)$ is a Bayesian estimator if it minimizes the above expected loss.

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator and computing integrals

► We consider only the most common choice of quadratic loss function

$$L(\theta_1, \theta_2) = (\theta_1 - \theta_2)^2$$

▶ in which case

$$\hat{\theta}(y_1,\ldots,y_n)=\mathbb{E}_{\pi}\theta$$

so it is the posterior mean.

So computing the Bayesian estimator is computing the integral wrt the posterior

$$\int_{\Theta} f(\theta) \pi(\theta).$$

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator and computing integrals

► We consider only the most common choice of quadratic loss function

$$L(\theta_1, \theta_2) = (\theta_1 - \theta_2)^2$$

in which case

$$\hat{\theta}(y_1,\ldots,y_n)=\mathbb{E}_{\pi}\theta$$

so it is the posterior mean.

So computing the Bayesian estimator is computing the integral wrt the posterior

$$\int_{\Theta} \theta \pi(\theta)$$

Similarly answering other inferential questions like credible sets, posterior variance etc involve computing integrals of the form

$$\int_{\Theta} f(\theta) \pi(\theta).$$

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator and computing integrals

► We consider only the most common choice of quadratic loss function

$$L(\theta_1, \theta_2) = (\theta_1 - \theta_2)^2$$

in which case

$$\hat{\theta}(y_1,\ldots,y_n)=\mathbb{E}_{\pi}\theta$$

so it is the posterior mean.

 So computing the Bayesian estimator is computing the integral wrt the posterior

$$\int_{\Theta} \theta \pi(\theta)$$

Similarly answering other inferential questions like credible sets, posterior variance etc involve computing integrals of the form

$$\int_{\Theta} f(\theta) \pi(\theta).$$

Prior-posterior Uncertainty quantification MAP and Bayesian estimators

the Bayesian estimator and computing integrals

► We consider only the most common choice of quadratic loss function

$$L(\theta_1, \theta_2) = (\theta_1 - \theta_2)^2$$

in which case

$$\hat{\theta}(y_1,\ldots,y_n)=\mathbb{E}_{\pi}\theta$$

so it is the posterior mean.

 So computing the Bayesian estimator is computing the integral wrt the posterior

$$\int_{\Theta} \theta \pi(\theta)$$

 Similarly answering other inferential questions like credible sets, posterior variance etc involve computing integrals of the form

$$\int_{\Theta} f(\theta) \pi(\theta).$$

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

The Monte Carlo Method

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta).$$

- Standard Monte Carlo amounts to
 - 1. sample $\theta_i \sim \pi$ for $i = 1, \ldots, k$
 - 2. compute $\hat{I}_k(f) = \frac{1}{k} \sum_i f(\theta_i)$
- Standard LLN and CLT apply.
- In particular the CLT variance is $Var_{\pi}f$
- ►
- However sampling from π is typically not easy.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

The Monte Carlo Method

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta).$$

- Standard Monte Carlo amounts to
 - 1. sample $\theta_i \sim \pi$ for $i = 1, \ldots, k$
 - 2. compute $\hat{I}_k(f) = \frac{1}{k} \sum_i f(\theta_i)$
- Standard LLN and CLT apply.
- In particular the CLT variance is $Var_{\pi}f$
- However sampling from π is

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

The Monte Carlo Method

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta).$$

- Standard Monte Carlo amounts to
 - 1. sample $\theta_i \sim \pi$ for $i = 1, \ldots, k$
 - 2. compute $\hat{I}_k(f) = \frac{1}{k} \sum_i f(\theta_i)$
- Standard LLN and CLT apply.

```
• In particular the CLT variance is Var_{\pi}f
```

```
►
```

• However sampling from π is typically not easy.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

The Monte Carlo Method

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta).$$

- Standard Monte Carlo amounts to
 - 1. sample $\theta_i \sim \pi$ for $i = 1, \ldots, k$
 - 2. compute $\hat{I}_k(f) = \frac{1}{k} \sum_i f(\theta_i)$
- Standard LLN and CLT apply.
- In particular the CLT variance is $Var_{\pi}f$

• However sampling from π is typically not easy.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

The Monte Carlo Method

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta).$$

- Standard Monte Carlo amounts to
 - 1. sample $\theta_i \sim \pi$ for $i = 1, \ldots, k$
 - 2. compute $\hat{I}_k(f) = \frac{1}{k} \sum_i f(\theta_i)$
- Standard LLN and CLT apply.
- In particular the CLT variance is $Var_{\pi}f$

• However sampling from π is typically not easy.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

The Monte Carlo Method

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta).$$

- Standard Monte Carlo amounts to
 - 1. sample $\theta_i \sim \pi$ for $i = 1, \ldots, k$
 - 2. compute $\hat{I}_k(f) = \frac{1}{k} \sum_i f(\theta_i)$
- Standard LLN and CLT apply.
- In particular the CLT variance is $Var_{\pi}f$
- However sampling from π is typically not easy.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

for toy distributions only

- Let *F* be the cdf of π and define its left continuous inverse version
 - $F^- := \inf\{x : F(x) \ge u\}$ for 0 < u < 1.
- ▶ If $U \sim U(0,1)$ then
- $\blacktriangleright \ F^-(U) \sim \pi$
- ▶ Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

for toy distributions only

• Let F be the cdf of π and define its left continuous inverse version

$$F^- := \inf\{x : F(x) \ge u\}$$
 for $0 < u < 1$.

