Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother - Supplementary Material

J.E. Griffin and M. F. J. Steel

University of Kent and University of Warwick

Appendix A: Proofs

Proof of Proposition 1

Let $Z \sim H$. Then

$$\mathbf{E}\left[\mu_x^{(k)}\right] = \mathbf{E}\left[\sum_{i=1}^{\infty} p_i(x)\theta_i^k\right] = \mathbf{E}[Z^k]\sum_{i=1}^{\infty} \mathbf{E}\left[p_i(x)\right] = \mathbf{E}[Z^k].$$

Similarly, $\mathbf{E} \left[\mu_{y}^{(k)} \right] = \mathbf{E}[Z^{k}].$ $\mathbf{E} \left[\mu_{x}^{(k)} \mu_{y}^{(k)} \right] = \mathbf{E} \left[\left(\sum_{i=1}^{\infty} p_{i}(x) \theta_{i}^{k} \right) \left(\sum_{i=1}^{\infty} p_{i}(y) \theta_{i}^{k} \right) \right]$ $= \sum_{i=1}^{\infty} \mathbf{E} \left[p_{i}(x) p_{i}(y) \right] \mathbf{E} \left[\theta_{i}^{2k} \right] + \sum_{i=1}^{\infty} \sum_{j=1; j \neq i}^{\infty} \mathbf{E} \left[p_{i}(x) p_{j}(y) \right] \mathbf{E} \left[\theta_{i}^{k} \right] \mathbf{E} \left[\theta_{j}^{k} \right]$ $= \mathbf{E} \left[Z^{2k} \right] \sum_{i=1}^{\infty} \mathbf{E} \left[p_{i}(x) p_{i}(j) \right] + \mathbf{E} \left[Z^{k} \right]^{2} \left(1 - \sum_{i=1}^{\infty} \mathbf{E} \left[p_{i}(x) p_{i}(y) \right] \right)$ $= \mathbf{E} \left[Z^{k} \right]^{2} + \operatorname{Var} \left[Z^{k} \right] \sum_{i=1}^{\infty} \mathbf{E} \left[p_{i}(x) p_{i}(y) \right]$

$$\operatorname{Cov}\left(\mu_{x}^{(k)}, \mu_{y}^{(k)}\right) = \operatorname{Var}\left[Z^{k}\right] \sum_{i=1}^{\infty} \operatorname{E}\left[p_{i}(x)p_{i}(y)\right]$$

and so

Corr
$$\left(\mu_x^{(k)}, \mu_y^{(k)}\right) = \frac{\sum_{i=1}^{\infty} \mathbb{E}\left[p_i(x)p_i(y)\right]}{\sum_{i=1}^{\infty} \mathbb{E}\left[p_i(x)^2\right]}$$

which follows from the stationarity of $p_1(x), p_2(x), p_3(x), \ldots$

Proof of Theorem 1

It is easy to show (see GS) that for any measurable set B

$$\operatorname{Corr}(F_x(B), F_y(B)) = (M+1) \sum_{i=1}^{\infty} \operatorname{E}[p_i(x)p_i(y)]$$

In this case, if $x \notin S(\phi_i)$ or $y \notin S(\phi_i)$ then

$$\mathbf{E}[p_i(x)p_i(y)] = 0$$

Otherwise, let $R_i^{(1)} = \{j < i | x \in S(\phi_i) \text{ and } y \in S(\phi_i)\}, R_i^{(2)} = \{j < i | x \in S(\phi_i) \text{ and } y \notin S(\phi_i)\}$ and $R_i^{(3)} = \{j < i | x \notin S(\phi_i) \text{ and } y \in S(\phi_i)\}$

$$\begin{split} \mathbf{E}[p_i(x)p_i(y)] &= \mathbf{E}\left[V_i^2 \prod_{j \in R_i^{(1)}} (1-V_i)^2 \prod_{j \in R_i^{(2)}} (1-V_i) \prod_{j \in R_i^{(3)}} (1-V_i)\right] \\ &= \frac{2}{(M+1)(M+2)} \mathbf{E}\left[\left(\frac{M}{M+2}\right)^{\#R_i^{(1)}} \left(\frac{M}{M+1}\right)^{\#R_i^{(2)}} \left(\frac{M}{M+1}\right)^{\#R_i^{(3)}}\right] \end{split}$$

and so

$$\operatorname{Corr}(F_x(B), F_y(B)) = \frac{2}{M+2} \operatorname{E}\left[\sum_{i=1}^{\infty} B_i \left(\frac{M}{M+1}\right)^{\sum_{j=1}^{i-1} A_j} \left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_j}\right]$$

