FP7 Neurophysics WORKSHOP 23-24 Jan 2012: Pharmacological fMRI Warwick Conference Centre, University of Warwick, Coventry UK

Model Based Analyses Direct and Indirect PK-PD modelling Roger Gunn

Imanova Ltd. and Imperial College, London

Imperial College London

Overview

- Introduction
- Direct PK/PD Modelling
- Indirect PK/PD Modelling
- Predicting Repeat Dose Response from Single Dose data

PK-PD Modelling

- Relating the blood concentration of the drug (PK) to the Pharmacodynamic Response (PD)
 - Characterize efficacy in terms of dose/pk conc
 - Safety/therapeutic index
- Examples of Imaging PD Measures
 - PET Occupancy at a particular Target
 - Occupancy can often be related to efficacy
 - fMRI measures of activation

PK-PD Modelling

- Relating the blood concentration of the drug (PK) to the Pharmacodynamic Response (PD)
 - Characterize efficacy in terms of dose/pk conc
 - Safety/therapeutic index
- Examples of Imaging PD Measures
 - PET Occupancy at a particular Target
 - Occupancy can often be related to efficacy
 - fMRI measures of activation

PET Occupancy

- Occupancy studies measure occupancy of the target by the candidate drug
- Require the existence or development of a PET ligand (usually different from the candidate drug)
- Occupancy studies best performed just after or during FTIH

Binding Potential Map (mL/g) Baseline Scan After 4 mg risperidone

Applying Imaging Endpoints at the right Time

- Does the molecule reach the CNS in potentially pharmacologically active concentrations?
- Does the molecule interact with the target of interest ?
- Can imaging help to differentiate drugs ?

Characterizing the PK-RO Relationship

Direct Model

Direct Model

Direct Model

Simple Single Dose Example

Occupancy of GlyT1 antagonist

Gunn, Synapse, 2011

Differentiation based on predicted therapeutic index

[¹¹C]PHNO measurement of Dopamine D3 Receptor Occupancy

Drug A Drug B Predicted therapeutic index = 1.3 Predicted therapeutic index = 4.5(%) 100 Receptor occupancy $EC_{50} = 20$ $EC_{50} = 70$ D_3

Roger Gunn, 23/01/2012

Plasma concentration (ng/mL)

• Given a Model and Set of Parameters

OD Determines an optimum set of sampling points

$$\chi^{2}(\mathbf{p}) = \sum_{i=1}^{N} \left[\frac{y_{i} - f(t_{i}; \mathbf{p})}{\sigma_{i}} \right]^{2}$$

$$\frac{\partial^{2}\chi^{2}}{\partial p_{j}\partial p_{k}} = 2\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \left[\frac{\partial y(t_{i}; \mathbf{p})}{\partial p_{j}} \frac{\partial y(t_{i}; \mathbf{p})}{\partial p_{k}} - [y_{i} - f(t_{i}; \mathbf{p})] \frac{\partial^{2}y(t_{i}; \mathbf{p})}{\partial p_{j}\partial p_{k}} \right]$$

$$H_{jk} = \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \left[\frac{\partial y(t_{i}; \mathbf{p})}{\partial p_{j}} \frac{\partial y(t_{i}; \mathbf{p})}{\partial p_{k}} \right]$$
Large Curvature & Small Error in ρ , Small Curvature & Large Error in ρ , χ^{2}

$$\int_{\beta_{i}} \frac{\chi^{2}}{\int_{\beta_{i}} \frac{\chi^{2$$

Optimal Design: A Simple Example

- Emax Model: Dose-Occupancy Model
 - -1 parameter (ED₅₀)
 - 1 data point: What dose should we sample at ?