- ▶ If $U \sim U(0,1)$ then
- $\blacktriangleright \ F^-(U) \sim \pi$
- ▶ Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

for toy distributions only

• Let F be the cdf of π and define its left continuous inverse version

$$F^- := \inf\{x : F(x) \ge u\}$$
 for $0 < u < 1$.

- If $U \sim U(0,1)$ then
- $\blacktriangleright \ F^-(U) \sim \pi$
- ▶ Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

for toy distributions only

• Let F be the cdf of π and define its left continuous inverse version

$$F^- := \inf\{x : F(x) \ge u\}$$
 for $0 < u < 1$.

- If $U \sim U(0,1)$ then
- $\blacktriangleright \ F^-(U) \sim \pi$
- ▶ Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

for toy distributions only

• Let F be the cdf of π and define its left continuous inverse version

$$F^- := \inf\{x : F(x) \ge u\}$$
 for $0 < u < 1$.

- If $U \sim U(0,1)$ then
- $\blacktriangleright \ F^-(U) \sim \pi$
- Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Rejection sampling

Sample candidate *Y* from density $g(\theta)$ such that

 $\pi(\theta) \leq Cg(\theta)$ for some $C < \infty$

• accept candidate Y as θ with probability

 $\frac{\pi(Y)}{Cg(Y)}$

otherwise start from the beginning.

- The accepted outcome is distributed as π
- ▶ The average number of trials until acceptance is *C*.
- Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Rejection sampling

Sample candidate *Y* from density $g(\theta)$ such that

 $\pi(\theta) \leq Cg(\theta)$ for some $C < \infty$

• accept candidate Y as θ with probability

 $\frac{\pi(Y)}{Cg(Y)}$

otherwise start from the beginning.

- The accepted outcome is distributed as π
- ▶ The average number of trials until acceptance is *C*.
- Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Rejection sampling

Sample candidate *Y* from density $g(\theta)$ such that

 $\pi(\theta) \leq Cg(\theta)$ for some $C < \infty$

• accept candidate Y as θ with probability

 $\frac{\pi(Y)}{Cg(Y)}$

otherwise start from the beginning.

- The accepted outcome is distributed as \u03c0 The accepted outcome is distributed as \u03c0
- ▶ The average number of trials until acceptance is *C*.
- Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Rejection sampling

Sample candidate *Y* from density $g(\theta)$ such that

 $\pi(\theta) \leq Cg(\theta)$ for some $C < \infty$

• accept candidate Y as θ with probability

$$\frac{\pi(Y)}{Cg(Y)}$$

otherwise start from the beginning.

- The accepted outcome is distributed as π
- The average number of trials until acceptance is C.

Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Rejection sampling

Sample candidate *Y* from density $g(\theta)$ such that

 $\pi(\theta) \leq Cg(\theta)$ for some $C < \infty$

• accept candidate Y as θ with probability

$$\frac{\pi(Y)}{Cg(Y)}$$

otherwise start from the beginning.

- The accepted outcome is distributed as π
- The average number of trials until acceptance is C.
- Verify the above as an exercise.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Importance sampling

Let g be a density such that π(θ) > 0 ⇒ g(θ) > 0
Then we can write

$$I = \mathbb{E}_{\pi} f = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{g(\theta)} g(\theta) d\theta$$
$$= \int_{\Theta} f(\theta) W(\theta) g(\theta) d\theta = \mathbb{E}_{g} f W.$$

- ► Hence the importance sampling Algorithm:
 - **1.** Sample $\theta_i i = 1, \ldots, k$ iid from g
 - Estimate the integral by the unbiased, consistent estimator:

$$\hat{I}_k = \frac{1}{k} \sum_i f(\theta_i) W(\theta_i).$$

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Importance sampling

- Let g be a density such that $\pi(\theta) > 0 \implies g(\theta) > 0$
- Then we can write

$$I = \mathbb{E}_{\pi} f = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{g(\theta)} g(\theta) d\theta$$
$$= \int_{\Theta} f(\theta) W(\theta) g(\theta) d\theta = \mathbb{E}_{g} f W.$$

- Hence the importance sampling Algorithm:
 - 1. Sample $\theta_i \ i = 1, \ldots, k$ iid from g
 - Estimate the integral by the unbiased, consistent estimator:

$$\hat{I}_k = \frac{1}{k} \sum_i f(\theta_i) W(\theta_i).$$

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Importance sampling

- Let g be a density such that $\pi(\theta) > 0 \implies g(\theta) > 0$
- Then we can write

$$I = \mathbb{E}_{\pi} f = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{g(\theta)} g(\theta) d\theta$$
$$= \int_{\Theta} f(\theta) W(\theta) g(\theta) d\theta = \mathbb{E}_{g} f W.$$

