
Background
Warped LMM

Result

Warped linear mixed models for the genetic
analysis of transformed phenotypes

Habib Ganjgahi

January 22, 2015

Warped linear mixed models for the genetic analysis of transformed phenotypes 1 / 12



Background
Warped LMM

Result

Outline

1 Background

2 Warped LMM

3 Result

Warped linear mixed models for the genetic analysis of transformed phenotypes 2 / 12



Background
Warped LMM

Result

Background

Why imaging genetic?

Heritability
Association Analysis

Linear Mixed effect Models (LMM):

Y = Xβ + g + ε,

where
cov(g) = σ2

g (2Φ),cov(ε) = Σ = σ2
g (2Φ) + σ2

e I .
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Kinship matrix Φ

Parameter Estimation: Likelihood function

Hypothesis testing: LRT
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LMM Limitations

Likelihood optimisation:

Convergence Failure
Computationally Intensive

Inference: Random effect, covariates

Residuals follow Normal distribution

Increased false positive
Power decreasing

Transform the data: marginal distribution is approximately
Gaussian

Transformations: log-transformation, Rank based

No consensus, depends on data

Limitations:

no criterion to select one transformation over another
Time consuming and multiple comparison
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Warped LMM

Intuition: fit transformation while performing genetic analyses.

Estimate the Transformation based on the data.
Incorporate transformation in likelihood function

z = f (y ,Ψ)

y observed non-normal phenotype, z corresponded normal
distributed phenotype and f monotonic function with Ψ parameters

z = xβ + g + ε

z ∼ N(xβ, σ2
g (2Φ) + σ2

e I )
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Parameter Estimation

Likelihood function for hidden z :

L = −1

2

(
log |Σ|+ (z − xβ)′Σ−1(z − xβ) + N log 2π

)
Incorporating Jacobian:

L = −1

2
(log |Σ|+ (f (y ,Ψ)− xβ)′Σ−1(f (y ,Ψ)− xβ)

+ N log 2π −
∑

log
∂f (y ,Ψ)

∂y
)
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Warping function

Any monotonic function:

f (y ; Ψ) = d .y +
I∑

i=1

ai tanh(bi (y + ci ))

where Ψ = (d , a1, b1, c1, · · · , aI , bI , cI ), f is sum up of step
functions, ai : step size, bi : steepness, ci : location and d slope of
linear part.

fBox−Cox (y ,Ψ) =

{
yΨ−1

Ψ Ψ 6= 0
ln(y) Ψ = 0

Shifted logarithmic transformation or scaled arsinh.
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Simulations

Genetic effect: Hapmap

h2: 0.1, 0.2, 0.4, 0.7, 0.9

Sample size: 200, 400, 600, 800, 1000.

z = ty + (1− t)f (y), where t determines intensity of
transformation
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Simulated Data Results

and a transformation fit using the Box-Cox method (Box-
CoxLMM), both of which are commonly used in practice16,20–24.

When comparing the heritability estimates to the true
simulated heritability, WarpedLMM consistently was more
accurate than all the other methods, whereas the LMM tended
to underestimate the heritability. In the most extreme cases, the
LMM estimates had a downward bias of up to 30%, whereas
WarpedLMM was close to unbiased (less than 1%). The overall
accuracy of WarpedLMM for heritability estimation was
remarkably robust to changes of the simulation parameters,
including the simulated heritability level (Fig. 1a), the number of
causal variants (Fig. 1b), the number of samples (Fig. 1c) or the
strength of the nonlinear transformation (Fig. 1d). Strikingly, we
also observed that the estimation bias of the standard LMM
persisted even in the regime of large sample sizes (Fig. 1c).
Similarly, we found that the accuracy of heritability estimates
using an LMM deteriorated when increasing the true simulated
heritability (Fig. 1a) or the number of causal variants (Fig. 1b).
Not surprisingly, the degree of nonlinearity of the transformation
had the strongest effect on the model accuracy (Fig. 1d), where
even subtle nonlinearity of the transformation functions mark-
edly affected the heritability estimates. It should be noted that,
even in settings where the true transformation function was a
linear function (rightmost point in Fig. 1d), WarpedLMM
achieved approximately the same estimation error as a standard
LMM, demonstrating that the method is robust and can be safely
applied even in settings where no transformation is needed.
Interestingly, pre-processing the data using a log transformation
(Log-LMM) only worked well if the true underlying transforma-
tion was completely nonlinear (leftmost point in Fig. 1d) and
deviations from complete nonlinearity resulted in progressively
more biased estimates. Additional comparisons, considering

