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This ain’t a culinary lecture!
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Background

The challenge

Say X are some high-dimensional predictors and Y are some
responses of interest, one would like to have a low-dimensional
summary X̃ of X that is informative about Y .

Examples

X : genetic makeup, Y : disease risk

X : historic quotes on stocks, Y : future prices

X : brain activations, Y : psychological status

Potential gain

Better model generalizability and interpretability

More efficient computations
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Common solutions

Two summarizing strategies

Dimension reduction: X̃ is a transformation of X
CCA, PLS, RRR

Variable selection: X̃ is a subset of X
LASSO, penGAM, ISIS (not those terrorists)

Measuring informativeness

Parametric measures
Predictive power of X̃ on Y
Model consistency (likelihood)
Association

Nonparametric measure
Shared information
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Aren’t they good enough?

Limitations
Validity of the model assumptions

Data consuming
Computationally challenging

Applies to both para. and non-para. solutions

Any more appealing alternatives?
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Regression revisited

Forward regression

E[Y ∣X ] = φ(X)
Estimate φ̂n with empirical sample (X n,Y n)

Cons
The family of φ may not be known apriori
Estimation often relies on the distribution of Y = ψ(X ,E)

ψ the data generating mechanism
E the randomness involved

The catch
We don’t really need φ to characterize the dependency

And we do not need to know the distribution of Y either
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An simple analogy

You learn the basic laws of aerodynamics from a paper plane

But it takes a lot more to build an F22 raptor

∎ Basics is suffice for us, let’s stick with it!!!
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Sliced inverse regression (SIR)

Inverse regression

E[X ∣Y ] = η(Y)

Assuming the following general data generation mechanism

Y = ψ(X⊺β1,⋯,X⊺βK ,E). (1)

Theorem (Li, 1991)

Under model (1), and assume X follows elliptical distributions, the
centered inverse regression curve η̄(Y) = E[X ∣Y ] −E[X ] is
contained in the linear subspace spanned by ΣXXβk (k = 1,⋯,K ),
where ΣXX denotes the covariance matrix of X .
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Sketch of proof.

E[X ∣Y ] = E[E[X ∣ηT X ,Y ]∣Y ]
= E[E[X ∣ηT X ]∣Y ]
= E[E[PηX +QηX ∣ηT X ]∣Y ]
= E[PηX ∣Y ] +E[E[QηX ∣ηT X ]∣Y ]

Since for the elliptical distribution E[QηX ∣ηT X ] = 0, thus the
theorem holds.

E[cov[Z ∣Y ]] = cov[Z ] − cov[E[Z ∣Y ]] also could be used to extract
information of βs.
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SIR estimation

In the case of one-dimensional Y

Algorithm
1 Standardizing X
2 Partitioning the whole data into several slices according to the

value of Y
3 Calculate the slice mean of X accordingly
4 Run principal component analysis on slice means of X
5 Locating the most important K -dimensional subspace for

tracking the inverse regression curve E[X ∣Y ]
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Take home messages
1 Don’t rely on the models, let the data talk
2 The conditional distribution of X given Y encodes vital

information about dependencies
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Bayesian partitioning for eQTL analysis

What is eQTL?
eQTL: expression quantitative trait loci

To correlate variations in the gene expression with DNA

cQTL: clinical QTL (traditional GWAS)

Finding co-localize eQTL and cQTL identifies a list of
candidate genes for follow-up studies of the disease

For imaging-genetic studies

eQTL⇒ activations, structural images, connectivities, etc.

To identify a list of genes and imaging traits that correlate with
the clinical symptoms.
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Terminologies explained

cis-acting and trans-acting
on the gene or not

epistatic and pleiotropic effects
many to one and one to many

Some historical comments
eQTL analysis dates back to a time genome-wide dense
sequencing is technically impossible, so it utilizes the LD
structure of the genetic markers to identify causal locus.
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Bayesian partitioning (BP) models for eQTL

Highlights

Integrates eQTL, cQTL and SIR

Distribution based, indep. of specific interactions

Accounting for association structures (LD, co-expression)

Dynamic clustering

Improved sensitivity for weak couplings

The full model is overwhelmingly sophisticated, so I’ll try to
capitalize only the key ideas in this talk.

C. Tao Chop! Chop! Chop!



Sliced inverse regression Bayes partition Others Conclusion

A peek of causal modeling

Figure : (Left) Ground truth causal network (Right) Bayesian causal
network used by traditional model (purple) and Bayesian partitioning
model (green). Endophenotypes can include gene expression, brain
activation, etc.
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Key question for traditional bayesian model

Which models are most consistent with the data under our
assumptions?