- ► Hence the importance sampling Algorithm:
 - 1. Sample θ_i $i = 1, \ldots, k$ iid from g
 - Estimate the integral by the unbiased, consistent estimator:

$$\hat{I}_k = \frac{1}{k} \sum_i f(\theta_i) W(\theta_i).$$

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Importance sampling

- Let g be a density such that $\pi(\theta) > 0 \implies g(\theta) > 0$
- Then we can write

$$I = \mathbb{E}_{\pi} f = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{g(\theta)} g(\theta) d\theta$$
$$= \int_{\Theta} f(\theta) W(\theta) g(\theta) d\theta = \mathbb{E}_{g} f W.$$

- Hence the importance sampling Algorithm:
 - 1. Sample $\theta_i i = 1, \ldots, k$ iid from g
 - 2. Estimate the integral by the unbiased, consistent estimator:

$$\hat{I}_k = \frac{1}{k} \sum_i f(\theta_i) W(\theta_i).$$

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

Importance sampling

- Let g be a density such that $\pi(\theta) > 0 \implies g(\theta) > 0$
- Then we can write

$$I = \mathbb{E}_{\pi} f = \int_{\Theta} f(\theta) \pi(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\pi(\theta)}{g(\theta)} g(\theta) d\theta$$
$$= \int_{\Theta} f(\theta) W(\theta) g(\theta) d\theta = \mathbb{E}_{g} f W.$$

- Hence the importance sampling Algorithm:
 - 1. Sample $\theta_i i = 1, \ldots, k$ iid from g
 - 2. Estimate the integral by the unbiased, consistent estimator:

$$\hat{I}_k = \frac{1}{k} \sum_i f(\theta_i) W(\theta_i).$$

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

sequential importance sampling

The idea can be extended to a Markov process

▶ if the target distribution is of the form

$$p(\theta_1,\ldots,\theta_n) = p(\theta_1) \prod_{i=2}^n p(\theta_i|\theta_{i-1})$$

We can use a proposal process defined by

 $q(\theta_1)$ and $q(\theta_i|\theta_{i-1})$.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

sequential importance sampling

- The idea can be extended to a Markov process
- if the target distribution is of the form

$$p(\theta_1,\ldots,\theta_n) = p(\theta_1) \prod_{i=2}^n p(\theta_i|\theta_{i-1})$$

We can use a proposal process defined by

 $q(\theta_1)$ and $q(\theta_i|\theta_{i-1})$.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

sequential importance sampling

- The idea can be extended to a Markov process
- if the target distribution is of the form

$$p(\theta_1,\ldots,\theta_n) = p(\theta_1) \prod_{i=2}^n p(\theta_i|\theta_{i-1})$$

We can use a proposal process defined by

 $q(\theta_1)$ and $q(\theta_i|\theta_{i-1})$.

(*) *) *) *) *)

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

sequential importance sampling

- to implement the SIS algorithm:
 - 1. Sample $\theta_1^{(i)}$ i = 1, ..., k iid from q, assign weight

$$w_1^{(i)} = p(\theta_1^{(i)})/q(\theta_1^{(i)})$$

2. For
$$t = 2, \ldots, n$$
 simulate

$$\theta_t^{(i)} | \theta_{t-1}^{(i)} \sim q(\theta_t | \theta_{t-1}^{(i)})$$

and update the weight according to

$$w_t^{(i)} = w_{t-1}^{(i)} \frac{p(\theta_t^{(i)} | \theta_{t-1}^{(i)})}{q(\theta_t^{(i)} | \theta_{t-1}^{(i)})}$$

► The weakness of importance sampling and SIS is that it is difficult to choose efficient proposal distributions, especially if Θ is high dimensional.

CLT for Monte Carlo Inverse cdf method Rejection Sampling Importance Sampling Sequential Importance Sampling

sequential importance sampling

- to implement the SIS algorithm:
 - 1. Sample $\theta_1^{(i)}$ i = 1, ..., k iid from q, assign weight

$$w_1^{(i)} = p(\theta_1^{(i)})/q(\theta_1^{(i)})$$

2. For
$$t = 2, \ldots, n$$
 simulate

$$\theta_t^{(i)} | \theta_{t-1}^{(i)} \sim q(\theta_t | \theta_{t-1}^{(i)})$$

and update the weight according to

$$w_t^{(i)} = w_{t-1}^{(i)} \frac{p(\theta_t^{(i)} | \theta_{t-1}^{(i)})}{q(\theta_t^{(i)} | \theta_{t-1}^{(i)})}$$

► The weakness of importance sampling and SIS is that it is difficult to choose efficient proposal distributions, especially if Θ is high dimensional.

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Let $P = P(\cdot, \cdot)$ be a Markov operator on a general state space Θ
- ► This means P(x, ·) is a probability measure for every x and for every measurable set A the function P(·, A) is measurable.

► So if

$$\theta_0 \sim \nu$$

then for t = 1, 2, ...

$$\theta_t \sim P(\theta_{t-1}, \cdot)$$

• The distribution of θ_1 is νP i.e.

$$\nu P(A) = \int_{\Theta} P(\theta, A) \nu(\theta) d\theta$$

and similarly the distribution of θ_t is νP^t i.e.

$$\nu P^{t}(A) = \int_{\Theta} P(\theta, A) \nu P^{t-1}(\theta) d\theta$$

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- Let $P = P(\cdot, \cdot)$ be a Markov operator on a general state space Θ
- ► This means P(x, ·) is a probability measure for every x and for every measurable set A the function P(·, A) is measurable.

