# Modelling Time-varying effective Brain Connectivity using Multiregression Dynamic Models Thomas Nichols University of Warwick

 $Y_{t} = \beta_{0t} + \beta_{1t}x_{1t} + \dots + \beta_{pt}x_{pt} + v_{t} \qquad v_{t} \sim \mathcal{N}(0, V_{t})$  $\boldsymbol{\beta}_{t} = \boldsymbol{\beta}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_{t})$ 

• Bayesian time series model

- Predictors  $\{X_1, \dots, X_p\}$ 

- 'Exogenous' input variables, or
- Lagged versions of Y, generalizing ARIMA models
- Regression coefficients  $\beta_t$
- Observation variance  $V_t$
- System (co)variance  $\mathbf{W}_t$  (p × p)
- All time varying!

 $Y_{t} = \beta_{0t} + \beta_{1t}x_{1t} + \dots + \beta_{pt}x_{pt} + v_{t} \qquad v_{t} \sim \mathcal{N}(0, V_{t})$  $\boldsymbol{\beta}_{t} = \boldsymbol{\beta}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_{t})$ 

• Example

- "Local level model",  $X_1 = \mathbf{1}$  (compared to static fit)



• How can this possibly work!?

 $Y_{t} = \beta_{0t} + \beta_{1t}x_{1t} + \dots + \beta_{pt}x_{pt} + v_{t} \qquad v_{t} \sim \mathcal{N}(0, V_{t})$  $\boldsymbol{\beta}_{t} = \boldsymbol{\beta}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_{t})$ 

- Special sauce: Variance discounting
  - System variance fixed fraction of observation variance

$$\begin{split} \mathbf{W}_t &= \mathsf{Var}(\boldsymbol{\beta}_{t-1}|Y_{t-1}) \quad \frac{1-\delta}{\delta} \quad V_t \\ \textbf{Posterior variance of } \boldsymbol{\beta} & \boldsymbol{\uparrow} \\ \text{at time } t\text{-1, i.e. the prior} & \text{Effect of} \\ \text{variance for } \boldsymbol{\beta} \text{ at time } t & \text{``Discount factor'' } \delta \end{split}$$

- $-\delta = 0$  Static model,  $\delta = \frac{1}{2}$  Random walk
- $-1-\delta$  is loss of information at time t
  - e.g. for  $\delta$ =0.95, 5% loss of information from *t*-1 to *t*

 $Y_{t} = \beta_{0t} + \beta_{1t}x_{1t} + \dots + \beta_{pt}x_{pt} + v_{t} \qquad v_{t} \sim \mathcal{N}(0, V_{t})$  $\boldsymbol{\beta}_{t} = \boldsymbol{\beta}_{t-1} + \mathbf{w}_{t} \qquad \mathbf{w}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_{t})$ 

- Special sauce: Variance discounting
  - Estimate  $\delta$  by maximum likelihood



# **Multiregression Linear Model**

Observation equations - for ROI r

$$Y_t(r) = \mathbf{F}_t(r)' \boldsymbol{\theta}_t(r) + v_t(r), \qquad v_t(r) \sim \mathcal{N}(0, V_t(r));$$

System equation - for *p*-dimensional  $\theta$ 

$$\boldsymbol{\theta}_t = \boldsymbol{\theta}_{t-1} + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_t) \text{ and } \mathbf{W}_t(r) = V_t(r) \mathbf{W}_t^*(r);$$

#### Initial information

$$(\boldsymbol{ heta}_0|y_0) \sim \mathcal{N}(\mathbf{m}_0, \mathbf{C}_0)$$
 and  $\mathbf{C}_0(r) = V_t(r)\mathbf{C}_0^*(r)$ .

Multivariate, Bayes Net version of DLM

 Regressors (here, *F<sub>t</sub>* at time t) are other *Y'<sub>t</sub>*s, contemporaneous values at other regions

Queen & Smith (1993). Multiregression dynamic models. JRSS-B, 55(4), 849–870.





# Fully Conjugate Inference

 $\mathcal{T}_{\nu}$ 

Multivariate T

distribution,  $\nu$  DF

- Posterior of regression coefficient  $\theta_t$  $(\theta_t(r)|\mathbf{y}^T) \sim \mathcal{T}_{n_T(r)}(\mathbf{sm}_t(r), \mathbf{sC}_t(r))$
- "Filtering" posterior update as of time t $(\theta_t(r)|\mathbf{y}^t) \sim \mathcal{T}_{n_t(r)}(\mathbf{m}_t(r), \mathbf{C}_t(r))$ , where  $\mathbf{y}^t = (y_1, \dots, y_t)$
- Predictive distribution at time t  $(Y_t(r)|\mathbf{y}^{t-1}, \mathbf{x}_t(r)) \sim \mathcal{T}_{n_{t-1}(r)}(f_t(r), Q_t(r)), \text{ where}$  $f_t(r) = \mathbf{F}'_t(r)\mathbf{m}_{t-1}(r) \text{ and } \mathbf{x}_t(r)' = (y_t(1), \dots, y_t(r-1))$
- Model evidence

