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Prior-Posterior
I let θ ∈ Θ be a parameter of a statistical model, say M(θ).

E.g. Θ ∈ Rd, Θ ∈ Nd, Θ ∈ {0, 1}d

I In Bayesian Statistics one assumes θ is random, i.e. there exists a prior
probability distribution p(θ) on Θ s.t. in absence of additional information
θ ∼ p(θ).

I y1, . . . , yn ∈ Yn- data
I l(θ|y1, . . . , yn) - the likelihood function for the model M(θ)
I Example: Consider a diffusion model M(θ) where θ = (µ, σ)

dXt = µdt + σdBt

observed at discrete time points (t0, t1, . . . , tN) as (xt0 , xt1 , . . . , xtN )
I The likelihood function is

l(θ|xt0 , xt1 , . . . , xtN ) =
N∏

i=1

l(θ|xti , xti−1) =

N∏
i=1

φN(µ(ti−ti−1),σ2(ti−ti−1))(xti − xti−1).
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I The posterior distribution is then

π(θ) = π(θ|y1, . . . , yn) =
p(θ)l(θ|y1, . . . , yn)∫

Θ
p(θ)l(θ|y1, . . . , yn)dθ

.

I This posterior summarises uncertainty about the parameter θ ∈ Θ and is used
for all inferential questions like credible sets, decision making, prediction,
model choice, etc.

I In the diffusion example predicting the value of the diffusion at time t > tN
would amount to repeating the following steps:

1. sample θ = (µ, σ) ∼ π(θ)
2. sample Xt ∼ N(xtN + µ(t − tN), σ

2(t − tN))
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the MAP estimator

I One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say θMAP.

I

θMAP := argmaxθπ(θ) = argmaxθ
{

p(θ)l(θ|y1, . . . , yn)
}

I Computing θMAP may be nontrivial, especially if π(θ) is multimodal.
I There are specialised algorithms for doing this.
I Some non-bayesian statistical inference approaches can be rewritten as

bayesian MAP estimators (for example the LASSO).

Krzysztof Latuszynski(University of Warwick, UK) Intro



The Bayesian setting
Sampling Probability Distributions 1 - direct approaches

Sampling Probability distributions 2 - Markov chains

Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the MAP estimator

I One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say θMAP.

I

θMAP := argmaxθπ(θ) = argmaxθ
{

p(θ)l(θ|y1, . . . , yn)
}

I Computing θMAP may be nontrivial, especially if π(θ) is multimodal.
I There are specialised algorithms for doing this.
I Some non-bayesian statistical inference approaches can be rewritten as

bayesian MAP estimators (for example the LASSO).

Krzysztof Latuszynski(University of Warwick, UK) Intro



The Bayesian setting
Sampling Probability Distributions 1 - direct approaches

Sampling Probability distributions 2 - Markov chains

Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the MAP estimator

I One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say θMAP.

I

θMAP := argmaxθπ(θ) = argmaxθ
{

p(θ)l(θ|y1, . . . , yn)
}

I Computing θMAP may be nontrivial, especially if π(θ) is multimodal.
I There are specialised algorithms for doing this.
I Some non-bayesian statistical inference approaches can be rewritten as

bayesian MAP estimators (for example the LASSO).

Krzysztof Latuszynski(University of Warwick, UK) Intro



The Bayesian setting
Sampling Probability Distributions 1 - direct approaches

Sampling Probability distributions 2 - Markov chains

Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the MAP estimator

I One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say θMAP.

I

θMAP := argmaxθπ(θ) = argmaxθ
{

p(θ)l(θ|y1, . . . , yn)
}

I Computing θMAP may be nontrivial, especially if π(θ) is multimodal.
I There are specialised algorithms for doing this.
I Some non-bayesian statistical inference approaches can be rewritten as

bayesian MAP estimators (for example the LASSO).

Krzysztof Latuszynski(University of Warwick, UK) Intro



The Bayesian setting
Sampling Probability Distributions 1 - direct approaches

Sampling Probability distributions 2 - Markov chains

Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the MAP estimator

I One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say θMAP.

I

θMAP := argmaxθπ(θ) = argmaxθ
{

p(θ)l(θ|y1, . . . , yn)
}

I Computing θMAP may be nontrivial, especially if π(θ) is multimodal.
I There are specialised algorithms for doing this.
I Some non-bayesian statistical inference approaches can be rewritten as

bayesian MAP estimators (for example the LASSO).

Krzysztof Latuszynski(University of Warwick, UK) Intro



The Bayesian setting
Sampling Probability Distributions 1 - direct approaches

Sampling Probability distributions 2 - Markov chains

Prior-posterior
Uncertainty quantification
MAP and Bayesian estimators

the Bayesian estimator

I Bayesian estimator is an estimator that minimizes the posterior expected
value of a loss function.