alternative classes of transformations and methods, are shown
in Supplementary Figs 2 and 3. These comparisons include a
simpler variant of WarpedLMM that does not include individual
genetic factors with large effects, showing how the joint modelling
approach taken in WarpedLMM (see Methods) greatly improve
accuracy in the recovery of the true underlying transformation.
We have also considered other commonly used transformations
(log and squared root), finding that usage of a rigid a priori
defined set of pre-processing transformations can induce
significant biases in the heritability estimates.

Mouse data from Valdar et al. Next, we revisited data from a
heritability study in a structured mouse population15. This study
highlighted that the careful definition of a specific transformation
for each phenotype studied is important for accurate quantitative
trait loci (QTL) mapping. Although this process was guided by an
initial Box-Cox fit, the authors performed additional manual
tuning of the resulting function for each one of the 58
phenotypes. Here, we compared the heritability estimates
obtained using a standard LMM on untransformed phenotypes
with those obtained from WarpedLMM. Covariates such as age,
gender, body weight, litter number and cage density were
included as fixed effects in both models. For 18 of the 47
phenotypes, the two models yielded significantly different
heritability estimates (Fig. 2a, P-value r0.05 from a paired
t-test). In the majority of these cases (17 out of 18), WarpedLMM
yielded higher heritability estimates than the standard LMM (up
to threefold), again showing that the choice of phenotypic
transformation can significantly affect heritability estimates.

Unlike in the simulated experiments described in the previous
section, we lack an accurate gold standard to validate the
heritability estimates on real data. To this end, we assessed the
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Figure 1 | Simulation experiment considering variants of an exponential transformation as true phenotype transformation and comparing different
LMM approaches for estimating the genetic proportion of phenotype variability (narrow-sense heritability, h2). (a) Changing the simulated heritability
(b) considering different numbers of causal variants (c) increasing the sample size and (d) decreasing the nonlinearity of the true simulated transformation
(a value of 1 correspond to a linear function, whereas 0 denotes a fully nonlinear function. See Methods for details). When varying each individual
parameter, the remaining simulation settings remained constant with the default parameters being highlighted in red. Heritability estimates were
obtained using WarpedLMM, a standard LMM, an LMM on log transformed phenotype data and an LMM on Box-Cox preprocessed phenotypes.
We repeated this simulation procedure 50,000 times in order to have a sufficiently large sample size to investigate all the regimes described above.
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and a transformation fit using the Box-Cox method (Box-
CoxLMM), both of which are commonly used in practice16,20–24.

When comparing the heritability estimates to the true
simulated heritability, WarpedLMM consistently was more
accurate than all the other methods, whereas the LMM tended
to underestimate the heritability. In the most extreme cases, the
LMM estimates had a downward bias of up to 30%, whereas
WarpedLMM was close to unbiased (less than 1%). The overall
accuracy of WarpedLMM for heritability estimation was
remarkably robust to changes of the simulation parameters,
including the simulated heritability level (Fig. 1a), the number of
causal variants (Fig. 1b), the number of samples (Fig. 1c) or the
strength of the nonlinear transformation (Fig. 1d). Strikingly, we
also observed that the estimation bias of the standard LMM
persisted even in the regime of large sample sizes (Fig. 1c).
Similarly, we found that the accuracy of heritability estimates
using an LMM deteriorated when increasing the true simulated
heritability (Fig. 1a) or the number of causal variants (Fig. 1b).
Not surprisingly, the degree of nonlinearity of the transformation
had the strongest effect on the model accuracy (Fig. 1d), where
even subtle nonlinearity of the transformation functions mark-
edly affected the heritability estimates. It should be noted that,
even in settings where the true transformation function was a
linear function (rightmost point in Fig. 1d), WarpedLMM
achieved approximately the same estimation error as a standard
LMM, demonstrating that the method is robust and can be safely
applied even in settings where no transformation is needed.
Interestingly, pre-processing the data using a log transformation
(Log-LMM) only worked well if the true underlying transforma-
tion was completely nonlinear (leftmost point in Fig. 1d) and
deviations from complete nonlinearity resulted in progressively
more biased estimates. Additional comparisons, considering