So if

$$\theta_0 \sim \nu$$

then for t = 1, 2, ...

$$\theta_t \sim P(\theta_{t-1}, \cdot)$$

• The distribution of θ_1 is νP i.e.

$$\nu P(A) = \int_{\Theta} P(\theta, A) \nu(\theta) d\theta$$

and similarly the distribution of θ_t is νP^t i.e.

$$\nu P^{t}(A) = \int_{\Theta} P(\theta, A) \nu P^{t-1}(\theta) d\theta$$

→ □ ► < □ ►</p>

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- Let $P = P(\cdot, \cdot)$ be a Markov operator on a general state space Θ
- ► This means P(x, ·) is a probability measure for every x and for every measurable set A the function P(·, A) is measurable.

So if

$$\theta_0 \sim \nu$$

then for t = 1, 2, ...

$$\theta_t \sim P(\theta_{t-1}, \cdot)$$

• The distribution of θ_1 is νP i.e.

$$\nu P(A) = \int_{\Theta} P(\theta, A) \nu(\theta) d\theta$$

and similarly the distribution of θ_t is νP^t i.e.

$$\nu P^{t}(A) = \int_{\Theta} P(\theta, A) \nu P^{t-1}(\theta) d\theta$$

(*) *) *) *) *)

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Under weak assumptions νP^t converges as $t \to \infty$ to the same measure, say π_{inv} for every initial distribution ν .
- This π_{inv} is called stationary or invariant measure and satisfies for every t

$$\pi_{inv}P^t = \pi_{inv}$$

► So if *t* is large enough

$$\mathcal{L}(\theta_t) pprox \pi_{inv}$$

STRATEGY: Take the posterior distribution π and try to design P so that

$$\pi P = \pi$$
.

- This is feasible more often than you would expect!!!
- Under very mild conditions this implies

$$\nu P^t \rightarrow \pi$$
 for every ν .

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Under weak assumptions νP^t converges as $t \to \infty$ to the same measure, say π_{inv} for every initial distribution ν .
- This π_{inv} is called stationary or invariant measure and satisfies for every t

$$\pi_{inv}P^t = \pi_{inv}$$

► So if *t* is large enough

$$\mathcal{L}(\theta_t) \approx \pi_{inv}$$

STRATEGY: Take the posterior distribution π and try to design P so that

$$\pi P = \pi$$
.

- ▶ This is feasible more often than you would expect!!!
- Under very mild conditions this implies

 $\nu P^t \rightarrow \pi$ for every ν .

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Under weak assumptions νP^t converges as $t \to \infty$ to the same measure, say $\pi_{in\nu}$ for every initial distribution ν .
- This π_{inv} is called stationary or invariant measure and satisfies for every t

$$\pi_{inv}P^t = \pi_{inv}$$

So if t is large enough

$$\mathcal{L}(\theta_t) \approx \pi_{inv}$$

STRATEGY: Take the posterior distribution π and try to design P so that

$$\pi P = \pi.$$

- ▶ This is feasible more often than you would expect!!!
- Under very mild conditions this implies

 $\nu P^t \rightarrow \pi$ for every ν .

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Under weak assumptions νP^t converges as $t \to \infty$ to the same measure, say $\pi_{in\nu}$ for every initial distribution ν .
- This π_{inv} is called stationary or invariant measure and satisfies for every t

$$\pi_{inv}P^t = \pi_{inv}$$

So if t is large enough

$$\mathcal{L}(\theta_t) \approx \pi_{inv}$$

STRATEGY: Take the posterior distribution π and try to design *P* so that

$$\pi P = \pi$$
.

- This is feasible more often than you would expect!!!
- Under very mild conditions this implies

 $\nu P^t \rightarrow \pi$ for every ν .

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Under weak assumptions νP^t converges as $t \to \infty$ to the same measure, say π_{inv} for every initial distribution ν .
- This π_{inv} is called stationary or invariant measure and satisfies for every t

$$\pi_{inv}P^t = \pi_{inv}$$

So if t is large enough

$$\mathcal{L}(\theta_t) \approx \pi_{inv}$$

STRATEGY: Take the posterior distribution π and try to design P so that

$$\pi P = \pi.$$

- This is feasible more often than you would expect!!!
- Under very mild conditions this implies

 $\nu P^t \rightarrow \pi$ for every ν .

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Under weak assumptions νP^t converges as $t \to \infty$ to the same measure, say π_{inv} for every initial distribution ν .
- This π_{inv} is called stationary or invariant measure and satisfies for every t

$$\pi_{inv}P^t = \pi_{inv}$$

So if t is large enough

$$\mathcal{L}(\theta_t) \approx \pi_{inv}$$

STRATEGY: Take the posterior distribution π and try to design *P* so that

$$\pi P = \pi$$
.

- This is feasible more often than you would expect!!!
- Under very mild conditions this implies

$$\nu P^t \to \pi$$
 for every ν .

мсмс

CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Markov chains

- ▶ Under weak assumptions νP^t converges as $t \to \infty$ to the same measure, say $\pi_{in\nu}$ for every initial distribution ν .
- This π_{inv} is called stationary or invariant measure and satisfies for every t

$$\pi_{inv}P^t = \pi_{inv}$$

So if t is large enough

$$\mathcal{L}(\theta_t) \approx \pi_{inv}$$

STRATEGY: Take the posterior distribution π and try to design *P* so that

$$\pi P = \pi$$
.