Proof of Theorem 2

$$\mathbf{E}\left[\sum_{i=1}^{\infty} B_i \left(\frac{M}{M+1}\right)^{\sum_{j=1}^{i-1} A_j} \left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_j}\right]$$
$$= \mathbf{E}\left[\sum_{\{i|y\in S(\phi_i) \text{ or } x\in S(\phi_i)\}} B_i \left(\frac{M}{M+1}\right)^{\sum_{j=1}^{i-1} A_j} \left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_j}\right]$$

The set $\{i|y \in S(\phi_i) \text{ or } x \in S(\phi_i)\}$ must have infinite size since it is contained by the set $\{i|x \in S(\phi_i)\}$ which has infinite size. Let $\phi'_1, \phi'_2, \phi'_3, \ldots$ be the subset of ϕ_1, ϕ_2, ϕ_3 for which $\{i|y \in S(\phi_i) \text{ or } x \in S(\phi_i)\}$ and define $B'_i = I(y \in S(\phi'_i) \text{ and } x \in S(\phi'_i))$ then

$$\begin{aligned} \operatorname{Corr}(F_{s},F_{v}) &= \frac{2}{M+2} \operatorname{E}\left[\sum_{i=1}^{\infty} B_{i}' \left(\frac{M}{M+1}\right)^{i} \left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_{j}'}\right] \\ &= \frac{2}{M+2} \sum_{i=1}^{\infty} \left(\frac{M}{M+1}\right)^{i} \operatorname{E}\left[B_{i}'\right] \prod_{j=1}^{i-1} \operatorname{E}\left[\left(\frac{M+1}{M+2}\right)^{B_{j}'}\right] \\ &= \frac{2}{M+2} \sum_{i=1}^{\infty} \left(\frac{M}{M+1}\right)^{i} p_{s,v} \left[\left(\frac{M+1}{M+2}\right) p_{s,v} + (1-p_{s,v})\right]^{i-1} \\ &= \frac{2}{M+2} \left(\frac{M}{M+1}\right) \sum_{i=0}^{\infty} \left(\frac{M}{M+1}\right)^{i} p_{s,v} \left[\left(\frac{M+1}{M+2}\right) p_{s,v} + (1-p_{s,v})\right]^{i} \\ &= \frac{2}{M+2} \left(\frac{M}{M+1}\right) p_{s,v} \frac{1}{1 - \left[\left(\frac{M}{M+2}\right) p_{s,v} + \frac{M}{M+1}(1-p_{s,v})\right]} \\ &= \frac{2\frac{M}{M+2} p_{s,v}}{1 + \frac{M}{M+2} p_{s,v}} \end{aligned}$$

Proof of Theorem 3

Since (C, r, t) follows a Poisson process on $\mathbb{R}^p \times \mathbb{R}^2_+$ with intensity f(r), $p(C_k | s \in S(\phi_k) \text{ or } v \in S(\phi_k), r_k)$ is uniformly distributed on $B_{r_k}(s) \cup B_{r_k}(v)$ and $p(r_k | s \in S(\phi_k) \text{ or } v \in S(\phi_k)) = \frac{\nu(B_{r_k}(s) \cup B_{r_k}(v))f(r_k)}{\int \nu(B_{r_k}(s) \cup B_{r_k}(v))f(r_k) dr_k}$ where $\nu(\cdot)$ is Lebesgue measure. Then

$$p_{s,v} = P(s, v \in S(\phi_k) | s \in S_k \text{ or } v \in S(\phi_k))$$

$$= \int \int_{B_{r_k}(s) \cap B_{r_k}(v)} p(C_k, r_k | s \in S(\phi_k) \text{ or } v \in S(\phi_k)) \ dC_k \ dr_k$$

$$= \frac{\int \nu \left(B_{r_k}(s) \cap B_{r_k}(v)\right) f(r_k) \ dr_k}{\int \nu \left(B_{r_k}(s) \cup B_{r_k}(v)\right) f(r_k) \ dr_k}.$$