alternative classes of transformations and methods, are shown
in Supplementary Figs 2 and 3. These comparisons include a
simpler variant of WarpedLMM that does not include individual
genetic factors with large effects, showing how the joint modelling
approach taken in WarpedLMM (see Methods) greatly improve
accuracy in the recovery of the true underlying transformation.
We have also considered other commonly used transformations
(log and squared root), finding that usage of a rigid a priori
defined set of pre-processing transformations can induce
significant biases in the heritability estimates.

Mouse data from Valdar et al. Next, we revisited data from a
heritability study in a structured mouse population15. This study
highlighted that the careful definition of a specific transformation
for each phenotype studied is important for accurate quantitative
trait loci (QTL) mapping. Although this process was guided by an
initial Box-Cox fit, the authors performed additional manual
tuning of the resulting function for each one of the 58
phenotypes. Here, we compared the heritability estimates
obtained using a standard LMM on untransformed phenotypes
with those obtained from WarpedLMM. Covariates such as age,
gender, body weight, litter number and cage density were
included as fixed effects in both models. For 18 of the 47
phenotypes, the two models yielded significantly different
heritability estimates (Fig. 2a, P-value r0.05 from a paired
t-test). In the majority of these cases (17 out of 18), WarpedLMM
yielded higher heritability estimates than the standard LMM (up
to threefold), again showing that the choice of phenotypic
transformation can significantly affect heritability estimates.

Unlike in the simulated experiments described in the previous
section, we lack an accurate gold standard to validate the
heritability estimates on real data. To this end, we assessed the
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Figure 1 | Simulation experiment considering variants of an exponential transformation as true phenotype transformation and comparing different
LMM approaches for estimating the genetic proportion of phenotype variability (narrow-sense heritability, h2). (a) Changing the simulated heritability
(b) considering different numbers of causal variants (c) increasing the sample size and (d) decreasing the nonlinearity of the true simulated transformation
(a value of 1 correspond to a linear function, whereas 0 denotes a fully nonlinear function. See Methods for details). When varying each individual
parameter, the remaining simulation settings remained constant with the default parameters being highlighted in red. Heritability estimates were
obtained using WarpedLMM, a standard LMM, an LMM on log transformed phenotype data and an LMM on Box-Cox preprocessed phenotypes.
We repeated this simulation procedure 50,000 times in order to have a sufficiently large sample size to investigate all the regimes described above.
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and a transformation fit using the Box-Cox method (Box-
CoxLMM), both of which are commonly used in practice16,20–24.

When comparing the heritability estimates to the true
simulated heritability, WarpedLMM consistently was more
accurate than all the other methods, whereas the LMM tended
to underestimate the heritability. In the most extreme cases, the
LMM estimates had a downward bias of up to 30%, whereas
WarpedLMM was close to unbiased (less than 1%). The overall
accuracy of WarpedLMM for heritability estimation was
remarkably robust to changes of the simulation parameters,
including the simulated heritability level (Fig. 1a), the number of
causal variants (Fig. 1b), the number of samples (Fig. 1c) or the
strength of the nonlinear transformation (Fig. 1d). Strikingly, we
also observed that the estimation bias of the standard LMM
persisted even in the regime of large sample sizes (Fig. 1c).
Similarly, we found that the accuracy of heritability estimates
using an LMM deteriorated when increasing the true simulated
heritability (Fig. 1a) or the number of causal variants (Fig. 1b).
Not surprisingly, the degree of nonlinearity of the transformation
had the strongest effect on the model accuracy (Fig. 1d), where
even subtle nonlinearity of the transformation functions mark-
edly affected the heritability estimates. It should be noted that,
even in settings where the true transformation function was a
linear function (rightmost point in Fig. 1d), WarpedLMM
achieved approximately the same estimation error as a standard
LMM, demonstrating that the method is robust and can be safely
applied even in settings where no transformation is needed.
Interestingly, pre-processing the data using a log transformation
(Log-LMM) only worked well if the true underlying transforma-
tion was completely nonlinear (leftmost point in Fig. 1d) and
deviations from complete nonlinearity resulted in progressively
more biased estimates. Additional comparisons, considering

