SGPP: spatial Gaussian predictive process models for neuroimaging data

Neuroimage, vol. 89, pp. 70-80, 2014

February 5, 2015
Voxel-wise analysis

- Widely used to establish association between imaging data and covariates

- Two major steps:
 - Gaussian smoothing the imaging data
 - Fitting a statistical model at each voxel

- Drawbacks:
 - Gaussian smoothing may introduce bias in the statistical results
 - Does not take into account spatial correlations and dependence across different voxels
 - Generally not optimal in power
 - Not optimal in prediction
Modelling the spatial dependence

- A relatively simple covariance model has to be considered to model all voxels
 - A large unstructured variance-covariance matrix (and its functions) is computationally prohibitive to compute

- Under the Bayesian framework, spatial correlations in imaging data have been modelled through various spatial priors
 - Conditional autoregressive (CAR)
 - Markov random field (MRF)
 - Gaussian process (GP)

- Drawbacks:
 - Somehow restrictive to assume a specific type of correlation structure (CAR & MRF)
 - Several tuning parameters that need to be estimated
Scientific goals

- **Goal:** Develop a spatial Gaussian predictive process (SGPP) modelling framework for predicting neuroimaging data by using
 - A set of covariates of interest, such as age and diagnostic status
 - Existing imaging data (same & different modalities)
- To achieve a better prediction, the authors characterise both
 - Local & global spatial dependence (or variability) of imaging data
 - Spatial association of imaging data with a set of covariates of interest
Notation

- $n = \# \text{ of subjects}$
- $\mathcal{D} = \text{compact set in } \mathbb{R}^3$
- $d = \text{centre of a voxel (or vertex) in } \mathcal{D}$
- $M = \text{total } \# \text{ of voxels in } \mathcal{D}$
- $x_i = (x_{i1}, \ldots, x_{ip})^\top = p \times 1 \text{ vector of covariates for the } i^{th} \text{ subject (e.g., age, gender, and height)}$
- $y_i(d_m) = (y_{i,1}(d_m), \ldots, y_{i,J}(d_m))^\top = J \times 1 \text{ vector of neuroimaging measures (e.g., cortical thickness) at voxel } d_m, m = 1, \ldots, M$
The SGPP is given by

\[y_{i,j}(d) = x_i^\top \beta_j(d) + \eta_{i,j}(d) + \epsilon_{i,j}(d) \]

for \(i = 1, \ldots, n \) and \(j = 1, \ldots, J \)

- \(\beta_j(d) = (\beta_{j1}(d), \ldots, \beta_{jp}(d))^\top = p \times 1 \) vector of regression coefficients at \(d \)
- \(\eta_{i,j}(d) \) characterises individual image variations from \(x_i^\top \beta_j(d) \) & medium-to-long-range dependence of imaging data between \(y_{i,j}(d) \) and \(y_{i,j}(d') \) for any \(d \neq d' \)
- \(\epsilon_{i,j}(d) \) = spatially correlated errors, capture local dependence
- \(\eta_i(d) = (\eta_{i,1}(d), \ldots, \eta_{i,J}(d))^\top \) & \(\epsilon_i(d) = (\epsilon_{i,1}(d), \ldots, \epsilon_{i,J}(d))^\top \)
 are mutually independent
- \(\eta_i \overset{iid}{\sim} \text{GP}(0, \Sigma_\eta), \epsilon_i \overset{iid}{\sim} \text{GP}(0, \Sigma_\epsilon) \)
Consider an fPCA model for spatial process \(\eta_i(d) \):

- Spectral decomposition of \(\Sigma_\eta(d, d') = [\Sigma_{\eta, jj'}(d, d')] \):

\[
\Sigma_{\eta, jj}(d, d') = \sum_{l=1}^{\infty} \lambda_{j,l} \psi_{j,l}(d) \psi_{j,l}(d')
\]

with \(\{\lambda_{j,l} \geq 0\} \geq 0 \) are the ordered eigenvalues, \(\sum_{l=1}^{\infty} \lambda_{j,l} < \infty \), and \(\psi_{j,l}(d) \)'s are the corresponding orthonormal eigenfunctions

