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Voxel-wise analysis

Widely used to establish association between imaging data and
covariates

Two major steps:

Gaussian smoothing the imaging data
Fitting a statistical model at each voxel

Drawbacks:

Gaussian smoothing may introduce bias in the statistical
results
Does not take into account spatial correlations and
dependence across different voxels
Generally not optimal in power
Not optimal in prediction



Modelling the spatial dependence

A relatively simple covariance model has to be considered to
model all voxels

A large unstructured variance-covariance matrix (and its
functions) is computationally prohibitive to compute

Under the Bayesian framework, spatial correlations in imaging
data have been modelled through various spatial priors

Conditional autoregressive (CAR)
Markov random field (MRF)
Gaussian process (GP)

Drawbacks:

Somehow restrictive to assume a specific type of
correlation structure (CAR & MRF)
Several tuning parameters that need to be estimated



Scientific goals

Goal: Develop a spatial Gaussian predictive process (SGPP)
modelling framework for predicting neuroimaging data by using

A set of covariates of interest, such as age and diagnostic
status
Existing imaging data (same & different modalities)

To achieve a better prediction, the authors characterise both

Local & global spatial dependence (or variability) of imaging
data
Spatial association of imaging data with a set of covariates
of interest



Notation

n = # of subjects

D = compact set in R3

d = centre of a voxel (or vertex) in D

M = total # of voxels in D

xi = (xi1, . . . , xip)> = p× 1 vector of covariates for the i th subject
(e.g., age, gender, and height)

yi (dm) = (yi,1(dm), . . . , yi,J(dm))> = J × 1 vector of neuroimaging
measures (e.g., cortical thickness) at voxel dm,m = 1, . . . ,M



SGPP

The SGPP is given by

yi,j (d) = x>
i βj (d) + ηi,j (d) + εi,j (d)

for i = 1, . . . ,n and j = 1, . . . J

βj (d) = (βj1(d), . . . , βjp(d))> = p × 1 vector of regression
coefficients at d

ηi,j (d) characterises individual image variations from x>
i βj (d) &

medium-to-long-range dependence of imaging data between
yi,j (d) and yi,j (d ′) for any d 6= d ′

εi,j (d) = spatially correlated errors, capture local dependence

ηi (d) = (ηi,1(d), . . . , ηi,J(d))> & εi (d) = (εi,1(d), . . . , εi,J(d))>

are mutually independent

ηi
iid∼ GP(0,Ση), εi

iid∼ GP(0,Σε)



Functional principal component analysis (fPCA)

Consider an fPCA model for spatial process ηi (d):

Spectral decomposition of Ση(d ,d ′) = [Ση,jj′(d ,d ′)]:

Ση,jj (d ,d ′) =
∞∑
l=1

λj,lψj,l (d)ψj,l (d ′)

with {λj,l>0} > 0 are the ordered eigenvalues,
∑∞

l=1 λj,l <∞,
and ψj,l (d)’s are the corresponding orthonormal eigenfunctions

Karhunen-Loéve expansion of ηi,j (d):

ηi,j (d) =
∞∑
l=1

ξij,lψj,l (d) ≈
L0∑

l=1

ξij,lψj,l (d)

where ξij,l =
∫

s∈D ηi,j (d)ψj,l (s)dL(s) = (j , l)th functional principal
component score of the i th subject. For each fixed (i , j), the ξij,l ’s
are uncorrelated r.v.’s with E(ξij,l ) = 0 and E(ξ2

ij,l ) = λj,l



Multivariate simultaneous autoregressive (SAR) model

Assume a SAR model for εi (d) :

εi,j (d) = ρ
1

|N(d)|
∑

d ′∈N(d)

εi,j (d ′) + ei,j (d)

ρ = autocorrelation parameter, controls the strength of the local
positive spatial dependence

N(d) = closest neighbouring voxels of d

|N(d)| = cardinality of N(d)

ei (d) = (ei,1(d), . . . ,ei,J(d))>
iid∼ GP(0,Σe) with Σe(d ,d ′) = 0 for

d 6= d ′ and Σe(d ,d) = Σe(θ(d))