alternative classes of transformations and methods, are shown
in Supplementary Figs 2 and 3. These comparisons include a
simpler variant of WarpedLMM that does not include individual
genetic factors with large effects, showing how the joint modelling
approach taken in WarpedLMM (see Methods) greatly improve
accuracy in the recovery of the true underlying transformation.
We have also considered other commonly used transformations
(log and squared root), finding that usage of a rigid a priori
defined set of pre-processing transformations can induce
significant biases in the heritability estimates.

Mouse data from Valdar et al. Next, we revisited data from a
heritability study in a structured mouse population15. This study
highlighted that the careful definition of a specific transformation
for each phenotype studied is important for accurate quantitative
trait loci (QTL) mapping. Although this process was guided by an
initial Box-Cox fit, the authors performed additional manual
tuning of the resulting function for each one of the 58
phenotypes. Here, we compared the heritability estimates
obtained using a standard LMM on untransformed phenotypes
with those obtained from WarpedLMM. Covariates such as age,
gender, body weight, litter number and cage density were
included as fixed effects in both models. For 18 of the 47
phenotypes, the two models yielded significantly different
heritability estimates (Fig. 2a, P-value r0.05 from a paired
t-test). In the majority of these cases (17 out of 18), WarpedLMM
yielded higher heritability estimates than the standard LMM (up
to threefold), again showing that the choice of phenotypic
transformation can significantly affect heritability estimates.

Unlike in the simulated experiments described in the previous
section, we lack an accurate gold standard to validate the
heritability estimates on real data. To this end, we assessed the
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Figure 1 | Simulation experiment considering variants of an exponential transformation as true phenotype transformation and comparing different
LMM approaches for estimating the genetic proportion of phenotype variability (narrow-sense heritability, h2). (a) Changing the simulated heritability
(b) considering different numbers of causal variants (c) increasing the sample size and (d) decreasing the nonlinearity of the true simulated transformation
(a value of 1 correspond to a linear function, whereas 0 denotes a fully nonlinear function. See Methods for details). When varying each individual
parameter, the remaining simulation settings remained constant with the default parameters being highlighted in red. Heritability estimates were
obtained using WarpedLMM, a standard LMM, an LMM on log transformed phenotype data and an LMM on Box-Cox preprocessed phenotypes.
We repeated this simulation procedure 50,000 times in order to have a sufficiently large sample size to investigate all the regimes described above.
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Heritability Analysis of 52 phenotypes

consistency of our findings by comparing both models in an
out-of-sample prediction task. We performed a tenfold cross-
validation experiment, where each model was repeatedly trained
on 90% of the data to predict the phenotype from genotype on
the remaining 10% of the samples. WarpedLMM was consistently
more accurate in out-of-sample predictions than a standard
LMM (Fig. 2b), even for phenotypes where the corresponding
heritability estimates of the WarpedLMM model were lower than
those from the standard LMM (Supplementary Fig. 6b). This
suggests that the phenotype transformations recovered by
WarpedLMM can help avoiding under- or overfitting in
applications of LMMs. This confirms our results on simulated
data and gives confidence that the heritability estimates of
WarpedLMM are also more accurate on real data.

Finally, when comparing the transformations identified by
WarpedLMM to those manually derived by Valdar et al.15, we
found that the functions estimated by WarpedLMM were
consistently in the same functional category (linear, logarithmic
and so on) as those reported in the original study, however, with
slight differences in parameterization (Supplementary Fig. 4).