- Karhunen-Loéve expansion of \(\eta_{i,j}(d) \):

\[
\eta_{i,j}(d) = \sum_{l=1}^{\infty} \xi_{ij,l} \psi_{j,l}(d) \approx \sum_{l=1}^{L_0} \xi_{ij,l} \psi_{j,l}(d)
\]

where \(\xi_{ij,l} = \int_{s \in D} \eta_{i,j}(d) \psi_{j,l}(s) dL(s) = (j, l) \)th functional principal component score of the \(i \)th subject. For each fixed \((i, j)\), the \(\xi_{ij,l} \)'s are uncorrelated r.v.'s with \(\mathbb{E}(\xi_{ij,l}) = 0 \) and \(\mathbb{E}(\xi_{ij,l}^2) = \lambda_{j,l} \)
Multivariate simultaneous autoregressive (SAR) model

Assume a SAR model for $\epsilon_i(d)$:

$$\epsilon_{i,j}(d) = \rho \frac{1}{|N(d)|} \sum_{d' \in N(d)} \epsilon_{i,j}(d') + e_{i,j}(d)$$

- ρ = autocorrelation parameter, controls the strength of the local positive spatial dependence
- $N(d)$ = closest neighbouring voxels of d
- $|N(d)|$ = cardinality of $N(d)$
- $e_i(d) = (e_{i,1}(d), \ldots, e_{i,J}(d))^\top \overset{iid}{\sim} \text{GP}(0, \Sigma_e)$ with $\Sigma_e(d, d') = 0$ for $d \neq d'$ and $\Sigma_e(d, d) = \Sigma_e(\theta(d))$
- $\theta(d)$ = vector of unknown parameters
SGPP model

Combining fPCA & SAR models:

\[y_{i,j}(d') \approx x_i^\top \beta_j(d') + \sum_{l=1}^{L_0} \xi_{ij,l} \psi_{j,l}(d') \]

\[+ \rho \frac{1}{|N(d')|} \sum_{d' \in N(d)} \left(y_{i,j}(d') - x_i^\top \beta_j(d') - \sum_{l=1}^{L_0} \xi_{ij,l} \psi_{j,l}(d') \right) + e_{i,j}(d) \]

Obtain a simple approximation to

\[\text{Cov}(y_i(d), y_i(d')) = \Sigma_y(d, d') = \Sigma_\eta(d, d') + \Sigma_\epsilon(d, d') \]
Estimation procedure

The estimation procedure follows three steps:

- **Stage (I):** the least squares estimate of the regression coefficients \(\beta(d) = [\beta_1(d), \ldots, \beta_J(d)] \), denoted by \(\hat{\beta}(d) \), across all voxels in \(D \).

- **Stage (II):** a nonparametric estimate of \(\Sigma_\eta \) and its associated eigenvalues and eigenfunctions.

- **Stage (III):** the restricted maximum likelihood estimation of \(\rho \) and \(\theta = \theta(d) \).
Fig. 1: A diagram for the SGPP model with three components including a general linear model (GLM) for characterizing the association between imaging measure and covariates of interest, a functional principal component model (fPCA) to capture the global spatial dependence, and a multivariate spatial autoregressive model (SAR) to capture the local spatial dependence. The first stage of the estimation procedure is the least squares estimation of the regression coefficients $\beta(d) = [\beta_1(d), \ldots, \beta_J(d)]$, the second stage is the nonparametric estimation of Σ_η and its associated eigenvalues and eigenfunctions, and the third stage is the restricted maximum likelihood estimation of all the parameters in the spatial autoregressive model.
Simulation study