Proof of Theorem 4

The autocorrelation function can be expressed as $f(p_{s,s+u})$ where $f(x) = 2(\frac{M+1}{M+2})/(1 + \frac{M}{M+2}x)$. Then by Faá di Bruno's formula

$$\frac{d^n}{du^n}f(p_{s,s+u}) = \sum \frac{n!}{m_1!m_2!m_3!\dots} \frac{d^{m_1+\dots+m_n}f}{dp_{s,s+u}^{m_1+\dots+m_n}} \prod_{\{j|m_j\neq 0\}} \left(\frac{d^jp_{s,s+u}}{du^j}\frac{1}{j!}\right)^{m_j},$$

where $m_1 + 2m_2 + 3m_3 + \dots + nm_n = n$ with $m_j \ge 0, j = 1, \dots, n$, and so

$$\lim_{u \to 0} \frac{d^n}{du^n} f(p_{s,s+u}) = \sum \frac{n!}{m_1! m_2! m_3! \dots} \lim_{u \to 0} \frac{d^{m_1 + \dots + m_n} f}{dp_{s,s+u}^{m_1 + \dots + m_n}} \prod_{\{j \mid m_j \neq 0\}} \left(\frac{d^j p_{s,s+u}}{du^j} \frac{1}{j!}\right)^{m_j}$$

Since $\lim_{u\to 0} \frac{d^{m_1+\dots+m_n}f}{dp_{s,s+u}^{m_1+\dots+m_n}} = \lim_{p_{s,s+u}\to 1} \frac{d^{m_1+\dots+m_n}f}{dp_{s,s+u}^{m_1+\dots+m_n}}$ is finite and non-zero for all values of n, the degree of differentiability of the autocorrelation function is equal to the degree of differentiability of $p_{s,s+u}$. We can write $p_{s,s+u} = \left(\frac{4\mu}{a} - 1\right)^{-1}$ with $a = 2\mu_2 - uI$. Now $\frac{d^k p_{s,s+u}}{a^k} = (k-1)!(4\mu - a)^{-k}$ and $\lim_{u\to 0} \frac{d^k p_{s,s+u}}{da^k} = (k-1)!(2\mu)^{-k}$ which is finite and non-zero. By application of Faá di Bruno's formula

$$\frac{d^n}{du^n} p_{s,s+u} = \sum \frac{n!}{m_1! m_2! m_3! \dots} \frac{d^{m_1 + \dots + m_n} p_{s,s+u}}{da^{m_1 + \dots + m_n}} \prod_{\{j \mid m_j \neq 0\}} \left(\frac{d^j a}{du^j} \frac{1}{j!} \right)^m$$

and the degree of differentiability is determined by the degree of differentiability of a. If $p(r) \sim Ga(\alpha, \beta)$ then $\frac{d\mu_2}{du} = -\frac{1}{2} \left(\frac{u}{2}\right)^{\alpha} \exp\{-u/2\}$ and $\frac{dI}{du} = -\frac{1}{2} \left(\frac{u}{2}\right)^{\alpha-1} \exp\{-u/2\}$ and it is easy to show that $\frac{d^n a}{du^n} = C_n u^{\alpha-n+1} \exp\{-u/2\} + \zeta$ where ζ contains terms with power of x greater than $\alpha - n + 1$. If $\lim_{u\to 0} u^{\alpha} \exp\{-u/2\}$ is finite then so is $\lim_{u\to 0} u^{\alpha+k} \exp\{u/2\}$ for k > 0 and so the limit will be finite iff $\alpha - n + 1 \ge 0$, *i.e.* $\alpha \ge n - 1$.

Appendix B: Computational details

As we conduct inference on the basis of the Poisson process restricted to the set R, all quantities (C, r, t, V, θ) should have a superscript R. To keep notation manageable, these superscripts are not explicitly used in this Appendix.

