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Voxel-wise analysis

@ Widely used to establish association between imaging data and
covariates

@ Two major steps:

e Gaussian smoothing the imaging data
e Fitting a statistical model at each voxel

@ Drawbacks:

e Gaussian smoothing may introduce bias in the statistical
results

e Does not take into account spatial correlations and
dependence across different voxels

e Generally not optimal in power

e Not optimal in prediction



Modelling the spatial dependence

@ A relatively simple covariance model has to be considered to
model all voxels

e A large unstructured variance-covariance matrix (and its
functions) is computationally prohibitive to compute

@ Under the Bayesian framework, spatial correlations in imaging
data have been modelled through various spatial priors

e Conditional autoregressive (CAR)
e Markov random field (MRF)
e Gaussian process (GP)

@ Drawbacks:

e Somehow restrictive to assume a specific type of
correlation structure (CAR & MRF)
@ Several tuning parameters that need to be estimated



Scientific goals

@ Goal: Develop a spatial Gaussian predictive process (SGPP)
modelling framework for predicting neuroimaging data by using
o A set of covariates of interest, such as age and diagnostic
status
e Existing imaging data (same & different modalities)
@ To achieve a better prediction, the authors characterise both

e Local & global spatial dependence (or variability) of imaging

data
e Spatial association of imaging data with a set of covariates

of interest



Notation

@ n = # of subjects

@ D = compact set in R3

@ d = centre of a voxel (or vertex) in D
@ M = total # of voxels in D

® x; = (Xi1,...,Xp) " = p x 1 vector of covariates for the ith subject
(e.g., age, gender, and height)

@ yi(dm) = (¥i1(dm),---,¥iu(dm))" = J x 1 vector of neuroimaging
measures (e.g., cortical thickness) at voxel d,,, m=1,....M



SGPP

The SGPP is given by
¥i,(d) = x;" B;(d) + n;;(d) + €i,(d)

fori=1,....,nandj=1,...J

@ 3,(d) = (Bj1(d),...,Bp(d))" = p x 1 vector of regression
coefficients at d
@ 7);;(d) characterises individual image variations from x,Tﬁj(d) &

medium-to-long-range dependence of imaging data between
yij(d) and y;;(d’) for any d # o’

@ ¢;;(d) = spatially correlated errors, capture local dependence
@ n,(d) = (mi1(d),....miu(d))" &ei(d) = (ei1(d),... e u(d)T
are mutually independent

® 1, GP(0,X,), ¢  GP(0, X,)



Functional principal component analysis (fPCA)

Consider an fPCA model for spatial process 7;(d):
@ Spectral decomposition of X, (d, d’) = [¥,, j(d, d")]:

n//dd/ Z/\/ﬂ/’// w]’ )

with {)\; =0} > 0 are the ordered eigenvalues, >",°, \;; < oo,
and 1; /(d)’s are the corresponding orthonormal eigenfunctions

@ Karhunen-Loéve expansion of 7; ;(d):

%) Lo

nij(d) = Zf//lw//() ZE/‘/’,ij,/(d)

1=1 1=1

where &) = [, mij(d)y;.(s)dL(s) = (j, /)th functional principal
component score of the ith subject. For each fixed (i,)), the & /’s
are uncorrelated r.v.s with E(¢;,,) = 0 and E(&j; 2) =\



Multivariate simultaneous autoregressive (SAR) model

Assume a SAR model for ¢;(d) :

1
PIN()]

ei;(d) = > ej(d) + eij(d)

d’eN(d)

@ p = autocorrelation parameter, controls the strength of the local
positive spatial dependence

@ N(d) = closest neighbouring voxels of d

@ |N(d)| = cardinality of N(d)

o e(d) = (e.1(d),....e.4(d)T 2 GP(0,X,) with c(d, d’) = 0 for
d#d and Xo(d,d) = Z¢(0(d))

@ 6(d) = vector of unknown parameters



SGPP model

Combining fPCA & SAR models:

Lo
¥ij(d) = X7 B;(d) + Z&/,/w,-,,(d)

Z (yll d/ T/B/ d/ Zé-lj 11/)// ) +e,,( )

eN(d
Obtain a simple approximation to

Cov(yi(d),yi(d")) =%,(d,d")=Z,(d,d")+ Z.(d,d)



Estimation procedure

The estimation procedure follows three steps:

@ Stage (I): the least squares estimate of the regression
coefficients 3(d) = [34(d), ..., 3,(d)], denoted by 3(d), across
all voxels in D

@ Stage (ll): a nonparametric estimate of X,, and its associated
eigenvalues and eigenfunctions

@ Stage (lll): the restricted maximum likelihood estimation of p and
0 =0(d)



ISpatiaI Gaussian predictive process model

Vi (@) =x{ B;(d) + 1, ,(d) + £, ,(d)

Least squares Functional principal Multivariate spatial
estimation component analysis autoregressive model
B, $,5(d.d) =34, 0, (), ) & ~N(O0.¥(p.0)

=

‘ H(p.6)= Uy~ AW OL) L (60~ T B1,)7

Yoy @)= B,(d) I .' ’ .’

‘ b =y @ T L, @ Restricted maximum
W@ =N T E*"’"W" likelihood estimation
Nonparametric
regression 'v
Ay (d) p.0

Fig. 1: A diagram for the SGPP model with three components including a general linear
model (GLM) for characterizing the association between imaging measure and covariates
of interest, a functional principal component model (fPCA) to capture the global spatial
dependence, and a multivariate spatial autoregressive model (SAR) to capture the local
spatial dependence. The first stage of the estimation procedure is the least squares es-
timation of the regression coefficients 3(d) = [3,(d),...,3,(d)], the second stage is the
nonparametric estimation of ¥, and its associated eigenvalues and eigenfunctions, and the
third stage is the restricted maximum likelihood estimation of all the parameters in the
spatial autoregressive model.