Supplementary Figs 5a,b and 6a provide equivalent results for
a similar study in a yeast cross25, demonstrating that these
findings hold also for other systems.

WarpedLMM for GWAS. In addition to heritability estimation
and prediction, WarpedLMM can also be used to perform
GWASs. To test this, we revisited genotype and phenotype data
from the Northern Finland birth cohort26 where we analysed four
related metabolic traits: HDL, low-density lipoprotein (LDL),
triglycerides and C-reactive protein (CRP). This selection of
four phenotypes is particularly interesting, because although the
phenotypes are closely related in biological mechanism, the
primary analysis26 of these data was performed using logarithmic
transformation for two of the four phenotypes (triglyceride,
CRP), whereas the remaining phenotypes (HDL, LDL) were
analysed on the linear scale.

Here, we compared the results of a univariate GWAS using
three different methods: WarpedLMM, an LMM applied to
untransformed phenotypes1 and an LMM on phenotypes
transformed as reported in the original paper26. Association
results from all methods were appropriately controlled for type 1
error rate (genomic control for all methods was 1.00±0.01).
Overall, WarpedLMM yielded increased GWAS power to
detect associations (Supplementary Table 1). For example,
WarpedLMM identified a total of six distinct QTL (P-value

r5! 10" 8) for LDL cholesterol levels (Fig. 3b), whereas the
naı̈ve LMM only identified three out of these six. Notably, two of
the three additional associations detected by WarpedLMM have
previously been implicated with LDL. In particular, rs4844614 has
been significantly associated with LDL in an analysis of the same
data using linear regression26 (omitting correction for population
structure) and rs4844614 has been identified in a large
meta-analysis27.

Likewise for HDL, WarpedLMM identified three QTLs,
whereas both alternative methods missed one of these associa-
tions. Even in settings where WarpedLMM did not yield novel
associations, such as in the analysis of CRP, the model yielded
greatly increased sensitivity such that known association signals
did stand out to a greater extent (Fig. 3a).

We also found that applying WarpedLMM to fit a separate
warping functions for each of the four phenotypes, led to an
increase of pairwise (Pearson) correlations between these
phenotypes, which can be important for multivariate genetic
analyses with linear Gaussian models28,29 (Supplementary Fig. 7).
Similar increases in correlation coefficients can be obtained by
semi-parametric transformations, which have previously been
proposed as preprocessing step for multivariate analyses17 on the
same data set. Unlike WarpedLMM, this approach is based on
rank-standardizing transformations of individual phenotypes
before regressing out covariates, followed by an additional
rank-standardization step17. This procedure implicitly assumes
that contributions from genotype and covariates are independent
and that the overall genetic effect is small and hence genotype can
be ignored when determining the phenotype transformation.
Although these assumptions may be violated in other settings,
comparative analysis with transformations fit by WarpedLMM
confirmed that the semi-parametric approach proposed by
Zhou and Stephens is appropriate for these data17. Indeed, we
found striking correlations between the functions recovered
(Supplementary Fig. 8) by both methods and the respective
P-values under these transformations in the context of a single
trait GWAS on each trait (r¼ 0.99±0.01 for " log10 pv,
Supplementary Fig. 9).

Finally, we evaluated the genetic model fit by the WarpedLMM
and compared it to a standard LMM using out-of-sample
phenotype prediction. As the warping functions fit by
WarpedLMM are invertible, we can assess the prediction
accuracy of a genetic model on the natural scale of the raw
phenotypic values, which is not feasible when using rank-based
preprocessing methods17. Whereas the heritability estimates from
WarpedLMM were either increasing or decreasing compared with
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Figure 2 | Comparative analysis of WarpedLMM and a LMM for 58 phenotypes in the mouse data set. (a) Heritability estimates using a LMM on the
untransformed phenotype versus the heritability estimates obtained by WarpedLMM. Empirical error bars were obtained from ten bootstrap replicates,
using 90% of the data in each replicate. Significant differences are coloured in red (paired t-test, a¼0.05). (b) Out-of-sample prediction accuracy
assessed by the squared correlation coefficient r2, considering either a LMM on the untransformed data or a WarpedLMM. Prediction accuracies were
assessed from ten random train-test splits. Phenotypes with significant deviations in prediction accuracy of the LMM and the WarpedLMM are highlighted
in red (paired t-test, P-valuer0.05).
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Human Data Analysis

