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SUMMARY

When a parametric likelihood function is not specified for a model, estimating equations pro-
vide an instrument for statistical inference. Qin & Lawless (1994) illustratedthat empirical like-
lihood makes optimal use of these equations in inferences for fixed (low) dimensional unknown
parameters. In this paper, we study empirical likelihood for general estimating equations with
growing (high) dimensionality and propose a penalized empirical likelihood approach for pa-
rameter estimation and variable selection. We quantify the asymptotic properties of empirical
likelihood and its penalized version, and show that penalized empirical likelihood has the oracle
property. The performance of the proposed method is illustrated via several simulated applica-
tions and a data analysis.

Some key words: Empirical likelihood; General estimating equations; High dimensional dataanalysis; Penalized like-
lihood; Variable selection.

1. INTRODUCTION

Empirical likelihood is a computationally intensive nonparametric approach forderiving es-
timates and confidence sets for unknown parameters. Detailed in Owen (2001), empirical like-
lihood shares some merits of parametric likelihood approach, such as limiting chi-square dis-
tributed likelihood ratio and Bartlett correctability (DiCiccio et al., 1991; Chen &Cui, 2006). On
the other hand, as a data driven nonparametric approach, it is attractivein robustness and flexibil-
ity in incorporating auxiliary information (Qin & Lawless, 1994). We refer to Owen (2001) for a
comprehensive overview, and Chen & Van Keilegom (2009) for a survey of recent development
in various areas.

Let Z1, . . . , Zn be independent and identically distributed random vectors from some distri-
bution, andθ ∈ R

p be a vector of unknown parameters. Suppose that data information is avail-
able in the form of an unbiased estimating functiong(z; θ) = {g1(z; θ), . . . , gr(z; θ)}T (r ≥ p)
such thatE{g(Zi; θ0)} = 0. Besides the score equations derived from a likelihood, the choice
of g(z; θ) is more flexible and accommodates a wider range of applications, for example,the
pseudo-likelihood approach (Godambe & Heyde, 1987), the instrumental variables method in
measurement error models (Fuller, 1987) and survey sampling (Fuller, 2009), the generalized
method of moments (Hansen, 1982; Hansen & Singleton, 1982) and the generalized estimating
equations approach in longitudinal data analysis (Liang & Zeger, 1986).

Whenr = p, θ can be estimated by solving the estimating equations0 = n−1
∑n

i=1 g(Zi; θ).
Allowing r > p provides a useful device to combine available information for improved effi-
ciency, but then directly solving0 = n−1

∑n
i=1 g(Zi; θ) may not be feasible. Hansen (1982) and
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2 C. LENG AND C. Y. TANG

Godambe & Heyde (1987) discussed optimal ways to combine these equationsfor fixedp. They
showed that the optimal estimatorθ̃ satisfies

√
n(θ̃ − θ0) → N{0, V (θ0)} in distribution with

V (θ) =

(

E

{

∂g(Zi; θ)

∂θT

}

[E{g(Zi; θ)g
T(Zi; θ)}]−1E

{

∂g(Zi; θ)

∂θ

})−1

. (1)

Qin & Lawless (1994) showed that empirical likelihood optimally combines information. More
specifically, the maximizeřθ of

L(θ) = sup

{

n
∏

i=1

nwi : wi ≥ 0,
n

∑

i=1

wi = 1,
n

∑

i=1

wig(Zi; θ) = 0

}

(2)

is optimal in the sense of Godambe & Heyde (1987). Define the empirical likelihood ratio
as ℓ(θ) = − [log{L(θ)} − n log(n)]. Qin & Lawless (1994) further showed that−2{ℓ(θ̌) −
ℓ(θ0)}→χ2

p in distribution asn → ∞. This device is useful in testing hypotheses and obtaining
confidence regions forθ. Compared to the Wald type confidence region, this approach respects
the range ofθ and imposes no shape constraint (Qin & Lawless, 1994).

Our motivations for this paper are multiple-fold. Contemporary statistics often deals with
datasets with diverging dimensionality. Sparse models can help interpretation and improve pre-
diction accuracy. There is a large literature on the penalized likelihood approach for building such
models; for example lasso (Tibshirani, 1996), the smoothly clipped absolute deviation method
(Fan & Li, 2001), adaptive lasso (Zou, 2006; Zhang & Lu, 2007), least squares approximation
(Wang & Leng, 2007), the folded concave penalty (Lv & Fan, 2009). Despite these develop-
ments, it is not clear how existing methods can be applied to general estimating equations with
diverging dimensionality. When likelihood is not available, estimating equations can be more
flexible and information from additional estimating equations can improve the estimation ef-
ficiency (Hansen, 1982). Reducing the effective dimension of the unknown parameterθ may
lead to extra efficiency gain. From this perspective, sparse models in the estimating equations
framework provide additional insights.