- This is feasible more often than you would expect!!!
- Under very mild conditions this implies

$$\nu P^t \to \pi$$
 for every ν .

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

CLT for MCMC

The approach can be validated asymptotically for estimating

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta) d\theta$$

If θ₀, θ₁,... is a Markov chain with dynamics P, then
under very mild conditions LLN holds

$$\frac{1}{t} \sum_{i=0}^{t-1} f(\theta_i) \to I(f)$$

And also under suitable conditions a CLT holds

$$\frac{1}{\sqrt{t}}\sum_{i=0}^{t-1} f(\theta_i) \to N(I(f), \sigma_{as}(P, f))$$

where $\sigma_{as}(P, f)$ is called asymptotic variance. There is substantial effort devoted to reliable estimation of $\sigma_{as}(P, f_{as})$, $\epsilon \to \infty$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

CLT for MCMC

The approach can be validated asymptotically for estimating

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta) d\theta$$

if θ₀, θ₁,... is a Markov chain with dynamics P, then
under very mild conditions LLN holds

$$\frac{1}{t} \sum_{i=0}^{t-1} f(\theta_i) \to I(f)$$

And also under suitable conditions a CLT holds

$$\frac{1}{\sqrt{t}}\sum_{i=0}^{t-1} f(\theta_i) \to N(I(f), \sigma_{as}(P, f))$$

where $\sigma_{as}(P, f)$ is called asymptotic variance. There is substantial effort devoted to reliable estimation of $\sigma_{ac}(P, f_{ac})$, $\epsilon \sim \infty$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

CLT for MCMC

The approach can be validated asymptotically for estimating

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta) d\theta$$

- ▶ if $\theta_0, \theta_1, \ldots$ is a Markov chain with dynamics *P*, then
- under very mild conditions LLN holds

$$\frac{1}{t}\sum_{i=0}^{t-1}f(\theta_i) \to I(f)$$

And also under suitable conditions a CLT holds

$$\frac{1}{\sqrt{t}}\sum_{i=0}^{t-1} f(\theta_i) \to N(I(f), \sigma_{as}(P, f))$$

where $\sigma_{as}(P, f)$ is called asymptotic variance. There is substantial effort devoted to reliable estimation of $\sigma_{ac}(P, f_{ac})$, $\epsilon \sim \infty$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

CLT for MCMC

The approach can be validated asymptotically for estimating

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta) d\theta$$

- ▶ if $\theta_0, \theta_1, \ldots$ is a Markov chain with dynamics *P*, then
- under very mild conditions LLN holds

$$\frac{1}{t}\sum_{i=0}^{t-1}f(\theta_i) \to I(f)$$

And also under suitable conditions a CLT holds

$$\frac{1}{\sqrt{t}}\sum_{i=0}^{t-1} f(\theta_i) \to N(I(f), \sigma_{as}(P, f))$$

where $\sigma_{as}(P, f)$ is called asymptotic variance.

There is substantial effort devoted to reliable estimation of $q_{a}(P_{a}f_{a})$, $z \to \infty$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

CLT for MCMC

The approach can be validated asymptotically for estimating

$$I(f) = \int_{\Theta} f(\theta) \pi(\theta) d\theta$$

- ▶ if $\theta_0, \theta_1, \ldots$ is a Markov chain with dynamics *P*, then
- under very mild conditions LLN holds

$$\frac{1}{t}\sum_{i=0}^{t-1}f(\theta_i) \to I(f)$$

And also under suitable conditions a CLT holds

$$\frac{1}{\sqrt{t}}\sum_{i=0}^{t-1} f(\theta_i) \to N(I(f), \sigma_{as}(P, f))$$

where $\sigma_{as}(P, f)$ is called asymptotic variance.

• There is substantial effort devoted to reliable estimation of $\sigma_{as}(P, f_{s})$.

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

detailed balance and Metropolis Hastings

• One way of ensuring $\pi P = \pi$ is the detailed balance condition

 $\pi(\theta_1)P(\theta_1,\theta_2) = \pi(\theta_2)P(\theta_2,\theta_1)$

formally understood as equivalence of measures on $\Theta\times\Theta.$

- ▶ In particular consider moving according to some Markov kernel Q
- ▶ i.e. from θ_t we propose to move to $\theta_{t+1} \sim Q(\theta_t, \cdot)$
- And this move is accepted with probability $\alpha(\theta_t, \theta_{t+1})$
- Where $\alpha(\theta_t, \theta_{t-1})$ is chosen in such a way that detailed balance holds.
- Many such choices for $\alpha(\theta_t, \theta_{t-1})$ are possible
- One particular (and optimal in a sense beyond the scope of today) is

$$\alpha(\theta_t, \theta_{t+1}) = \min\{1, \frac{\pi(\theta_{t+1})q(\theta_{t+1}, \theta_t)}{\pi(\theta_t)q(\theta_t, \theta_{t+1})}\}$$