Key question for Bayesian partition

Which partition schemes and conditional distributions that are
most consistent with the data we observe?
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BP for single quantitive trait

Basic notations

X : categorical variables (SNPs), Xj ∈ [1 ∶ K ]
Y : quantitive trait (gene expression)

S(Y): slice membership, h ∈ [1 ∶ H]
A: QTL locus set

C. Tao Chop! Chop! Chop!
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Dirichlet-multinomial model condition on partition

XA∣S(Y) = h∼ Multinomial(1,θ(h)
A )

θ
(h)
A ∼ Dirichlet( α0

K ∣A∣
,⋯, α0

K ∣A∣
)

Dynamic partitioning

The slicing prior Pr(S(Y)) = π∣S∣−1
0 (1 − π0)n−∣S∣

Compute Pr(XA∣S(Y)) by integrating out θ(h)
A

Pr(XA∣Y) = ∑S(Y)∈Ω Pr(XA∣S(Y))Pr(S(Y))

Can be computed in O(n2), draw slicing schemes from
Pr(S(Y)∣XA,Y) via forward - summation - backward - sampling if
needed
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Grouping the genes

I: indicator function of active gene set A

Saturated NULL model and posterior distribution

Pr(XAc ∣XA,Y) = Pr(XAc ∣XA) = Prnull(X)
Prnull(XA)

Pr(I) ∼ Bernoulli(ηI ,p, ∣A∣)
P(I∣Y ,X) ∝ P(XA∣Y)P(XAc ∣XA)P(I) ∝ Pr(XA∣Y)

Prnull(XA) (
ηI

1−ηI
)
∣A∣

Bayesian factor and Gibbs sampling

BF(A∣Y) = Pr(XA∣Y)
Prnull(XA) = ∑S(Y)∈Ω BF(XA∣S(Y))Pr(S(Y))

BF(XA∣S(Y)) = Pr(XA∣S(Y))
Prnull(XA)

Pr(Ik = 1∣I[−k],X ,Y) = ηIBF(A
[−k]⋃{k}∣Y)

(1−ηI)BF(A
[−k]∣Y)+ηIBF(A

[−k]⋃{k}∣Y)
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Multiple conditionally indep. QTL groups

A1,⋯,AM : conditionally indep. associated gene groups
Pm(XA∣S(Y)) = ∏M

m=1 P(XAm ∣S(Y))
Partition follows Chinese restaurant process

Modeling block structure of LD

L: genetic location

B,Bh: LD block partition and indicator

XBh ∼ Multinomial(1,θ(h)
B ),θ(h)

B ∼ Dirichlet( αb

K ∣Bh ∣
,⋯, αb

K ∣Bh ∣
)

Pblk(XBh), Pblk(X ∣B) = ∏∣B∣
h=1 Pblk(XBh)

Pblk(X) = ∑Pblk(X ∣B)P(B), Pblk(XAc ∣XA) = Pblk(X)
Pblk(XA)
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Augmented partitioning, gene clustering and multiple modules

R,T : auxiliary ranking and associated slicing

Yi,j : gene expressions for subject i , gene j

Cj ,Gc : gene cluster membership

Yi,j ∣Cj = c∼ N(τi,c, σ
2
c), τi,c ∣Ti = t ∼ N(µt,c, σ

2
c/κ1)

µt,c ∼ N(0, σ2
c/κ2), σ2

c ∼ Invχ2(ν0, σ
2
0)
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Comparison with integrative Bayesian model

Overview of the model in [FC Stingo, 2013, JASA]

X ∈ Rp imaging features, Z ∈ Rq genetic covariates

G ∈ {1, ⋅,K} group indicator
Latent labels for discriminatory features/covariates

γ ∈ {0,1}p feature label
δ ∈ {0,1}q covariate label
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Modeling

Feature modeling
Nondiscriminatory: f0(Xj ; θ0j) ∼ N(0, σ2

0j)
Discriminatory (group k ): fk(Xj ; θkj) ∼ N(µkj , σ

2
kj)

Covariate effect modeling
µkj = µ0k + β⊺kjZ , µ0k the random effects
Sparsity priors on βk(γ)

MRF priors for spatial structure

Comparisons

Commonalities
Sample the latent indicator for feature and covariate
Split sample into groups

Disparities
Deterministic VS agnostic grouping
Generative VS nongenerative modeling
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Other recent developments

What we learnt from BP
SIR is nonparametric, the rest are parametric

A blend of para. and non-para. ideas might prove useful

Sliced inverse regression with interaction detection (SIRI)

Variable selection for active set A

XA∣Y ∈ Sh ∼ MVN(µh,Σ)
XAc ∣(XA,Y ∈ Sh) ∼ MVN(α + β⊺XA,Σ0)

µh ∈ Vq ⇐⇒ SIR

Likelihood ratio test to compare models

Forward - addition - backward - deletion
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Concluding remarks

Limitations
Where is the p-value

Difficult to implement and estimate

Not accounting for the covariate effect

One dimensional auxiliary ranking
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