Practical Intensity-Based Meta-Analysis

Camille Maumet
OHBM Neuroimaging Meta-Analysis Educational course
26 June 2016
Coordinate- or Image-Based?

Experiment → Acquisition → Raw data → Analysis → Results → Publication → Paper
Coordinate- or Image-Based?

Coordinate-based meta-analysis
Coordinate- or Image-Based?

Coordinate-based meta-analysis

Image-based meta-analysis
Image-based meta-analysis how to?
Image-based meta-analysis

Subject 1

Pre-processed data → Model fitting and estimation → Contrast and std. err. maps → Inference → Detections (subject-level)
Image-based meta-analysis

```
Subject 1
Pre-processed data → Model fitting and estimation → Contrast and std. err. maps → Inference → Detections (subject-level)

Subject n
Pre-processed data → Model fitting and estimation → Contrast and std. err. maps → Inference → Detections (subject-level)
```
Image-based meta-analysis

Subject 1

Pre-processed data → Model fitting and estimation → Contrast and std. err. maps

Subject n

Pre-processed data → Model fitting and estimation → Contrast and std. err. maps

Model fitting and estimation → Inference → Detections (study-level)
Inference

Detections (study-level)

Image-based meta-analysis

Subject 1

Pre-processed data

Model fitting and estimation

Contrast and std. err. maps

Model fitting and estimation

Contrast and std. err. maps

Inference

Detections (study-level)

Subject n ...

Pre-processed data

Model fitting and estimation

Contrast and std. err. maps

Model fitting and estimation

Contrast and std. err. maps

Inference

Detections (study-level)

Subject 1

Pre-processed data

Model fitting and estimation

Contrast and std. err. maps

Model fitting and estimation

Contrast and std. err. maps

Inference

Detections (study-level)

Subject n ...

Pre-processed data

Model fitting and estimation

Contrast and std. err. maps

Model fitting and estimation

Contrast and std. err. maps

Inference

Detections (study-level)
Image-based meta-analysis

- Subject 1
 - Pre-processed data
 - Model fitting and estimation
 - Contrast and std. err. maps

- Subject n
 - Pre-processed data
 - Model fitting and estimation
 - Contrast and std. err. maps

- Model fitting and estimation
 - Contrast and std. err. maps

Inference
 - Detections (meta-analysis)
Image-based meta-analysis
Image-based meta-analysis

• Gold standard:

 Third-level Mixed-Effects GLM

• Requirements
 – study-level **Contrast estimates** and **Standard error maps**.
 – Same **units**
Units of contrast estimates

Pre-processed data → Model fitting and estimation → Contrast and std. err. maps
Units of contrast estimates

- Pre-processed data
- Data scaling
- Scaled pre-processed data
- Model parameter estimation
- Parameter estimates
- Contrast estimation
- Contrast and std. err. maps
Units of contrast estimates

\[
\text{scaled}_\text{data} = \frac{\text{data} \times \text{target}}{\text{est}_\text{mean}}
\]

Units depend on **mean estimation** and **scaling target**.
Units of contrast estimates

$Y = \beta + \epsilon$

Units depend on **scaling** of explanatory variables
Units of contrast estimates

- Contrast Estimation
 - Linear combination of parameter estimates
 - Final statistics invariant to scale
 - e.g. \([1 1 1 1]\) gives same T’s & P’s as \([\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}]\)

Units depend on contrast vector
- Rule for contrasts to preserve units
 - Positive elements sum to 1
 - Negative elements sum to -1
Image-based Meta-analysis

• Gold standard: Third-level Mixed-Effects GLM

• But…
 – Units will depend on:
 • The scaling of the data (subject-level)
 • The scaling of the predictor(s) (subject- and study-level)
 • The scaling of the contrast (subject- and study-level).
 – Contrast estimates and standard error maps are rarely shared…
Which images for IBMA?

SPM
- **Contrast & std. err. maps**
 - con_0001.nii
 - [SPM.mat]

FSL
- **Contrast map**
 - con_0001.nii
 - cope1.nii
 - varcope1.nii (squared)

AFNI
- **Statistic map E.g. Z-map**
 - spmT_0001.nii
 - tstat1.nii.gz
 - zstat1.nii.gz

- **Contrast map**
 - con_0001.nii
 - cope1.nii

- **3dMEMA_result+tlrc.BRIK[[0]]**
 - [from contrast & stat maps]

- **3dMEMA_result+tlrc.BRIK[[1]]**
Image-based meta-analyses based on Z

- **Fisher's**
 \[-2 \sum_{k} \log P_k \sim \chi^2_{2k} \]
 - Sum of \(-\log P\)-values (from T/Z’s converted to P’s)

- **Stouffer’s**
 \[\sqrt{K} \times \frac{1}{K} \sum_{k} Z_k \sim \mathcal{N}(0, 1) \]
 - Average Z, rescaled to N(0,1)

- **“Stouffer's Random Effects (RFX)”**
 \[\sqrt{K} \times \frac{1}{K} \sum_{k} Z_k \sim \mathcal{N}(0, \sigma^2_{RFX}) \]
 - Submit Z’s to one-sample t-test

(Slide adapted from Thomas Nichols, OHBM 2015)
Image-based meta-analyses based on $Z + N$