< ロ > < 同 > < 回 > < 回 >

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

detailed balance and Metropolis Hastings

• One way of ensuring $\pi P = \pi$ is the detailed balance condition

 $\pi(\theta_1)P(\theta_1,\theta_2) = \pi(\theta_2)P(\theta_2,\theta_1)$

formally understood as equivalence of measures on $\Theta\times\Theta.$

- In particular consider moving according to some Markov kernel Q
- i.e. from θ_t we propose to move to $\theta_{t+1} \sim Q(\theta_t, \cdot)$
- And this move is accepted with probability $\alpha(\theta_t, \theta_{t+1})$
- Where $\alpha(\theta_t, \theta_{t-1})$ is chosen in such a way that detailed balance holds.
- Many such choices for $\alpha(\theta_t, \theta_{t-1})$ are possible
- One particular (and optimal in a sense beyond the scope of today) is

$$\alpha(\theta_t, \theta_{t+1}) = \min\{1, \frac{\pi(\theta_{t+1})q(\theta_{t+1}, \theta_t)}{\pi(\theta_t)q(\theta_t, \theta_{t+1})}\}$$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

detailed balance and Metropolis Hastings

• One way of ensuring $\pi P = \pi$ is the detailed balance condition

 $\pi(\theta_1)P(\theta_1,\theta_2) = \pi(\theta_2)P(\theta_2,\theta_1)$

formally understood as equivalence of measures on $\Theta \times \Theta$.

- ► In particular consider moving according to some Markov kernel Q
- ► i.e. from θ_t we propose to move to $\theta_{t+1} \sim Q(\theta_t, \cdot)$
- And this move is accepted with probability $\alpha(\theta_t, \theta_{t+1})$
- Where $\alpha(\theta_t, \theta_{t-1})$ is chosen in such a way that detailed balance holds.
- Many such choices for $\alpha(\theta_t, \theta_{t-1})$ are possible
- One particular (and optimal in a sense beyond the scope of today) is

$$\alpha(\theta_t, \theta_{t+1}) = \min\{1, \frac{\pi(\theta_{t+1})q(\theta_{t+1}, \theta_t)}{\pi(\theta_t)q(\theta_t, \theta_{t+1})}\}$$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

detailed balance and Metropolis Hastings

• One way of ensuring $\pi P = \pi$ is the detailed balance condition

$$\pi(\theta_1)P(\theta_1,\theta_2) = \pi(\theta_2)P(\theta_2,\theta_1)$$

formally understood as equivalence of measures on $\Theta \times \Theta$.

- ► In particular consider moving according to some Markov kernel Q
- ► i.e. from θ_t we propose to move to $\theta_{t+1} \sim Q(\theta_t, \cdot)$
- And this move is accepted with probability $\alpha(\theta_t, \theta_{t+1})$
- Where $\alpha(\theta_t, \theta_{t-1})$ is chosen in such a way that detailed balance holds.
- Many such choices for $\alpha(\theta_t, \theta_{t-1})$ are possible
- One particular (and optimal in a sense beyond the scope of today) is

$$\alpha(\theta_t, \theta_{t+1}) = \min\{1, \frac{\pi(\theta_{t+1})q(\theta_{t+1}, \theta_t)}{\pi(\theta_t)q(\theta_t, \theta_{t+1})}\}$$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

detailed balance and Metropolis Hastings

• One way of ensuring $\pi P = \pi$ is the detailed balance condition

$$\pi(\theta_1)P(\theta_1,\theta_2) = \pi(\theta_2)P(\theta_2,\theta_1)$$

formally understood as equivalence of measures on $\Theta \times \Theta$.

- ► In particular consider moving according to some Markov kernel Q
- ► i.e. from θ_t we propose to move to $\theta_{t+1} \sim Q(\theta_t, \cdot)$
- And this move is accepted with probability $\alpha(\theta_t, \theta_{t+1})$
- Where $\alpha(\theta_t, \theta_{t-1})$ is chosen in such a way that detailed balance holds.
- Many such choices for $\alpha(\theta_t, \theta_{t-1})$ are possible
- One particular (and optimal in a sense beyond the scope of today) is

$$\alpha(\theta_t, \theta_{t+1}) = \min\{1, \frac{\pi(\theta_{t+1})q(\theta_{t+1}, \theta_t)}{\pi(\theta_t)q(\theta_t, \theta_{t+1})}\}$$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

detailed balance and Metropolis Hastings

• One way of ensuring $\pi P = \pi$ is the detailed balance condition

$$\pi(\theta_1)P(\theta_1,\theta_2) = \pi(\theta_2)P(\theta_2,\theta_1)$$

formally understood as equivalence of measures on $\Theta \times \Theta$.

- In particular consider moving according to some Markov kernel Q
- ► i.e. from θ_t we propose to move to $\theta_{t+1} \sim Q(\theta_t, \cdot)$
- And this move is accepted with probability $\alpha(\theta_t, \theta_{t+1})$
- Where $\alpha(\theta_t, \theta_{t-1})$ is chosen in such a way that detailed balance holds.
- Many such choices for $\alpha(\theta_t, \theta_{t-1})$ are possible
- One particular (and optimal in a sense beyond the scope of today) is

$$\alpha(\theta_t, \theta_{t+1}) = \min\{1, \frac{\pi(\theta_{t+1})q(\theta_{t+1}, \theta_t)}{\pi(\theta_t)q(\theta_t, \theta_{t+1})}\}$$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

detailed balance and Metropolis Hastings

• One way of ensuring $\pi P = \pi$ is the detailed balance condition

$$\pi(\theta_1)P(\theta_1,\theta_2) = \pi(\theta_2)P(\theta_2,\theta_1)$$

formally understood as equivalence of measures on $\Theta \times \Theta$.