GWAS Analysis: Northern Finland birth cohort. Phenotypes: HDL,
IDL, triglycerids, C-reactive protein. Transformations: logarithmic
and linear scale.

a standard LMM, depending on the trait (Supplementary
Table 2), the out sample correlation coefficients were
consistently higher for WarpedLMM (Supplementary Table 3).
Again, this suggests that WarpedLMM more accurately explains
the true genetic component of phenotypic variability. Overall,
these experiments give confidence that WarpedLMM can be
applied as a robust preprocessing procedure for GWAS.

Discussion
Although preprocessing methods are widely used in practice to
approximately identify and invert an unknown phenotype
transformation11–14,17,20,22–24,30,31, so far there has been no
principled approach to assess and fit these transformations while
accounting for genetic information and covariates.

Here we have shown how the classical LMM can be extended
to estimate phenotype transformations directly from the data.
Our experiments show that WarpedLMM is able to significantly
improve accuracy and power in key genetic analyses and that
unsuitable phenotype transformations can lead to profound
analysis biases. Although an important application of
WarpedLMM is the identification of phenotype transformation
to improve downstream analysis, we emphasize that the model is
more than an ad-hoc preprocessing procedure. The objective
function of the model can be derived from first principles,
resulting in an extension of the mixed model that accounts for
both the data likelihood and the complexity of the fitted
transformation (see Methods). As a result, our approach can be
directly applied to tasks commonly tackled using LMMs, such as
GWAS, heritability estimation and phenotype prediction.

When applying WarpedLMM to studies in mouse and yeast,
we found that the model tended to increase the estimates of
heritability. Although in a minority of traits the heritability

estimates decreased, we note that the model consistently
improved out-of-sample prediction. This shows that inappropri-
ate phenotype transformations can lead to biased heritability
estimates and overfitting, an effect that has previously been
reported by others32. Remarkably, although WarpedLMM has a
larger number of parameters than a standard mixed model, the
model did not overfit even when considering sample sizes that are
much smaller than the ones used in typical studies (Fig. 1a).

Although we have focused on some of the most established
tasks in genetic analysis, WarpedLMM can easily be adapted to
more specialized tasks. For example, it is straightforward to use
the model in combination with multi-locus mixed models33 or
mixed models that jointly consider multiple phenotypes28,29.
WarpedLMM finds the transformation function while jointly
taking into account all the available covariates, polygenic genetic
background and individual genetic loci with large effect sizes.
This joint approach helps to ensure that the model residuals are
Gaussian distributed, rather than the phenotype itself. The
importance of this principle has been recognized in previous
work17, where the authors employed a three-step procedure,
which consisted of rank transforming the phenotype, regressing
out the covariates and rank transforming the residuals again. This
approach assumes that the genotype explains only a small portion
of the variance and hence ‘Gaussianizing’ phenotype data on the
null model is valid. Although this approach is reasonable in some
settings, deviations from this assumption remain a concern31.
This highlights the need for more principled approaches such as
WarpedLMM, putting the principles phenotype transformations
that leverage additional information from covariates and genetic
data on solid statistical grounds.

Finally, we note that there may be settings where WarpedLMM
does not achieve optimal results. Similar to other existing
methods, the model estimates a transformation under the
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Figure 3 | Manhattan plots comparing a standard LMM to a WarpedLMM in a GWAS of two metabolic traits in the NFBC1966 study. (a) The GWAS
results for C-reactive protein, and (b) the GWAS results for low-density lipoprotein. Red circles denote significant associations (ao5! 10" 8, marked on
the plots with a dashed line). The two rightmost panels show an enlarged view of interesting regions in chromosomes 1 and 19, with black arrows
highlighting loci that were identified only when using WarpedLMM.
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