The importance of high dimensional statistical inference using empirical likelihood was only
recently recognized by Hjort et al. (2009) and Chen et al. (2009). Neither paper explored model
selection. Tang & Leng (2010) studied variable selection using penalty in theempirical likeli-
hood framework, which is limited to mean vector estimation and linear regression models. When
dimension grows, variable selection using more general estimating equations is thus of greater
interest. Empirical likelihood for general estimating equations with growing dimensionality is
challenging, theoretically and computationally. First, the number of Lagrangemultipliers which
are used to characterize the solution and to derive asymptotic results, increases with the sample
size. It is not clear how appropriate bounds can be obtained. Second,empirical likelihood usu-
ally involves solving nonconvex optimization and any generalization of it to address the issue of
variable selection is nontrivial. The main contributions of this work are summarized as follows:

1. We show that empirical likelihood gives efficient estimates by combining highdimensional
estimating equations. This generalizes the results in Qin & Lawless (1994) derived for fixed
dimension, which may be of independent interest;

2. For building sparse models, we propose an estimating equation-based penalized empirical
likelihood, a unified framework for variable selection in optimally combining estimating
equations. With a proper penalty function, the resulting estimator retains the advantages
of both empirical likelihood and the penalized likelihood approach. More specifically, this
method has the oracle property (Fan & Li, 2001; Fan & Peng, 2004) by identifying the true
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Penalized Empirical Likelihood 3

sparse model with probability tending to one and with optimal efficiency. Moreover, Wilks’
theorem continues to apply and serves as a robust method for testing hypothesis and con-
structing confidence regions.

The oracle property of the proposed method does not require strict distributional assumptions,
thus is robust against model misspecification. The proposed method is widelyapplicable as long
as unbiased estimating equations can be formed, even when a likelihood is unavailable. Later
we outline four such applications in which estimating equations are more naturalthan the usual
likelihood function, and the efficiency of the estimates is improved by having more estimating
equations than the parameters. To our best knowledge, variable selectionfor these examples in a
high dimensional setup has not been investigated.

2. EMPIRICAL L IKELIHOOD FOR HIGH DIMENSIONAL ESTIMATING EQUATIONS

We first extend the fixed dimensional results in Qin & Lawless (1994) to cases with diverg-
ing dimensionality, i.e.,r, p → ∞ asn → ∞. Via Lagrange multipliers, the weights{wi}n

i=1
in (2) are given bywi = n−1{1 + λT

θ g(Zi; θ)}−1 whereλθ satisfiesn−1
∑n

i=1 g(Zi; θ){1 +
λT

θ g(Zi; θ)}−1 = 0. By noting that the global maximum of (2) is achieved atwi = n−1, the
empirical likelihood ratio is given by

ℓ(θ) = − [log{L(θ)} − n log(n)] =
n

∑

i=1

log{1 + λT
θ g(Zi; θ)}. (3)

Thus maximizing (2) is equivalent to minimizing (3). In high dimensional empirical likeli-
hood, the magnitude of||λθ|| is no longerOp(n

−1/2) as in the fixed dimensional case (Hjort
et al., 2009; Chen et al., 2009). To develop an asymptotic expansion for (3), λT

θ g(Zi; θ) needs
to be stochastically small uniformly, which is ensured by Lemma 1 in the Appendix.Let
an = (p/n)1/2, andDn = {θ : ‖θ − θ0‖ ≤ Can} be a neighborhood ofθ0 for some constant
C > 0. Let gi(θ) = g(Zi; θ) andg(θ) = E(Zi; θ). The following regularity conditions are as-
sumed.

A.1 The support ofθ denoted byΘ is a compact set inRp, θ0 ∈ Θ is the unique solution to
E{gi(θ)} = 0.

A.2 E{supθ∈Θ(‖gi(θ)‖r−1/2)α} < ∞ for someα > 10/3 whenn is large.
A.3 Let Σ(θ) = E[{gi(θ) − g(θ)}{gi(θ) − g(θ)}T]. There existsb andB such that the eigenval-

ues ofΣ(θ) satisfy0 < b ≤ γ1{Σ(θ)} ≤ · · · ≤ γr{Σ(θ)} ≤ B < ∞ for all θ ∈ Dn whenn
is large.

A.4 As n → ∞, p5/n → 0 andp/r → y for somey such thatC0 < y < 1 whereC0 > 0.
A.5 There existC1 < ∞ andKij(z) such that for alli = 1, . . . , r andj = 1, . . . , p

∂gi(z; θ)

∂θj
≤ Kij(z), E{K2

ij(Z)} ≤ C1 < ∞, (i = 1, . . . , r, j = 1, . . . , p).

There existC2 andHijk(z) such that for theith estimating equation

∂2gi(z; θ)

∂θj∂θk
≤ Hijk(z), E{H2

ijk(Z)} ≤ C2 < ∞.

Conditions A.1 and A.2 are from Newey & Smith (2004) to ensure the existenceand con-
sistency of the minimizer of (3) and to control the tail probability behavior of theestimating
function. Condition A.4 requires thatp = o(n1/5) where the rate onp should not be taken as
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4 C. LENG AND C. Y. TANG

restrictive because empirical likelihood is studied in a broad framework based on general esti-
mating equations. Since no particular structural information is available ong(z; θ), establishing
the theoretical result is very challenging so that strong regularity conditions are needed and the
bounds in the stochastic analysis are conservative. This is also the case inFan & Peng (2004)
in studying the penalized likelihood approach in high dimension. When specificmodel struc-
ture is available, the restriction on dimensionalityp can be relaxed. Herer/p → y in A.4 is for
simplicity in presenting the theoretical results. There are also situations whenp is fixed andr
is diverging (Xie & Yang, 2003), in which our framework also applies. Weemphasize that the
dimensionalityr effectively can not exceedn because the convex hull of{g(Zi; θ)}n

i=1 is at most
a subset inRn as seen from the definition (2).

We now show the consistency of the empirical likelihood estimate and its rate of convergence.