Simulation study

@ Simulated data at all 900 pixels on a 30 x 30 image for n = 50
subjects

@ Data generated from a bivariate spatial Gaussian process model
according to

Yi,j(dm) = Bj1(dm) + Xi2Bj2(Am) + njj(dm) + €i,j(Am)

and j = 1,2; xiz 2 Uniform[1, 2], Vi

@ n;j(dn) = 2,2:1 &iyi(dm), where the &;; are independently
generated according to

i1~ N(0,142),  Eiy2,E2 ~ N(0,7%), iy ~ N(0,15?)

® € = (€i(01),...,€i(doo)) " generated from a GRF
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Fig. 2: Simulation results for the Gaussian random field: (a) true 811(d); (b) true S15(d);
(c) true B1(d); (d) true Boa(d); (e) Arr(d); (£) Bra(d); (2) Bor(d); (h) Poo(d).
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Fig. 3: The first 10 relative eigenvalues of Z"},,‘jj (d,d') for (a) simulation results for the
Gaussian random field and (b) the surface data of the left lateral ventricle.
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Fig. 4: Simulation results for the Gaussian random field: (a) true vy ;(d); (b) true ¥y 2(d);
(c) true ¥a.1(d); (d) true wa2(d); (e) P1,1(d); (£) 1,2(d); (g) tha,1(d); and (h) ¥ 2(d).
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Table 1: rtMSPE for the simulated data with a Gaussian error process

Missingness VWLM GLM+fPCA GLM+SAR SGPP
10% j=1 105617 0.3203 0.4843 0.1707
i=2 06162 0.3611 0.5342 0.1966

30% j=1 0.5552 0.3189 0.4749 0.1736
i=2 06219 0.3700 0.5458 0.2094

50% j=1 0.5606 0.3205 0.4862 0.1837
i=2 06212 0.3707 0.5424 0.2181




Lateral ventricle surfaces

@ Applied SGPP to the surface data of the left lateral ventricle
@ 43 infants (23 males and 20 females) at age 1

@ x; = (1,G;,Gage,) "; G; denotes the gender (1 for female and 0
for male); Gage; denotes the gestational age of the ith infant

@ Gage; € [234,295] days with mean Gage of 263 days and
standard deviation of 12.8 days

@ Responses based on the SPHARM-PDM representation of the
lateral ventricle surfaces

@ Ventricle represented by 1002 location vectors with each
location vector consisting of the spatial x, y, z coordinates of the
corresponding vertex on the SPHARM-PDM surface



Fig. 5: Results from the surface data of the left lateral ventricle: (a) and (b) ,gll (d), ﬁlg(d),
and fi5(d) (from left to right); (c) and (d) Bos(d), faz(d), and Bas(d) (from left to right);
(e) and (f) Bs1(d), Faa(d), and fFs3(d) (from left to right).



Hypothesis testing

Tested the effects of gender and gestational age on the x, y, z
coordinates of the left lateral ventricle surface:

Ho : Bj2(d) =0 against Bj(d) #0
for gender effect and
Ho : fa(d) =0 against fs(d) # 0
for the gestational age across all voxels for j = 1,2, 3.
(Adjusted) — log,(p-values) greater than 1.3 indicate a significant

effect at 5% significance level; — log,,(p-values) greater than 2
indicate a significant effect at 1% significance level



Fig. 6: Raw — logy((p) maps for testing (a) Hp : B12(d) = 0; (b) Hp : B13(d) = 0; (c) Hp : Boa(d) = 0; (d)

Ho : Ba3(d) = 0;(e) Hy : B32(d) = 0; (f) Hy : Ba3(d) = 0.




Fig. 7: Corrected — log(p) maps for testing (g) Hp : B12(d) = 0; (h) Hp : B13(d) = 0; (i) Hp : Baz(d) = 0; ()

Ho : B23(d) = 0; (k) Hp : B32(d) = 0; () Ho : Baz(d) = 0.




Table 3: rtMSPE for the surface data of the left lateral ventricle

Missingness VWLM GLM+fPCA SGPP
10% x-coordinate 1.9272 0.9810 0.0738
y-coordinate  2.2448 1.3455 0.1067

z-coordinate  2.1554 1.1753 0.0926

30% x-coordinate  1.9337 1.0197 0.1156
y-coordinate  2.2655 1.3827 0.1657

z-coordinate  2.1906 1.2069 0.1446

50% x-coordinate  1.9263 1.0204 0.1615
y-coordinate  2.2012 1.3471 0.2204

z-coordinate  2.1862 1.1830 0.1924




Conclusions

@ SGPP essentially an extension of spatial mixed effects models
for the analysis of geostatistical data

o Uses fPCA to estimate spatial basis functions
e Allows varying regression coefficients across the brain

@ Possible extensions to the modelling of longitudinal
neuroimaging data & to predict clinical outcomes

@ Drawbacks:

e Estimation procedure is not iterative; the authors should go
back to stage (l) after stage (lll), but this would likely kill the
computation in the fPCA part

o Real data application is not clear; not easy to interpret what
the response is; not clear whether multiplicity adjustment is
for voxels, or voxels and coordinate dimension
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