I The loss function
L(·, ·) : Θ×Θ→ R

I After seeing data (y1, . . . , yn) we choose an estimator θ̂(y1, . . . , yn)

I Its expected loss is

EL(θ, θ̂(y1, . . . , yn)) =

∫
Yn×Θ

L(θ, θ̂(y1, . . . , yn))m(y1, . . . , yn|θ)p(θ)

=

∫
Yn×Θ

L(θ, θ̂(y1, . . . , yn))π(θ)p(dy)

I θ̂(y1, . . . , yn) is a Bayesian estimator if it minimizes the above expected loss.
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the Bayesian estimator and computing integrals
I We consider only the most common choice of quadratic loss function

L(θ1, θ2) = (θ1 − θ2)2

I in which case
θ̂(y1, . . . , yn) = Eπθ

so it is the posterior mean.
I So computing the Bayesian estimator is computing the integral wrt the

posterior ∫
Θ

θπ(θ)

I Similarly answering other inferential questions like credible sets, posterior
variance etc involve computing integrals of the form∫

Θ

f (θ)π(θ).
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The Monte Carlo Method

I

I(f ) =

∫
Θ

f (θ)π(θ).

I Standard Monte Carlo amounts to
1. sample θi ∼ π for i = 1, . . . , k
2. compute Îk(f ) = 1

k

∑
i f (θi)

I Standard LLN and CLT apply.
I In particular the CLT variance is Varπf
I

I However sampling from π is typically not easy.
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for toy distributions only

I Let F be the cdf of π and define its left continuous inverse version
I

F− := inf{x : F(x) ≥ u} for 0 < u < 1.

I If U ∼ U(0, 1) then
I F−(U) ∼ π
I Verify the above as an exercise.
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Rejection sampling

I Sample candidate Y from density g(θ) such that

π(θ) ≤ Cg(θ) for some C <∞

I accept candidate Y as θ with probability

π(Y)

Cg(Y)

otherwise start from the beginning.
I The accepted outcome is distributed as π
I The average number of trials until acceptance is C.
I Verify the above as an exercise.
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Importance sampling

I Let g be a density such that π(θ) > 0 =⇒ g(θ) > 0
I Then we can write

I = Eπf =

∫
Θ

f (θ)π(θ)dθ =

∫
Θ

f (θ)
π(θ)

g(θ)
g(θ)dθ

=

∫
Θ

f (θ)W(θ)g(θ)dθ = EgfW.

I Hence the importance sampling Algorithm:
I 1. Sample θi i = 1, . . . , k iid from g

2. Estimate the integral by the unbiased, consistent estimator:

Îk =
1
k

∑
i

f (θi)W(θi).

I Note that compared to iid Monte Carlo the variance of the estimators changes
(typically increases) to Varg(fW).
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Îk =
1
k

∑
i

f (θi)W(θi).

I Note that compared to iid Monte Carlo the variance of the estimators changes
(typically increases) to Varg(fW).

Krzysztof Latuszynski(University of Warwick, UK) Intro



The Bayesian setting
Sampling Probability Distributions 1 - direct approaches

Sampling Probability distributions 2 - Markov chains

CLT for Monte Carlo
Inverse cdf method
Rejection Sampling
Importance Sampling
Sequential Importance Sampling

Importance sampling

I Let g be a density such that π(θ) > 0 =⇒ g(θ) > 0
I Then we can write

I = Eπf =

∫
Θ

f (θ)π(θ)dθ =

∫
Θ

f (θ)
π(θ)

g(θ)
g(θ)dθ

=

∫
Θ

f (θ)W(θ)g(θ)dθ = EgfW.

I Hence the importance sampling Algorithm:
I 1. Sample θi i = 1, . . . , k iid from g

2. Estimate the integral by the unbiased, consistent estimator:
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sequential importance sampling

I The idea can be extended to a Markov process
I if the target distribution is of the form

p(θ1, . . . , θn) = p(θ1)

n∏
i=2

p(θi|θi−1)

I We can use a proposal process defined by

q(θ1) and q(θi|θi−1).
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sequential importance sampling

I to implement the SIS algorithm:
1. Sample θ(i)

1 i = 1, . . . , k iid from q, assign weight

w(i)
1 = p(θ(i)

1 )/q(θ(i)
1 )

2. For t = 2, . . . , n simulate
θ
(i)
t |θ

(i)
t−1 ∼ q(θt|θ(i)

t−1)

and update the weight according to

w(i)
t = w(i)

t−1

p(θ(i)
t |θ

(i)
t−1)

q(θ(i)
t |θ

(i)
t−1)

I The weakness of importance sampling and SIS is that it is difficult to choose
efficient proposal distributions, especially if Θ is high dimensional.
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MCMC
CLT for MCMC
Detailed balance
Metropolis-Hastings
Gibbs samplers
MALA

Markov chains
I Let P = P(·, ·) be a Markov operator on a general state space Θ
I This means P(x, ·) is a probability measure for every x and for every

measurable set A the function P(·,A) is measurable.
I So if

θ0 ∼ ν
then for t = 1, 2, . . .