- Weighted Stouffer’s
 \[\sum_k w_k Z_k \sim \mathcal{N}(0, 1), \quad w_k \propto \sqrt{N_k} \]
 - Z’s from bigger studies get bigger weight

(Slide adapted from Thomas Nichols, OHBM 2015)
Image-based meta-analyses based on Con’s

• Random Effects (RFX) GLM

$$\frac{1}{K} \sum_{k} c_\beta_k \sim \mathcal{N}(0, \sigma_{RFX}^2)$$

– Analyze per-study contrasts as “data”

based on Con’s + SE’s

• Fixed-Effects (FFX) GLM

$$\frac{1}{K} \sum_{k} \hat{\theta}_k \sim \mathcal{N}(0, \sum_{k} \sigma_{FFX,k}^2 / K^2)$$

– *Don’t* estimate variance, just take from first level

(Slide adapted from Thomas Nichols, OHBM 2015)
Image-Based Meta-Analysis

In practice!
- Not all of these options are easily used

<table>
<thead>
<tr>
<th>Meta-Analysis Method</th>
<th>Inputs</th>
<th>Neuroimaging Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Gold Standard’ MFX</td>
<td>Con’s + SE’s</td>
<td>FSL’s FEAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPM spm_mfx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AFNI 3dMEMA</td>
</tr>
<tr>
<td>RFX GLM</td>
<td>Con’s</td>
<td>FSL, SPM, AFNI, etc…</td>
</tr>
<tr>
<td>Stouffer’s RFX</td>
<td>Z’s</td>
<td></td>
</tr>
<tr>
<td>FFX GLM</td>
<td>Con’s +SE’s</td>
<td>n/a</td>
</tr>
<tr>
<td>Fisher’s</td>
<td>Z’s</td>
<td></td>
</tr>
<tr>
<td>Stouffer’s</td>
<td>Z’s</td>
<td></td>
</tr>
<tr>
<td>Stouffer’s Weighted</td>
<td>Z’s + N’s</td>
<td></td>
</tr>
</tbody>
</table>

(Slide from Thomas Nichols, OHBM 2015)
Self Promotion Alert: IBMA toolbox

- SPM Extension
- Still in beta!
 - But welcome all feedback

- Available on GitHub

https://github.com/NeuroimagingMetaAnalysis/ibma
Meta-analysis of 21 pain studies

• Results
 – GLM methods similar
 – Z-based methods similar
 – But FFX Z methods more sensitive (as expected)

Fig. 1: Result of a meta-analysis of 21 pain studies for 4 fixed-effects (FFX GLM, Fisher, Stouffer, weighted-z) and 2 random-effects (RFX GLM, Stouffer MFX) meta-analytic approaches compared to the reference (MFX GLM) at a threshold of p<0.05 FDR corrected.

Data: Tracey pain group, FMRIB, Oxford.
Share image data supporting neuroimaging results
Share your statistic maps

http://neurovault.org
Share your statistic maps

http://neurovault.org
From SPM & FSL

$ nidmfsl fsl_ds107_group 49 -g Control

http://nidm.nidash.org/getting-started/
Conclusions

• When data available, **Image-Based** preferred to **Coordinate-Based** meta-analysis

For more on NIDM-Results
Maumet et al., Poster 1851 - Tuesday 12:45-14:45
“NIDM-Results: Standardized reporting of mass univariate neuroimaging results in SPM, FSL and AFNI”
Conclusions

• When data available, **Image-Based** preferred to **Coordinate-Based** meta-analysis

• **In practice, it is difficult** to use the gold standard **Mixed-Effects GLM**

For more on NIDM-Results
Maumet et al., Poster 1851 - Tuesday 12:45-14:45
“NIDM-Results: Standardized reporting of mass univariate neuroimaging results in SPM, FSL and AFNI”
Conclusions

• When data available, **Image-Based** preferred to **Coordinate-Based** meta-analysis

• **In practice, it is difficult** to use the gold standard **Mixed-Effects GLM**

• When only contrast estimates are available, **RFX GLM** is a practical & valid approach

For more on NIDM-Results
Maumet et al., Poster 1851 - Tuesday 12:45-14:45
“NIDM-Results: Standardized reporting of mass univariate neuroimaging results in SPM, FSL and AFNI”
Conclusions

• When data available, **Image-Based** preferred to **Coordinate-Based** meta-analysis

• **In practice**, it is **difficult** to use the gold standard **Mixed-Effects GLM**

• When only contrast estimates are available, **RFX GLM** is a practical & valid approach

• Few tools for Z-based IBMA, but underway…

For more on NIDM-Results
Maumet et al., Poster 1851 - Tuesday 12:45-14:45
“NIDM-Results: Standardized reporting of mass univariate neuroimaging results in SPM, FSL and AFNI”
Conclusions

• When data available, **Image-Based** preferred to **Coordinate-Based** meta-analysis

• In practice, it is difficult to use the gold standard **Mixed-Effects GLM**

• When only contrast estimates are available, **RFX GLM** is a practical & valid approach

• Few tools for Z-based IBMA, but underway…

• Data sharing tools: **NeuroVault**, NIDM-Results

For more on NIDM-Results
Maumet et al., Poster 1851 - Tuesday 12:45-14:45
“NIDM-Results: Standardized reporting of mass univariate neuroimaging results in SPM, FSL and AFNI”
Thank you!

This work is supported by the Wellcome Trust