THEOREM 1. Under Conditions A.1-A.5, asn → ∞ and with probability tending to 1, the
minimizerθ̂E of (3) satisfies a)̂θE → θ0 in probability, and b)‖θ̂E − θ0‖ = Op(an).

We now present the theoretical property of the high dimensional empirical likelihood.

THEOREM 2. Under Conditions A.1-A.5,
√

nAnV −1/2(θ0)(θ̂E − θ0) → N(0, G) in distribu-
tion whereAn ∈ R

q×p such thatAnAT
n → G andG is a q × q matrix with fixedq andV (θ0) is

given by (1).

From Theorem 2, the asymptotic varianceV (θ0) of θ̂E remains optimal as in fixed dimensional
cases (Hansen, 1982; Godambe & Heyde, 1987). Theorem 2 implies thatfor the high dimensional
estimating equation, empirical likelihood based estimate achieves the optimal efficiency.

We remark that the framework presented in this paper is applicable only to the case where
the sample size is larger than the dimension of the parameter. When that is violated, preliminary
methods such as sure independence screening (Fan & Lv, 2008) may beused to reduce the
dimensionality. This condition cannot be improved because empirical likelihooddoes not have a
solution due to the fact that there are more constraints than the observations.

3. PENALIZED EMPIRICAL L IKELIHOOD

In high dimensional data analysis, it is reasonable to expect that only a subset of the covariates
are relevant. To identify the subset of influential covariates, we propose to use the penalized em-
pirical likelihood by complementing (2) with a penalty functional. Using Lagrange multipliers,
we consider equivalently minimizing the penalized empirical likelihood ratio defined as

ℓp(θ) =
n

∑

i=1

log{1 + λTg(Zi; θ)} + n

p
∑

j=1

pτ (|θj |), (4)

wherepτ (|θj |) is some penalty function with tuning parameterτ controlling the trade-off be-
tween bias and model complexity (Fan & Li, 2001).

Write A = {j : θ0j 6= 0} and its cardinality asd = |A|. Without loss of generality, letθ =
(θT

1 , θT
2 )T whereθ1 ∈ R

d andθ2 ∈ R
p−d correspond to the nonzero and zero components re-

spectively. This impliesθ0 = (θT
10, 0)T. We correspondingly decomposeV (θ0) in (1) as

V (θ0) =

(

V11 V12

V21 V22

)

.

The following regularity conditions on the penalty function are assumed.

A.6 As n → ∞, τ(n/p)1/2 → ∞ andminj∈A θ0j/τ → 0.
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Penalized Empirical Likelihood 5

A.7 Assumemaxj∈A p′τ (|θ0j |) = o{(np)−1/2} andmaxj∈A p′′τ (|θ0j |) = o(p−1/2).

Condition A.6 states that the nonzero parameters can not converge to zerotoo fast. This is reason-
able because otherwise the noise is too strong. Condition A.7 holds by many penalty functions
such as the penalty in Fan & Li (2001) and the minimax concave penalty (Zhang, 2010). The
penalized empirical likelihood has the following oracle property.

THEOREM 3. Let θ̂ = (θ̂T
1 , θ̂T

2 )T be the minimizer of (4). Under Conditions A.1-A.7, asn →
∞, we have the following results.

1. With probability tending to one,̂θ2 = 0.

2. LetVp(θ0) = V11 − V12V
−1
22 V21. Then

√
nBnV −1

p (θ0)(θ̂1 − θ10) → N(0, G) in distribution,
whereBn ∈ R

q×d, q is fixed andBnBT
n → G asn → ∞.

Theorem 3 implies that the zero components inθ0 are estimated as zero with probability tend-
ing to one. Comparing Theorem 3 to Theorem 2, penalized empirical likelihoodgives more effi-
cient estimates of the nonzero components. As shown in the proof of Theorem 3, the efficiency
gain is due to the reduction of the effective dimension ofθ via penalization. It can be shown
further that the penalized empirical likelihood estimateθ̂1 is optimal in the sense of Heyde &
Morton (1993) as if empirical likelihood were applied to the true model. We showin the later
simulations that the improvement can be very large, sometimes substantial.

Next we consider testing statistical hypotheses and constructing confidence regions forθ. Con-
sider the null hypothesis of fixed dimensionality in the following form

H0 : Lnθ0 = 0, H1 : Lnθ0 6= 0,

whereLn ∈ R
q×d such thatLnLT

n = Iq for a fixedq, andIq is theq-dimensional identity matrix.
Such hypotheses include testing for individual and multiple components ofθ0 as special cases,
and can be easily extended to linear functions ofθ0. A similar type of hypothesis testing was
considered in Fan & Peng (2004) under a parametric likelihood framework. Based on the em-
pirical likelihood formulation, a penalized empirical likelihood ratio test statistic is constructed
as

ℓ̃(Ln) = −2

{

ℓp(θ̂) − min
θ,Lnθ=0

ℓp(θ)

}

. (5)

We show the asymptotic property of this ratio in the following theorem.

THEOREM 4. Under the null hypothesis and Conditions A.1-A.7, asn → ∞, ℓ̃(Ln) → χ2
q .