Optimal Design: A Simple Example

 Calculate Information Matrix from partial derivatives

$$\frac{\partial Occ(D; ED_{50})}{\partial ED_{50}} = \frac{-D}{\left(D + ED_{50}\right)^2}$$

$$H = \frac{\partial Occ(D; ED_{50})}{\partial ED_{50}} \frac{\partial Occ(D; ED_{50})}{\partial ED_{50}} = \frac{D^2}{\left(D + ED_{50}\right)^4}$$

Optimal Design: A Simple Example

- Maximize determinant (D-Optimal) over D $\max_{\{D\}} \left(Det(H) \right) = \max_{\{D\}} \left(\frac{D^2}{\left(D + ED_{50} \right)^4} \right)$
- In this simple case can differentiate and set=0 to find max, $2D_{1}(U) = 2D(D)$

$$\frac{\partial Det(H)}{\partial D} = \frac{2D(ED_{50} - D)}{\left(D + ED_{50}\right)^5}$$

- Emax Model: Dose-Occupancy Model
 - -1 parameter (ED₅₀)
 - N data points

- Emax Model: Dose-Occupancy Model
 - -1 parameter (ED₅₀)
 - N data points

- **Emax Model: Dose-Occupancy Model**
 - -1 parameter (ED₅₀)
 - N data points

- Emax Model: Dose-Occupancy Model
 - -1 parameter (ED₅₀)
 - N data points

Initial **ED**₅₀

Direct Model - Summary

Occupancy (or response) is determined by the instantaneous plasma concentration and the direct model parameters (EC₅₀).

Can be sampled using Adaptive Optimal Experimental Design

Extended Single Dose Example

Rabiner, Mol Psych, 2011

Rabiner, Mol Psych, 2011

GSK1521498 vs. Naltrexone: Differentiation based on RO (PET) / PD (fMRI) relationships

Rabiner, Mol Psych, 2011

Indirect Models

Model I: BBB Limited Model

Assumes brain concentration is described as a single exponential convolved with the plasma concentration and that the occupancy is instantaneously related in a EMax fashion to the brain concentration.

$$TOC(t) = \frac{C_P(t) \otimes e^{-\beta t}}{C_P(t) \otimes e^{-\beta t} + \gamma}$$

Model II: k_{on}-k_{off} Limited Model

Assumes receptor association and dissociation are finite.

$$\frac{dRO}{dt} = k_{on} \cdot C_P \cdot (R_T - RO) - k_{off} \cdot RO$$

Model I: BBB Limited Model

Assumes brain concentration is described as a single exponential convolved with the plasma concentration and that the occupancy is instantaneously related in a EMax fashion to the brain concentration.

$$TOC(t) = \frac{C_P(t) \otimes e^{-\beta t}}{C_P(t) \otimes e^{-\beta t} + \gamma}$$

Model II: k_{on}-k_{off} Limited Model

Assumes receptor association and dissociation are finite.

$$\frac{dRO}{dt} = k_{on} \cdot C_P \cdot (R_T - RO) - k_{off} \cdot RO$$

Mathematically can have more complex systems with both effects

Direct & Indirect Models

Log [Plasma Conc]

Occupancy (or response) is determined by the instantaneous plasma concentration and the direct model parameters (e.g. EC_{50}).

Log [Plasma Conc]

Occupancy (or response) is determined by the historical plasma concentration and the indirect model parameters (e.g. $EC_{50,} k_{off}$).

"Hysteresis, Indirect, delay effect "

Receptor Occupancy in Drug Development

- Dosimetry considerations typically limits the number of scans to 3
- Occupancy will vary as a function of time and dose
- Example: 4 volunteers, scanned at 4 h and 7 d post MTD
 - Mean Occupancy at 4 h post MTD : 44% Mean Occupancy at 7 d post MTD: 52% Target Occupancy: >75% Go or No Go?

Characterizing the PK-RO Relationship

SERT occupancy by Duloxetine

Experimental Design

Single Dose: PK/Occupancy Model

Plasma PK

Adaptive-Optimal Design

- Measures
 - •Expensive
 - Technically sophisticated
- Optimal sampling critical to define
 Dose-Time Occupancy Surface

Established Methods

- Measures
 - Cheaper
 - Technically simpler

Application of Adaptive Optimal Designs to estimate PK-RO Model Parameters

SERT occupancy by Duloxetine

Imaging Data

Roger Gunn, 23/01/2012

Roger Gunn, 23/01/2012

Single Dose (SD) Repeat Dose (RD)

Direct & Indirect Model Fits and RD Prediction

kon-koff Model Fits and RD Predictions (n=10)

Indirect Model is the better predictor of RD occupancy

Summary

- PK/RO Modelling
 - Direct/Indirect Model
- Multiple Time Point Assays
- Adaptive Designs
- Predict RD Response

If we can accurately characterise the relationship between

PK (dose/conc) and PD (efficacy)

this puts us in a strong Drug Development position