- Simulated data at all 900 pixels on a 30×30 image for $n = 50$ subjects

- Data generated from a bivariate spatial Gaussian process model according to

$$y_{i,j}(d_m) = \beta_{j1}(d_m) + x_{i2}\beta_{j2}(d_m) + \eta_{i,j}(d_m) + \epsilon_{i,j}(d_m)$$

and $j = 1, 2$; $x_{i2} \overset{iid}{\sim} \text{Uniform}[1, 2], \forall i$

- $\eta_{i,j}(d_m) = \sum_{l=1}^{2} \xi_{ij,l}\psi_{j,l}(d_m)$, where the $\xi_{ij,l}$ are independently generated according to

$$\xi_{i1,1} \sim N(0, 14^2), \quad \xi_{i1,2}, \xi_{i2,2} \sim N(0, 7^2), \quad \xi_{i2,1} \sim N(0, 15^2)$$

- $\epsilon_{i} = (\epsilon_{i}(d_1), \ldots, \epsilon_{i}(d_{900}))^\top$ generated from a GRF
Fig. 2: Simulation results for the Gaussian random field: (a) true $\beta_{11}(d)$; (b) true $\beta_{12}(d)$; (c) true $\beta_{21}(d)$; (d) true $\beta_{22}(d)$; (e) $\hat{\beta}_{11}(d)$; (f) $\hat{\beta}_{12}(d)$; (g) $\hat{\beta}_{21}(d)$; (h) $\hat{\beta}_{22}(d)$.
Fig. 3: The first 10 relative eigenvalues of $\hat{\Sigma}_{\eta,jj}(d,d')$ for (a) simulation results for the Gaussian random field and (b) the surface data of the left lateral ventricle.
Fig. 4: Simulation results for the Gaussian random field: (a) true $\psi_{1,1}(d)$; (b) true $\psi_{1,2}(d)$; (c) true $\psi_{2,1}(d)$; (d) true $\psi_{2,2}(d)$; (e) $\hat{\psi}_{1,1}(d)$; (f) $\hat{\psi}_{1,2}(d)$; (g) $\hat{\psi}_{2,1}(d)$; and (h) $\hat{\psi}_{2,2}(d)$.
Table 1: rtMSPE for the simulated data with a Gaussian error process

<table>
<thead>
<tr>
<th>Missingness</th>
<th>VWLM</th>
<th>GLM+fPCA</th>
<th>GLM+SAR</th>
<th>SGPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>(j = 1)</td>
<td>0.5617</td>
<td>0.3203</td>
<td>0.4843</td>
</tr>
<tr>
<td></td>
<td>(j = 2)</td>
<td>0.6162</td>
<td>0.3611</td>
<td>0.5342</td>
</tr>
<tr>
<td>30%</td>
<td>(j = 1)</td>
<td>0.5552</td>
<td>0.3189</td>
<td>0.4749</td>
</tr>
<tr>
<td></td>
<td>(j = 2)</td>
<td>0.6219</td>
<td>0.3700</td>
<td>0.5458</td>
</tr>
<tr>
<td>50%</td>
<td>(j = 1)</td>
<td>0.5606</td>
<td>0.3205</td>
<td>0.4862</td>
</tr>
<tr>
<td></td>
<td>(j = 2)</td>
<td>0.6212</td>
<td>0.3707</td>
<td>0.5424</td>
</tr>
</tbody>
</table>
Lateral ventricle surfaces

- Applied SGPP to the surface data of the left lateral ventricle
- 43 infants (23 males and 20 females) at age 1
- \(x_i = (1, G_i, Gage_i)^\top \); \(G_i \) denotes the gender (1 for female and 0 for male); \(Gage_i \) denotes the gestational age of the \(i \)th infant
- \(Gage_i \in [234, 295] \) days with mean Gage of 263 days and standard deviation of 12.8 days
- Responses based on the SPHARM-PDM representation of the lateral ventricle surfaces
- Ventricle represented by 1002 location vectors with each location vector consisting of the spatial \(x, y, z \) coordinates of the corresponding vertex on the SPHARM-PDM surface
Fig. 5: Results from the surface data of the left lateral ventricle: (a) and (b) $\hat{\beta}_{11}(d)$, $\hat{\beta}_{12}(d)$, and $\hat{\beta}_{13}(d)$ (from left to right); (c) and (d) $\hat{\beta}_{21}(d)$, $\hat{\beta}_{22}(d)$, and $\hat{\beta}_{23}(d)$ (from left to right); (e) and (f) $\hat{\beta}_{31}(d)$, $\hat{\beta}_{32}(d)$, and $\hat{\beta}_{33}(d)$ (from left to right).
Hypothesis testing