As a consequence, a(1 − α)-level confidence set forLnθ can be constructed as

Vα =

[

v : −2

{

ℓp(θ̂) − min
θ,Lnθ=v

ℓp(θ)

}

≤ χ2
q,1−α

]

(6)

whereχ2
q,1−α is the1 − α level quantile ofχ2

q distribution.
Theorem 4 extends the results in Qin & Lawless (1994) to growing dimensionality. For the

full parametric likelihood approach, Fan & Peng (2004) showed that the likelihood ratio statistic
has similar properties given in Theorem 4.

The attractiveness of empirical likelihood and its penalized version comes atthe expense
of computation. Due to the nonconvexity, computing empirical likelihood is nontrivial (Owen,
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6 C. LENG AND C. Y. TANG

2001). Penalized empirical likelihood computation involving a non-differentiable penalty is ob-
viously more involved. We propose a nested optimization procedure in minimizing (4). Due to
the non-quadratic nature of the loss function, we iterate between solving for λ andθ. Whenλ is
fixed, we use the local quadratic approximation in Fan & Li (2001) by approximatingpτ (|θj |)
aspτ (|θ(k)

j |) + 1
2{p′τ (|θ

(k)
j |)/|θ(k)

j |}{θ2
j − (θ

(k)
j )2}, whereθ

(k)
j is thekth step estimate ofθj . We

then make use of the algorithm discussed in Owen (2001) Chapter 12 to obtainthe minimizer of
(4) through nonlinear optimization. The procedure is repeated until convergence by using the re-
sulting minimizer as the next initial value. Our experience suggests that this algorithm converges
quickly, usually in fewer than ten iterations given a good initial value.

To choose the penalty parameterτ , we use the followingBIC type function proposed by Wang
et al. (2009)

BIC(τ) = −2ℓ(θτ ) + Cn · log(n) · dfτ

whereθτ is the estimate ofθ with τ being the tuning parameter; dfτ is the number of nonzero
coefficient inθτ ; Cn is a scaling factor diverging to infinity at a slow rate asp → ∞. Whenp
is fixed, we can simply takeCn = 1 as for the usualBIC. Otherwise,Cn = max{log log p, 1}
seems to be a good choice. The growingCn is used to offset the effect of a growing dimension.
However, a rigorous justification is nontrivial and will be studied in future work.

4. SIMULATION AND DATA ANALYSIS

We present extensive simulation studies to illustrate the usefulness of penalized empirical like-
lihood. We choose examples from cases wherer > p such that the number of estimating equa-
tions is greater than the number of parameters. The proposed method is also applicable forr = p
when likelihood score functions or the first derivatives of a loss function are used. We compare
the penalized empirical likelihood estimates with competing methods whenever appropriate in
terms of estimation accuracy. We also give variable selection results for the simulation studies,
as well as hypothesis testing results in terms of the size and power. In our implementation, we
use the penalty in Fan & Li (2001) although other penalties can also be used. Specifically, the
first derivative of the penalty function is defined as

p′τ (θ) = τ
{

I(θ ≤ τ) +
(aτ − θ)+
(a − 1)τ

I(θ > τ)
}

,

for θ > 0, wherea = 3.7, and(s)+ = s for s > 0 and 0 otherwise.
Example 1. Longitudinal data arise commonly in biomedical research with repeated measure-
ments from the same subject or within the same cluster. LetYit andXit be the response and
covariate of theith subject measured at timet. Here,i ∈ {1, . . . , n} andt ∈ {1, . . . , mi} index
the subject and measurement respectively. The estimating equations utilize themarginal moment
conditions without resorting to the likelihood, which is complicated especially forcategorical
responses. LetE(Yit) = µ(XT

itβ) = µit whereβ ∈ R
p is the parameter of interest. Incorporat-

ing the dependence among the repeated measurements is essential for efficient inference. Liang
& Zeger (1986) proposed to estimateβ by solving0 =

∑n
i=1 µ̇T

i W−1
i (Yi − µi). Here for the

ith subject,Yi = (Yi1, . . . , Yini
)T, µi = (µi1, . . . , µini

)T, µ̇i = ∂µi/∂β and Wi = v
1/2
i Rv

1/2
i

where vi is a diagonal matrix of the conditional variances of subjecti and R = R(α) is
a working correlation matrix indexed byα. This is the estimating equations method with
g(Zi; β) = µ̇T

i W−1
i (Yi − µi) whereZi = (ZT

i1, . . . , Z
T
ini

)T, Zit = (Yit, X
T
it)

T andr = p. Liang
& Zeger (1986) proposed to estimateα and the dispersion parameter by the method of moments.



289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

Penalized Empirical Likelihood 7

More recently, Qu et al. (2000) proposed to modelR−1 by
∑m

i=1 aiMi whereM1, . . . , Mm

are known matrices anda1, . . . , am are unknown constants. Thenβ can be estimated by the
quadratic inference functions approach (Qu et al., 2000) that uses

g(Zi; β) =







µ̇T
i v

−1/2
i M1v

−1/2
i (Yi − µi)
...