- ► In particular consider moving according to some Markov kernel Q
- ► i.e. from θ_t we propose to move to $\theta_{t+1} \sim Q(\theta_t, \cdot)$
- And this move is accepted with probability $\alpha(\theta_t, \theta_{t+1})$
- Where $\alpha(\theta_t, \theta_{t-1})$ is chosen in such a way that detailed balance holds.
- Many such choices for $\alpha(\theta_t, \theta_{t-1})$ are possible
- One particular (and optimal in a sense beyond the scope of today) is

$$\alpha(\theta_t, \theta_{t+1}) = \min\{1, \frac{\pi(\theta_{t+1})q(\theta_{t+1}, \theta_t)}{\pi(\theta_t)q(\theta_t, \theta_{t+1})}\}.$$

< ロ > < 同 > < 回 > < 回 > .

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Metropolis-Hastings algorithm

Given the current state θ_t sample the next step proposal

$$\theta^*_{t+1} \sim Q(\theta_t, \cdot)$$

2. Set

 $\theta_{t+1} = \theta_{t+1}^*$ with probability $\alpha(\theta_t, \theta_{t+1}^*)$

3. Otherwise set $\theta_{t+1} = \theta_t$.

Exercise: verify the detailed balance for the Metropolis-Hastings algorithm.

< ロ ト < 同 ト < 三 ト < 三 ト

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The Gibbs Sampler

- For $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_d$
- denote the marginals of π as

 $\pi(\theta_k|\theta_{-k})$

where

$$\theta_{-k} = (\theta_1, \dots, \theta_{k-1}, \theta_{k+1}, \dots, \theta_d)$$

The Gibbs sampler algorithms iterates between updates of

- There are two basic strategies:
- (1) in each step choosing a coordinate at random (Random Scan Gibbs Sampler)
- (2) Updating systematically one after another (Systematic Scan Gibbs Sampler)
- Literature: Asmussen and Glynn Stochastic Simulation

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The Gibbs Sampler

- For $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_d$
- denote the marginals of π as

$$\pi(\theta_k|\theta_{-k})$$

where

$$\theta_{-k} = (\theta_1, \ldots, \theta_{k-1}, \theta_{k+1}, \ldots, \theta_d)$$

The Gibbs sampler algorithms iterates between updates of

- There are two basic strategies:
- (1) in each step choosing a coordinate at random (Random Scan Gibbs Sampler)
- (2) Updating systematically one after another (Systematic Scan Gibbs Sampler)
- ▶ Literature: Asmussen and Glynn Stochastic Simulation

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The Gibbs Sampler

- For $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_d$
- denote the marginals of π as

$$\pi(\theta_k|\theta_{-k})$$

where

$$\theta_{-k} = (\theta_1, \ldots, \theta_{k-1}, \theta_{k+1}, \ldots, \theta_d)$$

The Gibbs sampler algorithms iterates between updates of

$$\theta_i | \theta_{-i} \sim \pi(\theta_i | \theta_{-i})$$

- There are two basic strategies:
- (1) in each step choosing a coordinate at random (Random Scan Gibbs Sampler)
- (2) Updating systematically one after another (Systematic Scan Gibbs Sampler)
- Literature: Asmussen and Glynn Stochastic Simulation

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The Gibbs Sampler

- For $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_d$
- denote the marginals of π as

$$\pi(\theta_k|\theta_{-k})$$

where

$$\theta_{-k} = (\theta_1, \ldots, \theta_{k-1}, \theta_{k+1}, \ldots, \theta_d)$$

The Gibbs sampler algorithms iterates between updates of

- There are two basic strategies:
- (1) in each step choosing a coordinate at random (Random Scan Gibbs Sampler)
- (2) Updating systematically one after another (Systematic Scan Gibbs Sampler)
- Literature: Asmussen and Glynn Stochastic Simulation

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The Gibbs Sampler

- For $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_d$
- denote the marginals of π as

$$\pi(\theta_k|\theta_{-k})$$

where

$$\theta_{-k} = (\theta_1, \ldots, \theta_{k-1}, \theta_{k+1}, \ldots, \theta_d)$$

The Gibbs sampler algorithms iterates between updates of

- There are two basic strategies:
- (1) in each step choosing a coordinate at random (Random Scan Gibbs Sampler)
- (2) Updating systematically one after another (Systematic Scan Gibbs Sampler)
- Literature: Asmussen and Glynn Stochastic Simulation

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The Gibbs Sampler

- For $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_d$
- denote the marginals of π as

$$\pi(\theta_k|\theta_{-k})$$

where

$$\theta_{-k} = (\theta_1, \ldots, \theta_{k-1}, \theta_{k+1}, \ldots, \theta_d)$$