θt ∼ P(θt−1, ·)
I The distribution of θ1 is νP i.e.

νP(A) =

∫
Θ

P(θ,A)ν(θ)dθ

and similarly the distribution of θt is νPt i.e.

νPt(A) =

∫
Θ

P(θ,A)νPt−1(θ)dθ
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Markov chains
I Under weak assumptions νPt converges as t→∞ to the same measure, say
πinv for every initial distribution ν.

I This πinv is called stationary or invariant measure and satisfies for every t

πinvPt = πinv

I So if t is large enough
L(θt) ≈ πinv

I STRATEGY: Take the posterior distribution π and try to design P so that

πP = π.

I This is feasible more often than you would expect!!!
I Under very mild conditions this implies

νPt → π for every ν.

I We then have for t large enough approximately

θt ∼ π.Krzysztof Latuszynski(University of Warwick, UK) Intro
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CLT for MCMC
I The approach can be validated asymptotically for estimating

I(f ) =

∫
Θ

f (θ)π(θ)dθ

I if θ0, θ1, . . . is a Markov chain with dynamics P, then
I under very mild conditions LLN holds

1
t

t−1∑
i=0

f (θi)→ I(f )

I And also under suitable conditions a CLT holds

1√
t

t−1∑
i=0

f (θi)→ N(I(f ), σas(P, f ))

where σas(P, f ) is called asymptotic variance.
I There is substantial effort devoted to reliable estimation of σas(P, f ).
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Detailed balance
Metropolis-Hastings
Gibbs samplers
MALA

detailed balance and Metropolis Hastings

I One way of ensuring πP = π is the detailed balance condition

π(θ1)P(θ1, θ2) = π(θ2)P(θ2, θ1)

formally understood as equivalence of measures on Θ×Θ.

I In particular consider moving according to some Markov kernel Q
I i.e. from θt we propose to move to θt+1 ∼ Q(θt, ·)
I And this move is accepted with probability α(θt, θt+1)

I Where α(θt, θt−1) is chosen in such a way that detailed balance holds.
I Many such choices for α(θt, θt−1) are possible
I One particular (and optimal in a sense beyond the scope of today) is

α(θt, θt+1) = min{1, π(θt+1)q(θt+1, θt)

π(θt)q(θt, θt+1)
}.
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Metropolis-Hastings algorithm

I 1. Given the current state θt sample the next step proposal

θ∗t+1 ∼ Q(θt, ·)

2. Set
θt+1 = θ∗t+1 with probability α(θt, θ

∗
t+1)

3. Otherwise set θt+1 = θt.

I Exercise: verify the detailed balance for the Metropolis-Hastings algorithm.
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The Gibbs Sampler
I For Θ = Θ1 ×Θ2 × · · · ×Θd
I denote the marginals of π as

π(θk|θ−k)

where
θ−k = (θ1, . . . , θk−1, θk+1, . . . , θd)

I The Gibbs sampler algorithms iterates between updates of

θi|θ−i ∼ π(θi|θ−i)

I There are two basic strategies:
I (1) in each step choosing a coordinate at random (Random Scan Gibbs

Sampler)
I (2) Updating systematically one after another (Systematic Scan Gibbs

Sampler)
I Literature: Asmussen and Glynn Stochastic Simulation
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The MALA Algorithm
I Is based on the π−limiting Langevin diffusion

dXt =
1
2
∇ log π(Xt)dt + dBt

I Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal

q(·|X(n−1)) := X(n−1) +
h
2
∇ log π(X(n−1)) + h1/2N(0, Id×d)

with the usual accept-reject formula
I MALA works well for “nice” examples, but is unstable for light-tailed π.
I Manifold MALA is based on

dXt =
(σ(Xt)

2
∇ log π(Xt) +

γ(Xt)

2

)
dt +

√
σ(Xt)dBt

γi(θt) =
∑

j

∂σij(θt)

∂θj
,

I Choosing σ is not obvious, often based on the Hessian of π
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