µ̇T
i v

−1/2
i Mmv

−1/2
i (Yi − µi)






, (i = 1, . . . , n). (7)

This falls into our framework withr > p whenm > 1, and withr = p if m = 1.
In this simulation study, we consider the model

yij = xT
ijβ + εij , (i = 1, . . . , n; j = 1, 2, 3),

whereβ = (3, 1.5, 0, 0, 2, 0, · · · , 0)T ∈ R
p, xij are generated from multivariate normal distri-

butionN(0, Σ) with Σkl = 0.5|k−l|. The random errorεi = (εi1, εi2, εi3)
T is generated from a

three-dimensional normal distribution with mean zero, marginal variance 1. The correlation we
simulate for the random error is either compound symmetry orAR(1) with parameter 0.7. We
use two sets of basis matrices in fitting the model. We takeM1 = I3 as the identity matrix. The
second basis matrixM2 is either a matrix with 0 on the diagonal and 1 elsewhere, or a matrix
with two main off-diagonals being 1 and 0 elsewhere. Note that these two sets of basis matrices
are referred to as the working structures and are called compound symmetry andAR(1) working
assumptions respectively (Qu et al., 2000). In our setup, there arer = 2p estimating equations
to estimatep parameters. For each simulation, we repeat the experiment 1000 times. We trydif-
ferent sample sizesn = 50, 100, 200, 400 and we takep as the integer part of10(3n)1/5.1 − 20,
which enables us to study the asymptotic properties of empirical likelihood. We compare the
usual least-squares estimate, the Oracle least-squares estimator, empiricallikelihood estimator,
the oracle empirical likelihood estimator and the proposed penalized empirical likelihood estima-
tor, in terms of the mean squared errorMSE = E{(β̂ − β)T(β̂ − β)}. For the oracle estimates,
only the covariates corresponding to the nonzero coefficients are usedin estimation. We report
the Monte Carlo estimate ofMSE and its sample standard error in 1000 simulations.

The results are summarized in Table 1. Empirical likelihood is more efficient thanleast-squares
because more estimating equations are used. Similar phenomenon happens for their oracle ver-
sions. These agree with the general conclusion in Qu et al. (2000). Theproposed method has
smallerMSE than empirical likelihood and oracle least squares, indicating the gain in accuracy by
having more estimating equations and using the penalized method for variable selection. Further-
more, theMSE of the proposed method is close to that of oracle empirical likelihood, especially
so for larger sample sizes and larger models. This confirms the efficiency results in Theorem 3
empirically. Finally, using the correct working structure gives more efficient estimates, which
can be seen by the smallerMSE’s when the true correlation is used in Table 1. This agrees with
Qu et al. (2000).

In addition, we record the average correctly estimated zero coefficients and the average num-
bers of incorrectly estimated zero coefficients for penalized empirical likelihood. The results
are summarized in Table 1. The model selection result is satisfactory. Asn increases, the av-
erage correctly estimated zero coefficients is approachingp − 3, while the average numbers of
incorrectly estimated zero coefficients is 0 throughout. This confirms the selection consistency
in Theorem 3.

To verify the penalized empirical likelihood ratio result in Theorem 4, we testthe null hypoth-
esisH0 : β1 = a for a = 2.8, 2.9, 3.0, 3.1, 3.2 respectively, whereβ1 is the first component of
β. Using a nominal levelα = 0.05, we document the empirical size and power results in Table
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8 C. LENG AND C. Y. TANG

Table 1.Mean square errors (×10−2) for estimating equations in longitu-
dinal data analysis. The largest standard error over the meanis 2.35
n p True Working LS O-LS EL O-EL PEL C IC
50 6 CS CS 6.66 2.47 5.52 1.71 1.98 2.75 0

CS AR(1) - - 5.38 1.86 2.37 2.70 0
AR(1) CS 6.55 2.44 5.34 1.70 2.38 2.72 0
AR(1) AR(1) - - 5.35 1.80 2.38 2.74 0

100 10 CS CS 5.54 1.25 4.21 0.63 1.13 6.59 0
CS AR(1) - - 4.22 0.76 1.44 6.52 0

AR(1) CS 5.44 1.25 4.07 0.75 1.38 6.59 0
AR(1) AR(1) - - 3.92 0.76 1.28 6.61 0

200 15 CS CS 4.16 0.61 2.85 0.28 0.53 11.69 0
CS AR(1) - - 3.03 0.41 0.67 11.63 0

AR(1) CS 4.14 0.63 2.95 0.35 0.64 11.68 0
AR(1) AR(1) - - 2.96 0.34 0.61 11.67 0

400 20 CS CS 2.74 0.31 1.95 0.19 0.19 16.91 0
CS AR(1) - - 2.08 0.21 0.25 16.86 0

AR(1) CS 2.74 0.31 2.05 0.16 0.25 16.85 0
AR(1) AR(1) - - 2.02 0.18 0.23 16.86 0

LS, least-squares; O-LS, oracle least-squares; EL, empirical likelihood; O-EL, oracle empir-
ical likelihood; PEL, penalized empirical likelihood; C, the average of correctly estimated
zeros; IC, the average of incorrectly estimated zeros; CS, compoundsymmetry

2. We can see clearly that the size of the test is close to 0.05 as the sample size increases and
the power goes to 1 as either the sample size increases ora deviates more from the trueβ1 = 3.
These results show that the proposed test statistic performs satisfactorily.
Example 2. Consider a multivariate extension of Example 1 in Qin & Lawless (1994). Letthe
jth variable be

Xj ∼ N(θj , θ
2
j + 0.1), (j = 1, . . . , p)

where θ = (θ1, . . . , θp)
T = (1,−1, 0, 0, 1, 0, . . . , 0)T. We consider the following estimating

equations (Qin & Lawless, 1994)

g1(X, θ)) =







X1 − θ1
...

Xp − θp






, g2(X, θ) =







X2
1 − 2θ2

1 − 0.1
...

