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Time-Varying Connectivity 
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Time-Varying Connectivity 
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Time-Varying Connectivity 
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Other Examples 
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WEAKLY STATIONARY TIME 

SERIES 
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Definition ܺ� is said to be weakly stationary if its first 
two moments are invariant with respect to 
time.  
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AR(1) ܺ� = �ܺ�−ଵ + ܼ� ܼ� is white noise ሺͲ, �ଶሻ 
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AR(1) 
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VAR(1) ܺ�ܻ� = �ଵଵ �ଵଶ�ଶଵ �ଶଶ ܺ�−ଵ�ܻ−ଵ + ܼଵ,�ܼଶ,�  

 �ܽ� �ࢆ = � = �ଵଵଶ �ଵଶ�ଶଵ�ଶଶଶ  
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 �ܽ� �ࢆ = � = �ଵଵଶ �ଵଶ�ଶଵ�ଶଶଶ  
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Estimation 

• Usually (conditional) least squares, 
maximum likelihood, or Yule-Walker 
estimation (Brockwell and Davis, 2002). 

• stats and vars packages in R has the tools 
for estimation 

• Can be modified for multi-subject analyses 

(Fiecas et al, 2011; Gorrostieta et al, 2012, 
2013) 
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The Cramer Representation 
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Examples – Univariate Time 
Series 
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Examples – Univariate Time 
Series 
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Estimation 

• Usually estimated nonparametrically 
(Brillinger, 2001; Shumway and Stoffer, 
2004) 

• For univariate time series, the stats 
package in R has the tools for estimation 

• For multivariate time series, see the astsa 

package in R 
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For Functional Connectivity… 

Many metrics for quantifying functional 
connectivity assume that the data are 
weakly stationary. (See Zhou et al, 2009; 

Fiecas et al, 2013) 
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NONSTATIONARY TIME 

SERIES 
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Motivation 
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Motivation 

What if the second moment of the data is 
changing over time? 
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Volatility 
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The ARCH Model 

The ARCH(p) (Autoregressive Conditional 
Heteroskedasticity) model: ܺ� = ��ܼ�, 
where ܼ� iid (0,1), and ��ଶ = ଴ߙ + ଵܺ�−ଵଶߙ +⋯+ ௣ܺ�−௣ଶߙ  
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The GARCH Model 

The GARCH(p,q) model: ܺ� = ��ܼ�, 
where ܼ� iid (0,1), and ��ଶ = ଴ߙ ௝ܺ�−௝ଶ௣ߙ +

௝=ଵ ௞��−௞ଶ௤ߚ +
௞=ଵ  
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Estimation 

• Usually done through maximum likelihood 
(Brockwell and Davis, 2002) 

• See the rugarch package in R 
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TV-AR(1) ܺ� = ��ܺ�−ଵ + ܼ� ܼ� is white noise ሺͲ, �ଶሻ 
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Estimation 

• Many ways to estimate the time-varying 
parameter (e.g., splines, wavelets) 

• No readily available package 
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The Cramer Representation 

Recall for weakly stationary time series: 

 

 

34 



Time-Frequency Plots 
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Time-Frequency Plots 
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The Dahlhaus Model 

Locally stationary time series (Dahlhaus, 
1997,2000; Guo et al, 2003): 
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The Dahlhaus Model 
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Estimation 

• Usually done nonparametrically (Dahlhaus 
2000; Ombao et al 2001, 2005; Fiecas and 
Ombao, 2014) 

• You can “easily” modify the astsa package 
in R to obtain naïve estimates. 

• See me for matlab code 
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Nonstationarity Over Time and 
Over the Experiment 
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Nonstationarity Over Time and 
Over the Experiment 
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DYNAMIC CORRELATION 

ANALYSIS 
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Sliding Window Approach 
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Allen et al, 2013 



Sliding Window Approach 
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Sliding Window Approach 
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Sliding Window Approach 
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Sliding Window Approach 
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Sliding Window Approach 

 

48 



The Problems 

How to choose the smoothing span? 

 

(See Ombao and van Bellegem, (2008) for a 

data-driven method.) 
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The Problems 

If the smoothing span is too small, estimates 
have large variance. 

 

If the smoothing span is too big, you will 
miss transient effects. 
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Set Up 

The set up: ࢅ� = �� + ��, 
Throughout, assume �� = Ͳ. 

 �ܽ� �� = �� = �ଵଵ,�ଶ �ଵଶ,��ଶଵ,��ଶଶ,�ଶ  
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The  exponential weighted 
moving average model �� = ͳ − � ��−ଵ��−ଵ′ + ���−ଵ 

 

• A small value of � gives large weight to 

recent time points. 

• A large value of � will adjust more slowly 

to observations from recent time points 
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The  exponential weighted 
moving average model 
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The Dynamic Conditional 
Correlation Model 

Combine the GARCH with the EWMA: 

1. Fit a GARCH per dimension, and use the 

estimated (time-varying) variance to 

standardize the residuals. 

2. Use a EWMA-type estimator to shrink the 

covariance matrix of the standardized 

residuals. 
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The Dynamic Conditional 
Correlation Model ࢅ� = �� �௝,�ଶ = ௝,଴ߙ + ௝,ଵߙ ௝݁,�−ଵ + ௝,ଵ�௝,�−ଵଶߚ  

Let �� = ݀�ܽ�ሺ�ଵ,�, �ଶ,�ሻ 
Let �� = ��−ଵ�� 

Let ࡽ� = �ଵ��−ଵ��−ଵ′ + �ଶࡽ�−ଵ + ͳ − �ଵ − �ଶ  ࡿ
Let ࡾ� be the time-varying correlation matrix from ࡽ�. 

Let ��=��55 ���ࡾ 



Estimation 

Assume Gaussian noise. Estimate all 
parameters via maximum likelihood. (Engle 
(2002) gives thorough details.) 

 

Monte Carlo sampling is used to generate 
confidence intervals for parameters. 
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The Dynamic Conditional 
Correlation Model 
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Application to test-retest resting-
state fMRI 

• N = 21 healthy adults (11 male) 

• 7 minutes long scan, TR = 2 seconds 

• PCC and 5 other ROIs picked 
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Static Correlations 
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Dynamic Correlations 
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Dynamic Correlations 
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Dynamic Correlations 
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Conclusions 

Dynamic functional connectivity between 
two ROIs is not reproducible across 
scanning sessions for the same subject. 
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SUMMARY AND DISCUSSION 
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Characterisation of the Data 

Failing to account for nonstationarity yields 
an incorrect characterisation of the data 
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Summary and Discussion 

Validity of comparing dynamic correlation 
profiles across subjects (or within subject 
across scanning sessions) in resting-state 

fMRI? 
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