 $\log p_1(\mathbf{Y}(1)) + \ldots + \log p_n(\mathbf{Y}(n)|\mathbf{Y}(1), \ldots, \mathbf{Y}(n-1)) \\= \sum_{r=1}^n \sum_{t=1}^T \log p_{tr}(Y_t(r)|\mathbf{y}^{t-1}, \mathbf{x}_t(r));$ 

• Log Bayes factor  $\log(BF) = LPL(m_1) - LPL(m_0)$ 

## Multiregression Dynamic Model for fMRI

- As a Bayes Net, can estimate directionality
- Evaluate accuracy with Smith et al. (2011) 'NetSim' data
  - DCM forward model, 5 nodes
  - "sim22" dynamic simulation



- 10 min sessions, TR = 3.00s, 50 realisations
- Measured
  - 'c-sensitivity' Connection (ignoring direction) accuracy
  - 'd-accuracy' Proportion of directed edges correctly detected

Costa, Smith, Nichols, Cussens, Duff, Makin. (2015). Searching Multiregression Dynamic Models of Resting-State fMRI Networks Using Integer Programming. *Bayesian Analysis*, 10(2), 441–478.



MDM for fMRI: NetSim Results Undirected connection Accuracy

- Comparable to other BayesNet estimation methods
  - GES, PC





MDM

GES

MDM for fMRI: NetSim Results Directed connection Accuracy

- Nearly as accurate as best, Patel's τ
  - But, again, all other methods static
  - MDM is Detecting network connection direction 0.6 achieving 0.5 this accuracy while 0.4 estimating 0.3 dynamic 0.2 connectivity 0.1 0.0

MDM

BN

Patel's T

Gen Synch Granger

LiNGAM

# Dynamic Graphic Model

- MDM & NetSim truth are DAG models
   Directed Acyclic Graphs
- The brain isn't a DAG
  - Cyclical connections rule rather exception
- Solution
  - Instead of finding optimal Bayes Net,
  - Find optimal set of parents for each node
    - Allows cycles, yet still provides a graphical model
  - Yields a set of *R* directed models (*R* ROIs)
    - "Dynamic Graphical Model"

# Application 1 Resting fMRI Motor-Visual Network

- 15 subjects
- 230 time points, TR=1.3s
- 11 ROIs
  - 5 motor, nodes 1,...,5
    - Cerebellum, Putamen, Supplementary Motor Area (SMA), Precentral Gyrus and Postcentral Gyrus
  - 6 visual, nodes 6,...,11
    - V1, V2, V3, V4, V5 and Lingual
- Assessed consistent edges over subjects
  - Binomial test
  - Ho: Edges randomly distributed over all subjects, edges

## **Application 1: Results**

For reference: Full & Partial correlation



# Application 1: Results Discount Factors

- SMA, V5 most variable
- Precentral,
   Postcenral, V1,
   V2 most stable
  - Also Putamen, V3, V4, Lingual



## Application 1: Results Regressors

Most variable (low  $\delta$ ) nodes



#### **Application 1: Results**

- MDM (DAG) results
  - Clear directionality but poor consistency



#### **Application 1: Results**

- DGM results
  - Clear evidence for bi-directial connections
  - Excellent consistency



# Application 2

- 32 subjects
- 15min , TR=1.1ss
- 12ROIs defined functionally & anatomically
  - Ventromedial prefrontal cortex (VMPFC), Amygdala (L,R), orbitofrontal cortex (OFC, L,R), dorsolateral prefrontal cortex (DLPFC, L,R), Anterior Insula (AntIns, L,R), Posterior Insula (PostIns, L,R), and anterior midcingulate cortex (aMCC).
- "Safe" resting data from Bijsterbosch et al., (2015).
  - Bijsterbosch et al. (2015) Functional Connectivity under Anticipation of Shock: Correlates of Trait Anxious Effect versus Induced Anxiety, Journal of Cognitive Neuroscience

### **Consistent Edges**

Similar to partial correlation
 But picks up DLPFC → Insular, VMPFC → (several)



#### **Consistent Network Edges**



# Conclusions

- Computationally efficient yet flexible framework for dynamic connectivity
- Here, dynamic aspect regarded as nuisance
   Still interpreting dynamic model
- Great potential for understanding directed causal structure in the brain
- Thanks
  - Jim Q. Smith, Lilia Costa, Ruth Harbord MDM/DGM
  - Steve Smith Data & NetSim help
  - Sonia Bishop, Janine Bijsterbosch Data
  - Eugene Duff, Tamar Makin Data