X2
p − 2θ2

p − 0.1






.

We generatexi ∈ R
p (i = 1, . . . , n) from p-dimensional normal distribution with meanθ and

the AR(1) correlation matrix with parameter 0.5. The marginal variance matrix is a diagonal
matrix with entriesθ2

j + 0.1. To consider the scenario of a diverging dimensionality, we letp

be the integer part of20n1/5.1 − 36 and consider several sample sizes. To make a comparison,
we compute mean square errors of the usual sample mean, the oracle sample mean assuming
that the zero entries inθ were known, empirical likelihood estimate without penalization, the
oracle empirical likelihood estimator by using the estimating equations only for the nonzero
entries, and finally the proposed penalized empirical likelihood. The sample mean estimator can
be seen as usingg1 only in the estimating equation. Note that the oracle empirical likelihood
estimate is suboptimal because the estimating equations for the zero entries can be exploited to
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Table 2.Size and power for testingH0 : β1 = 3. The nomi-
nal level is 0.05

n p True Working 2.8 2.9 3.0 3.1 3.2
50 6 CS CS 0.87 0.43 0.12 0.43 0.87

CS AR(1) 0.83 0.38 0.11 0.39 0.84
AR(1) CS 0.83 0.38 0.12 0.33 0.79
AR(1) AR(1) 0.85 0.41 0.11 0.35 0.83

100 10 CS CS 0.98 0.58 0.09 0.58 0.98
CS AR(1) 0.96 0.55 0.10 0.53 0.96

AR(1) CS 0.96 0.52 0.09 0.50 0.96
AR(1) AR(1) 0.96 0.55 0.09 0.54 0.96

200 15 CS CS 1.00 0.83 0.09 0.83 1.00
CS AR(1) 1.00 0.78 0.08 0.77 1.00

AR(1) CS 1.00 0.76 0.07 0.75 1.00
AR(1) AR(1) 1.00 0.80 0.08 0.77 1.00

400 20 CS CS 1.00 0.99 0.07 0.99 1.00
CS AR(1) 1.00 0.97 0.07 0.97 1.00

AR(1) CS 1.00 0.97 0.07 0.96 1.00
AR(1) AR(1) 1.00 0.98 0.08 0.97 1.00

LS, least-squares; O-LS, oracle least-squares; EL, empirical likelihood;
O-EL, oracle empirical likelihood; PEL, penalized empirical likelihood;
C, the average of correctly estimated zeros; IC, the average of incorrectly
estimated zeros; CS, compound symmetry

improve the efficiency of nonzero entries. This phenomenon was also noted in Tang & Leng
(2010). The results from 1000 replications for each sample size are summarized in Table 3. We
see that empirical likelihood is more accurate than sample mean, becauseg2 is incorporated. The
penalized empirical likelihood has the smallestMSE’s, becauseXj − θj from the zero entries
can be exploited to improve the efficiency of the estimates for the nonzero entries. The model
selection results are provided in Table 4. We see that variable selection is satisfactory as the
average number of correctly estimated zeros is close top − 3.

To verify the result in Theorem 4, we test the null hypothesisH0 : θ1 = a for a =
0.8, 0.9, 1.0, 1.1, 1.2 respectively. Using a nominal levelα = 0.05, we document the empirical
size and power results in Table 5. We can see clearly that the size of the testis close to 0.05 as the
sample size increases and the power goes to 1 as either the sample size increases ora deviates
more from the trueθ1 = 3, especially when the hypothesized value is less than the true value.
These results show that the proposed empirical likelihood test statistic performs satisfactorily.
Example 3. The instrumental variable method is widely used in measurement error models
(Fuller, 1987), survey sampling (Fuller, 2009) and econometrics (Hansen & Singleton, 1982).
Briefly speaking, this approach starts from conditional moment conditionE{h(Xi; θ)|F} = 0
whereh(Xi; θ) ∈ R

q andF is information generated by data. Hence, for anyF-measurable
variableUi ∈ R

r×q, so-called the instrument variables,E{Uih(Zi; θ)} = 0. Thenθ can be es-
timated usingg(Zi; θ) = Uih(Xi; θ) as estimating equations. Since the dimensionality ofUi is
not restricted, this approach is an estimating equations method withr ≥ p.

We consider the modelyi = xT
i β + εi, where two noisy copies ofxi denoted byui andvi

instead ofxi, andyi are observed. We follow the classical measurement error model assumption
Fuller (1987) by assumingui = xi + e1i andvi = xi + e2i, wheree1i ande2i arep-dimensional
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Table 3.Mean squares errors (×10−2)
Heterogeneity in Variance Example

n p SM O-SM EL O-EL PEL
50 7 5.85 5.07 4.97 3.63 3.12
100 13 3.53 2.54 2.96 1.30 1.23
200 20 2.17 1.33 1.78 0.58 0.50
400 28 1.29 0.66 1.11 0.27 0.23

Instrumental Variable Example
n p LS O-LS EL O-EL PEL
50 8 44.4 15.4 41.8 8.97 21.9
100 16 43.2 9.66 41.5 3.96 11.6
200 25 34.1 6.96 30.1 1.81 5.01
400 35 24.7 5.53 20.4 0.83 1.90

Two-sample Example
n p SM O-SM EL O-EL PEL
50 8 16.1 6.14 12.5 3.51 6.25
100 16 16.0 2.95 12.9 1.55 3.98
200 25 12.5 1.51 9.87 0.75 1.61
400 35 8.76 0.75 6.97 0.39 0.61