θ(d) = vector of unknown parameters



SGPP model

Combining fPCA & SAR models:

yi,j (d) ≈ x>
i βj (d) +

L0∑
l=1

ξij,lψj,l (d)

+ ρ
1

|N(d)|
∑

d ′∈N(d)

(
yi,j (d ′)− x>

i βj (d
′)−

L0∑
l=1

ξij,lψj,l (d ′)

)
+ ei,j (d)

Obtain a simple approximation to

Cov(yi (d),yi (d ′)) = Σy (d ,d ′) = Ση(d ,d ′) + Σε(d ,d ′)



Estimation procedure

The estimation procedure follows three steps:

Stage (I): the least squares estimate of the regression
coefficients β(d) = [β1(d), . . . ,βJ(d)], denoted by β̂(d), across
all voxels in D

Stage (II): a nonparametric estimate of Ση and its associated
eigenvalues and eigenfunctions

Stage (III): the restricted maximum likelihood estimation of ρ and
θ = θ(d)





Simulation study

Simulated data at all 900 pixels on a 30× 30 image for n = 50
subjects

Data generated from a bivariate spatial Gaussian process model
according to

yi,j (dm) = βj1(dm) + xi2βj2(dm) + ηi,j (dm) + εi,j (dm)

and j = 1,2; xi2
iid∼ Uniform[1,2],∀i

ηi,j (dm) =
∑2

l=1 ξij,lψj,l (dm), where the ξij,l are independently
generated according to

ξi1,1 ∼ N(0,142), ξi1,2, ξi2,2 ∼ N(0,72), ξi2,1 ∼ N(0,152)

εi = (εi (d1), . . . , εi (d900))> generated from a GRF











Lateral ventricle surfaces

Applied SGPP to the surface data of the left lateral ventricle

43 infants (23 males and 20 females) at age 1

xi = (1,Gi ,Gagei )
>; Gi denotes the gender (1 for female and 0

for male); Gagei denotes the gestational age of the i th infant

Gagei ∈ [234,295] days with mean Gage of 263 days and
standard deviation of 12.8 days

Responses based on the SPHARM-PDM representation of the
lateral ventricle surfaces

Ventricle represented by 1002 location vectors with each
location vector consisting of the spatial x , y , z coordinates of the
corresponding vertex on the SPHARM-PDM surface





Hypothesis testing

Tested the effects of gender and gestational age on the x , y , z
coordinates of the left lateral ventricle surface:

H0 : βj2(d) = 0 against βj2(d) 6= 0

for gender effect and

H0 : βj3(d) = 0 against βj3(d) 6= 0

for the gestational age across all voxels for j = 1,2,3.

(Adjusted) − log10(p-values) greater than 1.3 indicate a significant
effect at 5% significance level; − log10(p-values) greater than 2
indicate a significant effect at 1% significance level



Fig. 6: Raw − log10(p) maps for testing (a) H0 : β12(d) = 0; (b) H0 : β13(d) = 0; (c) H0 : β22(d) = 0; (d)

H0 : β23(d) = 0 ; (e) H0 : β32(d) = 0; (f) H0 : β33(d) = 0.



Fig. 7: Corrected − log10(p) maps for testing (g) H0 : β12(d) = 0; (h) H0 : β13(d) = 0; (i) H0 : β22(d) = 0; (j)

H0 : β23(d) = 0 ; (k) H0 : β32(d) = 0; (l) H0 : β33(d) = 0.





Conclusions

SGPP essentially an extension of spatial mixed effects models
for the analysis of geostatistical data

Uses fPCA to estimate spatial basis functions
Allows varying regression coefficients across the brain

Possible extensions to the modelling of longitudinal
neuroimaging data & to predict clinical outcomes

Drawbacks:

Estimation procedure is not iterative; the authors should go
back to stage (I) after stage (III), but this would likely kill the
computation in the fPCA part
Real data application is not clear; not easy to interpret what
the response is; not clear whether multiplicity adjustment is
for voxels, or voxels and coordinate dimension
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