Tested the effects of gender and gestational age on the x, y, z coordinates of the left lateral ventricle surface:

$$H_0 : \beta_{j2}(d) = 0 \quad \text{against} \quad \beta_{j2}(d) \neq 0$$

for gender effect and

$$H_0 : \beta_{j3}(d) = 0 \quad \text{against} \quad \beta_{j3}(d) \neq 0$$

for the gestational age across all voxels for $j = 1, 2, 3$.

(Adjusted) $-\log_{10}(p\text{-values})$ greater than 1.3 indicate a significant effect at 5% significance level; $-\log_{10}(p\text{-values})$ greater than 2 indicate a significant effect at 1% significance level.
Fig. 6: Raw $- \log_{10}(p)$ maps for testing (a) $H_0 : \beta_{12}(d) = 0$; (b) $H_0 : \beta_{13}(d) = 0$; (c) $H_0 : \beta_{22}(d) = 0$; (d) $H_0 : \beta_{23}(d) = 0$; (e) $H_0 : \beta_{32}(d) = 0$; (f) $H_0 : \beta_{33}(d) = 0$.
Fig. 7: Corrected $- \log_{10}(p)$ maps for testing (g) $H_0 : \beta_{12}(d) = 0$; (h) $H_0 : \beta_{13}(d) = 0$; (i) $H_0 : \beta_{22}(d) = 0$; (j) $H_0 : \beta_{23}(d) = 0$; (k) $H_0 : \beta_{32}(d) = 0$; (l) $H_0 : \beta_{33}(d) = 0$.
Table 3: rtMSPE for the surface data of the left lateral ventricle

<table>
<thead>
<tr>
<th>Missingness</th>
<th>VWLM</th>
<th>GLM+fPCA</th>
<th>SGPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% x-coordinate</td>
<td>1.9272</td>
<td>0.9810</td>
<td>0.0738</td>
</tr>
<tr>
<td>10% y-coordinate</td>
<td>2.2448</td>
<td>1.3455</td>
<td>0.1067</td>
</tr>
<tr>
<td>10% z-coordinate</td>
<td>2.1554</td>
<td>1.1753</td>
<td>0.0926</td>
</tr>
<tr>
<td>30% x-coordinate</td>
<td>1.9337</td>
<td>1.0197</td>
<td>0.1156</td>
</tr>
<tr>
<td>30% y-coordinate</td>
<td>2.2655</td>
<td>1.3827</td>
<td>0.1657</td>
</tr>
<tr>
<td>30% z-coordinate</td>
<td>2.1906</td>
<td>1.2069</td>
<td>0.1446</td>
</tr>
<tr>
<td>50% x-coordinate</td>
<td>1.9263</td>
<td>1.0294</td>
<td>0.1615</td>
</tr>
<tr>
<td>50% y-coordinate</td>
<td>2.2012</td>
<td>1.3471</td>
<td>0.2204</td>
</tr>
<tr>
<td>50% z-coordinate</td>
<td>2.1862</td>
<td>1.1830</td>
<td>0.1924</td>
</tr>
</tbody>
</table>
Conclusions

- SGPP essentially an extension of spatial mixed effects models for the analysis of geostatistical data
 - Uses fPCA to estimate spatial basis functions
 - Allows varying regression coefficients across the brain
- Possible extensions to the modelling of longitudinal neuroimaging data & to predict clinical outcomes
- Drawbacks:
 - Estimation procedure is not iterative; the authors should go back to stage (I) after stage (III), but this would likely kill the computation in the fPCA part
 - Real data application is not clear; not easy to interpret what the response is; not clear whether multiplicity adjustment is for voxels, or voxels and coordinate dimension