EL, empirical likelihood; O-EL, oracle empirical likeli-
hood; PEL, penalized empirical likelihood; SM, sample
mean; O-SM, oracle sample mean; LS, least squares; O-
LS, oracle least squares

Table 4.Model selection results for examples
Example 2 Example 3 Example 4

n p C IC p C IC p C IC
50 7 3.57 0 8 3.99 0 8 4.04 0
100 13 9.63 0 16 11.4 0 16 11.5 0
200 20 16.9 0 25 20.8 0 25 21.1 0
400 28 25.0 0 35 31.4 0 35 31.6 0

C, the average of correctly estimated zeros; IC, the average of incorrectly
estimated zeros

Table 5.Size and power for testingH0 : θ1 =
1 in Example 2. The nominal level is 0.05
n p 0.8 0.9 1.0 1.1 1.2
50 7 0.70 0.30 0.12 0.32 0.62
100 13 0.82 0.33 0.11 0.29 0.54
200 20 0.92 0.52 0.09 0.34 0.51
400 28 0.97 0.63 0.08 0.36 0.53

mean zero random vector independent of each other and independentof εi. Via instrumental
variables, we formulate two sets of estimating equations as

g1(U, V, Y, β) = UT(Y − V Tβ), g2(U, V, Y, β) = V T(Y − UTβ).

It is known that the ordinary least squares estimates are usually biased (Fuller, 1987). We gener-
ateβ andx according to Example 1, wherease1 ande2 are generated from a multivariate normal
with mean zero and exchangeable correlation matrix with parameter 0.5. Each component of
e1 ande2 has marginal variance 0.04. Furthermore, we generateε from N(0, 0.25). To make
comparisons, we compute the mean square errors for the ordinary least squares estimate usingU
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asX, the oracle least squares estimate using the sub-vector ofU corresponding to the nonzero
component ofX, the empirical likelihood estimator, the oracle empirical likelihood estimator
and the penalized empirical likelihood. Note that least squares usesg(U, Y, β) = UT(Y − UTβ)
as the estimating equation and that both least squares and oracle least squares give biased esti-
mates due to the measurement error. The results onMSE are summarized in Table 3. We see that
penalized empirical likelihood is much more accurate than empirical likelihood. For largen, the
MSEs of empirical likelihood is closer to those of oracle empirical likelihood, indicating that the
proposed method is closer to the oracle for large sample sizes. In addition, our method performs
satisfactorily in variable selection, as can be seen from Table 4. We also conducted hypothesis
testing using the null hypothesis in Example 1. The results are similar to that in Example 1 and
are omitted to save space.
Example 4. We consider the two sample problem with common means in Qin & Lawless (1994).
In particular, we have a pair of random variables(Xj , Yj) such thatE(Xj) = E(Yj) = θj (j =
1, . . . , p). We setθ = (θ1, . . . , θp)

T = (1,−1, 0, 0, 0.5, 0, . . . , 0)T. We generatexi andyi inde-
pendently fromp-dimensional multivariate normal distribution with meanθ and anAR(1) co-
variance matrix with parameter 0.5. We takep as the integer part of25n1/5.1 − 45. We compare
the following estimators: the sample mean, the oracle sample mean, the empirical likelihood
estimate, the oracle empirical likelihood estimate and the penalized empirical likelihood. Once
again, we see from Table 3 that the proposed method givesMSEs close to the oracle estimator, es-
pecially when the sample size becomes large. In addition, penalized empirical likelihood is much
more accurate than the usual empirical likelihood. This indicates that variableselection can en-
hance estimation accuracy if the underlying model is sparse. The penalizedempirical likelihood
performs well in variable selection, as can be seen from Table 4.
Higher dimensionality. Since the proposed method is based on empirical likelihood, it is not
possible to allowp or r greater thann. Otherwise, empirical likelihood can not be applied. To
explore higher dimensionality problems, we fix the sample size to be 100 and investigate the
performance of the method for Example 2 to 4 withp ranging from 10 to 25 (r ranging from 20
to 50). The results are presented in Figure 1. Clearly, with higher dimensions, the performance
of the proposed method deteriorates especially whenp > 15. However, the proposed method
always outperform the empirical likelihood method with no penalization. We noteadditionally
that with r = 2p estimating equations whenp ≥ 30, the optimization of empirical likelihood
can be unstable and sometimes may fail, a phenomenon observed by Tsao (2004) and Grend́ar
& Judge (2009). Therefore penalized empirical likelihood still performedreasonably well with
largerp while caution needs to be taken when the number of estimating equations is too large
comparing to the sample size.
Example 5. To illustrate the usefulness of penalized empirical likelihood, we consider theCD4
data (Diggle et al., 2002) where there are 2,376 observations for 369 subjects ranging from
3 years to 6 years after seroconversion. The major objective is to characterize the population
average time course of CD4 decay while accounting for the following predictor variables: age
(in years), smoking (packs per day), recreational drug use (yes orno), number of sexual partners,
and depression symptom score (larger values indicate more severe depression symptoms). As in
Diggle et al. (2002), we consider the square-root-transformed CD4 numbers whose distribution
is more near Gaussian. We parametrize the variable time by using a piecewise polynomial

f(t) = a1t + a2t
2 + a3(t − t1)

2
+ + · · · + a8(t − t6)

2
+

where t0 = min(tij) < t1 < · · · < t6 < t7 = max(tij) are equally spaced points and(t −
tj)

2
+ = (t − tj)

2 if t ≥ tj and(t − tj)
2
+ = 0 otherwise. This spline representation is motivated

by the data analysis in Fan & Peng (2004). We normalize all the covariates such that their sam-
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Fig. 1. Comparison of the mean squared errors using the empirical likelihood method (solid), the oracle
empirical likelihood method (dashed) and the penalized empirical likelihoodmethod (dotted).

ple means are zero and sample variance is one, which is routinely done in variable selection
(Tibshirani, 1996).

