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Introduction
Heritability analyses measure the extent to which
the inter-subject variation can be accounted for by
the genetic influences. This analysis can be done
for a single observable trait (i.e., trait heritabil-
ity) and also for multiple traits, where heritability
concerns the overlapping genetic effects shared
between measurable characteristics (i.e., genetic
correlation between traits). In OHBM 2013, we
proposed a novel linear regression method (LR-
SD [1]), using the squared differences of paired
observations to infer trait heritability. Here, we
generalise the univariate LR-SD method to the bi-
variate genetic modelling of a pair of phenotypes.
The integration of univariate and bivariate LR-SD
methods provides a new fast estimation approach
for genetic correlation. However, while our initial
attempts to estimate genetic correlation were un-
successful (severe bias), we found that we could
accurately estimate a closely related measure, the
endophenotype ranking value (ERV). ERV de-
pends on the genetic correlation and the heritabil-
ity of each phenotype, and can be used to test for
zero heritability or genetic correlation. Compared
with the commonly used and computationally-
intensive likelihood ratio test statistic, the ERV
is so fast that permutation inference is practical.
We perform simulations to evaluate the validity of
this ERV statistic and illustrate it on a real dataset.

Methods
The ERV is defined as ERV = h1h2ρg, where h1
and h2 are square root of the heritability of two
phenotypes, and ρg denotes the genetic correla-
tion between phenotypes. Bivariate LR-SD uses
only differences squared (DS’s) among twin pairs
and their two phenotypes, and estimates the ERV
using ordinary least squares. The subject pairs
can be partitioned into 3 groups: MZ, DZ and
UN (unrelated subjects).

The expected value of DS depends on ERV in a
simple way, allowing direct estimation; for exam-
ple, for standardised phenotypes:

DS E[DS]

Inter-MZtwin, Inter-Pheno 2− 2ERV
Inter-DZtwin, Inter-Pheno 2− ERV

For hypothesis testing, we use absolute value of
the ERV, i.e., |h1h2ρg|, to equally consider the
positive and negative ERV. The null hypothesis
H0: ERV = 0 is equivalent to H0: ρg = 0, since
zero heritability implies ρg = 0. Although the
null distribution of the ERV is unknown, the per-
mutation test provides a simple way to estimate
its exact (empirical) null distribution. When the
null hypothesis is true, MZ and DZ twin pairs are

exchangeable and can be randomly shuffled.

Twin data from the Human Connectome Project
(HCP; [2]) was extracted to form a sample of 178
healthy adults (126 females, 52 males) including
98 MZ and 80 DZ twins from 89 families with an
age range of 22-36 (mean±SD: 29.8±2.9). Us-
ing the approach of the ENIGMA project [3], the
raw DTI image of each subject was pre-processed
and quality-controlled to derive images of frac-
tional anisotropy (FA). Once the FA images were
obtained, the ENIGMA-DTI template was used
for image alignment; 36 ROI’s were extracted and
grouped (based on major white matter tracts), and
mean FA for each ROI was calculated as the re-
gional phenotypic measure [3]. The ERV statis-
tic was utilised within the permutation framework
to test the significance of combined genetic in-
fluences between ROI’s. 1000 permutations were
used to find ERV p-values.

Results: Simulations
Fig 1 shows the rejection rate (in percent) at level
0.05 for H0: ERV = 0 when h2 = 0 (blue), h2 =
0.25 (green) and h2 = 0.5 (yellow), n = 50 + 50

(50 MZ and 50 DZ twins, panel A), n = 100+100

(panel B) and n = 200 + 200 (panel C). 1000
simulations, 1000 permutations each, were per-
formed. The red dash-dotted lines show the lower
and upper bounds of the 95% binomial proportion
confidence interval. The null hypothesis is true
when h2 = 0 or ρg = 0, which corresponds to all
blue bars and the 3 green and yellow bars marked
(0, ∗). For nearly all null simulation settings, the
estimated FPR (the rate of falsely rejecting the
null hypothesis when it is actually true) lies be-
low the upper bound of the 95% binomial propor-
tion confidence interval, which implies the ERV
statistic is valid for assessing the null hypothesis.

Figure 1: Simulation results: the rejection rate (in
percent) at level 0.05 using the ERV for different
heritability levels. The x-markers correspond to

(ρg,ρp).

Results: Real Data
Figs 2 & 3 show the significant bivariate genetic
correlations for ROI pairs, assessed with the ERV

statistic using 1000 permutations after FWE (Fig
2) and FDR (Fig 3) corrections. Each marker on
x and y axes corresponds to a ROI. Univariate
LR-SD analysis found non-zero heritability for
all ROI’s, ranging from 0.04 to 0.85. With the use
of bivariate LR-SD, the most significant FWE-
corrected p-value for those connected ROI pairs
is 0.001 with 3 significant ROI pairs, and the best
attainable FDR-corrected p-value is 0.014 with
199 significant ROI pairs found. This implicitly
demonstrates that the FDR control of p-values for
multiple comparisons is more powerful than the
FWE correction.

Figure 2: −log10(FWE corrected p-values for ERV).

Figure 3: −log10(FDR corrected p-values for ERV).

Conclusions
We have extended the univariate LR-SD method
to the bivariate case, suggested a fast test statis-
tic of the ERV for testing zero genetic correlation
using this bivariate LR-SD method, and demon-
strated the ERV inference with a real data ap-
plication. With the simulation evaluations, we
have shown that the ERV statistic is valid and
has reasonable power. Crucially, our fast ap-
proach to ERV inference allows the use of the
non-parametric permutation inference.
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