The Gibbs sampler algorithms iterates between updates of

- There are two basic strategies:
- (1) in each step choosing a coordinate at random (Random Scan Gibbs Sampler)
- (2) Updating systematically one after another (Systematic Scan Gibbs Sampler)
- ▶ Literature: Asmussen and Glynn Stochastic Simulation

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The Gibbs Sampler

- For $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_d$
- denote the marginals of π as

$$\pi(\theta_k|\theta_{-k})$$

where

$$\theta_{-k} = (\theta_1, \ldots, \theta_{k-1}, \theta_{k+1}, \ldots, \theta_d)$$

The Gibbs sampler algorithms iterates between updates of

- There are two basic strategies:
- (1) in each step choosing a coordinate at random (Random Scan Gibbs Sampler)
- (2) Updating systematically one after another (Systematic Scan Gibbs Sampler)
- ► Literature: Asmussen and Glynn Stochastic Simulation

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The MALA Algorithm

• Is based on the π -limiting Langevin diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$

Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal

$$q(\cdot|X_{(n-1)}) := X_{(n-1)} + \frac{h}{2}\nabla\log\pi(X_{(n-1)}) + h^{1/2}N(0, I_{d\times d})$$

with the usual accept-reject formula

- MALA works well for "nice" examples, but is unstable for light-tailed π.
- Manifold MALA is based on

$$dX_t = \left(\frac{\sigma(X_t)}{2}\nabla\log\pi(X_t) + \frac{\gamma(X_t)}{2}\right)dt + \sqrt{\sigma}(X_t)dB_t$$

$$\gamma_i(\theta_t) = \sum_j \frac{\partial\sigma_{ij}(\theta_t)}{\partial\theta_j},$$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The MALA Algorithm

• Is based on the π -limiting Langevin diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$

Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal

$$q(\cdot|X_{(n-1)}) := X_{(n-1)} + \frac{h}{2}\nabla \log \pi(X_{(n-1)}) + h^{1/2}N(0, I_{d \times d})$$

with the usual accept-reject formula

- MALA works well for "nice" examples, but is unstable for light-tailed π .
- Manifold MALA is based on

$$dX_t = \left(\frac{\sigma(X_t)}{2}\nabla\log\pi(X_t) + \frac{\gamma(X_t)}{2}\right)dt + \sqrt{\sigma}(X_t)dB_t$$

$$\gamma_i(\theta_t) = \sum_i \frac{\partial\sigma_{ij}(\theta_t)}{\partial\theta_j},$$

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The MALA Algorithm

• Is based on the π -limiting Langevin diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$

Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal

$$q(\cdot|X_{(n-1)}) := X_{(n-1)} + \frac{h}{2}\nabla \log \pi(X_{(n-1)}) + h^{1/2}N(0, I_{d \times d})$$

with the usual accept-reject formula

- MALA works well for "nice" examples, but is unstable for light-tailed π.
- Manifold MALA is based or

$$dX_t = \left(\frac{\sigma(X_t)}{2}\nabla\log\pi(X_t) + \frac{\gamma(X_t)}{2}\right)dt + \sqrt{\sigma}(X_t)dB_t$$

$$\gamma_i(\theta_t) = \sum_j \frac{\partial\sigma_{ij}(\theta_t)}{\partial\theta_j},$$

Intro

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The MALA Algorithm

• Is based on the π -limiting Langevin diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$

Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal

$$q(\cdot|X_{(n-1)}) := X_{(n-1)} + \frac{h}{2}\nabla \log \pi(X_{(n-1)}) + h^{1/2}N(0, I_{d \times d})$$

with the usual accept-reject formula

- MALA works well for "nice" examples, but is unstable for light-tailed π .
- Manifold MALA is based on

$$dX_t = \left(\frac{\sigma(X_t)}{2}\nabla\log\pi(X_t) + \frac{\gamma(X_t)}{2}\right)dt + \sqrt{\sigma}(X_t)dB_t$$

$$\gamma_i(\theta_t) = \sum_j \frac{\partial\sigma_{ij}(\theta_t)}{\partial\theta_j},$$

Intro

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

The MALA Algorithm

• Is based on the π -limiting Langevin diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$

Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal

$$q(\cdot|X_{(n-1)}) := X_{(n-1)} + \frac{h}{2}\nabla \log \pi(X_{(n-1)}) + h^{1/2}N(0, I_{d \times d})$$

with the usual accept-reject formula

- MALA works well for "nice" examples, but is unstable for light-tailed π .
- Manifold MALA is based on

$$\begin{split} dX_t &= \left(\frac{\sigma(X_t)}{2}\nabla\log\pi(X_t) + \frac{\gamma(X_t)}{2}\right)dt + \sqrt{\sigma}(X_t)dB_t\\ \gamma_i(\theta_t) &= \sum_j \frac{\partial\sigma_{ij}(\theta_t)}{\partial\theta_j}, \end{split}$$

Choosing a is not obvious, often based on the Hossian of a

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

Literature

Plenty of books....

Asmussen and Glynn Stochastic Simulation

<ロト < 団 > < 巨 > < 巨 >

MCMC CLT for MCMC Detailed balance Metropolis-Hastings Gibbs samplers MALA

- Plenty of books....
- Asmussen and Glynn Stochastic Simulation

<ロト < 団 > < 巨 > < 巨 >