We use the quadratic inference function method by using the compound symmetry andAR(1)
matrices, respectively. In total there are 14 variables in the model and 28 estimating equations.
The intercept is not penalized. We also combine the estimating equations which use the com-
pound symmetry andAR(1) working structure. This gives a model with an additional 14 esti-
mating equation. In total, there are 42 estimating equations for this estimator. The detail of the
quadratic inference function modeling approach can be found in Example 1and Qu et al. (2000).
The fitted time curves of the square root of CD4 trajectory against time via the three penalized
empirical likelihood, together with the unpenalized fits using independent, compound symme-
try andAR(1) working correlation structures, are plotted in Figure 2. These curves are plotted
when all the other covariates are fixed at zero. These curves show close agreement with the data
points and with each other. The only exception is that if the working correlation is assumed to be
independent, the fitted trajectory differs from other fitted curves for large time.

Table 6 gives the generalized estimating equation estimates using various working correlation
matrices and the three penalized empirical likelihood estimates for the five variables. It is noted
that all the estimates identify smoking as the important variable.
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Fig. 2. The fits and the CD4 data: independent (gray solid), general estimating equations using compound symmetry correla-
tions (gray long dash), general estimating equations usingAR(1) correlations(gray short dash), penalized empirical likelihood
using compound symmetry correlations (long dash), penalized empirical likelihood usingAR(1) correlations (dash), penalized

empirical likelihood using compound symmetry andAR(1) correlations (dot-dash).

Table 6.The fitted coefficients and their standard errors
Variable Independence CS AR(1) PEL-CS PEL-AR1 PEL-CM
age 0.014(0.035) 0.002(0.032) 0.014(0.033) 0 0 0
smoking 0.981(0.184) 0.608(0.136) 0.281(0.190) 0.806 0.641 0.756
drug 1.064(0.529) 0.463(0.361) 0.414(0.356) 0 0 0
partner −0.065(0.059) 0.059(0.042) 0.052(0.041) 0 0 0
depression −0.032(0.021) −0.048(0.015) −0.047(0.015) 0 0 0

CS, compound symmetry; PEL-CS, penalized empirical likelihood using compound symmetry correla-
tions; PEL-AR1, penalized empirical likelihood usingAR(1) correlations; PEL-CM, penalized empirical
likelihood using compound symmetry andAR(1) correlations

SUPPLEMENTARY MATERIAL

Supplementary Material available atBiometrikaonline includes the proofs of Lemmas 1-4 and
Theorems 1-4, as well as quantile-quantile plots for demonstrating the empirical distributions of
the estimated parameters in simulations.

APPENDIX

The Appendix sketches the main idea in the proofs of Theorems 1-4, and theimportant lemmas
for the proofs.

Let ℓ(θ, λ) = n−1
∑n

i=1 log{1 + λTgi(θ)}, ḡ(θ) = n−1
∑n

i=1 gi(θ). We present Lemmas 1-3
following the approach in Newey & Smith (2004), which is used in proving Theorem 1. The
proofs of the lemmas are given in the Supplementary Material.
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LEMMA 1. Under Conditions A.1, A.2 and A.4, for anyξ with (1/α + 1/10) ≤ ξ < 2/5 and
as n → ∞, then max1≤i≤n supθ∈Θ |λTg(Zi; θ)| = op(1) for all λ ∈ Λn = {λ : ‖λ‖ ≤ n−ξ},
andΛn ⊆ Λ̂n(θ) for all θ ∈ Θ whereΛ̂n(θ) = {λ : λTgi(θ) > −1, i = 1, . . . , n}.

LEMMA 2. Under Conditions A.1-A.4, with probability tending to 1,λθ0 =
arg maxλ∈Λ̂n(θ0)ℓ(λ, θ0) exists,‖λθ0‖ = Op(an), andsupλ∈Λ̂(θ0) ℓ(λ, θ0) ≤ Op(a

2
n).

LEMMA 3. Under Conditions A.1-A.4,‖ḡ(θ̂E)‖2 = Op(n
−3/5).

The proof of part a) of Theorem 1 follows the arguments in Newey & Smith (2004) by applying
Lemmas 1-3, generalizing the results in Newey & Smith (2004) to allow divergingr andp. Upon
establishing the consistent result in part a), the proof given in the Supplementary Material for part
b) of Theorem 1 for the rate of convergence follows the arguments in Huang et al. (2008). The
following Lemma 4 is used in proving Theorem 2:

LEMMA 4. Under Conditions A.1-A.5,‖λθ̂E

‖ = Op(an).

Given Theorem 1 and Lemma 4, stochastic expansions forθ̂E and the empirical likelihood
ratio (3) can be developed, which facilitates the proof of Theorems 2-4. The proofs of Theorems
2-4 are available in the Supplementary Material.
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