Updating the centres

We update each centre C_1, \ldots, C_K from its full conditional distribution Metropolis-Hastings random walk step. A new value C'_i for the *i*-th centre is proposed from $N(C_i, \sigma_C^2)$ where σ_C^2 is chosen so that the acceptance rate is approximately 0.25. If there is no x_i such that $x_i \in (C'_i - r_i, C'_i + r_i)$ or if there is one value of *j* such that $s_j = i$ for which $x_i \notin (C'_i - r_i, C'_i + r_i)$ then $\alpha(C_i, C'_i) = 0$. Otherwise, the acceptance probability has the form

$$\alpha(C_i, C'_i) = \frac{\prod_{j=1}^n \prod_{h < s_j} \text{ and } C'_h - r_h < x_j < C'_h + r_h}{\prod_{j=1}^n \prod_{h < s_j} \text{ and } C_h - r_h < x_j < C_h + r_h} (1 - V_h)}.$$

Updating the distances

The distances can be updated using a Gibbs step since the full conditional distribution of r_k has a simple piecewise form. Recall that $d_{ik} = |x_i - C_k|$ and let $S_k = \{j | s_j \ge k\}$. We define S_k^{ord} to be a version of S_k where the element have been ordered to be increasing in d_{ik} , *i.e.* if i > j and $i, j \in S_k^{ord}$ then $d_{ik} > d_{jk}$. Finally we define $d_k^* = \max[\{x_{\min} - C_k, C_k - x_{\max}\} \cup \{d_{ik} | s_i = k\}]$ and m^* be such that $x_i \in S_k^{ord}$ and $x_{m^*} > d_k^*$ and $x_{m^*-1} < d_k^*$. Let l be the length of S_k^{ord} . The full conditional distribution has density

$$f^{\star}(z) \propto \begin{cases} f(z) & \text{if } d_k^{\star} < z \le d_{S_{m^{\star}}^{ord}k} \\ f(z)(1-V_k)^{i-m^{\star}+1} & \text{if } d_{S_i^{ord}k} < z \le d_{S_{i+1}^{ord}k}, \quad i=m^{\star}, \dots, l-1 \\ f(z)(1-V_k)^{l-m^{\star}+1} & \text{if } z > d_{S_l^{ord}k} \end{cases}$$

Swapping the positions of atoms

The ordering of the atoms should also be updated in the sampler. One of the K included atoms, say $(V_i, \theta_i, C_i, r_i)$, is chosen at random to be swapped with the subsequent atom $(V_{i+1}, \theta_{i+1}, C_{i+1}, r_{i+1})$. If i < K, the acceptance probability of this move is $\min \{1, (1 - V_{i+1})^{n_i}/(1 - V_i)^{n_{i+1}}\}$. If i = K, then a new point $(V_{K+1}, \theta_{K+1}, C_{K+1}, r_{K+1})$ is proposed from their prior and the swap is accepted with probability $\min \{1, (1 - V_{K+1})^{n_i}\}$.

Updating θ and V

The full conditional distribution of θ_i is proportional to $h(\theta_i) \prod_{\{j|s_i\}} k(y_j|\theta_i)$, where h is the density function of H. We update V_i from a Beta distribution with parameters $1 + \sum_{j=1}^n I(s_j = i)$ and $M + \sum_{j=1}^n I(s_j > i, |x_j - C_i| < r_i)$.

Updating M

This parameter can be updated by a random walk on the log scale. Propose $M' = M \exp(\epsilon)$ where $\epsilon \sim N(0, \sigma_M^2)$ with σ_M^2 a tuning parameter chosen to maintain an acceptance rate close to 0.25. The proposed value should be accepted with probability

$$\frac{M'^{K+1} \left[\prod_{i=1}^{K} (1-V_i)\right]^{M'} \beta(M')^{\alpha K} \exp\left\{-\beta(M') \sum_{i=1}^{K} r_i\right\} p(M')}{M^{K+1} \left[\prod_{i=1}^{K} (1-V_i)\right]^{M} \beta(M)^{\alpha K} \exp\left\{-\beta(M) \sum_{i=1}^{K} r_i\right\} p(M)}$$

where $\beta(M)$ is β expressed as a function of M, as in our suggested form

$$\beta = \frac{2}{x^{\star}} \log \left(\frac{1 + M + \varepsilon}{\varepsilon (M + 2)} \right)$$

Posterior inferences on $F_{\tilde{x}}$

We are often interested in inference at some point $\tilde{x} \in \mathcal{X}$ about the distribution $F_{\tilde{x}}$. We define $(\tilde{V}_1, \tilde{\theta}_1), (\tilde{V}_2, \tilde{\theta}_2), \dots, (\tilde{V}_J, \tilde{\theta}_J)$ to be the subset of $(V_1, \theta_1), (V_1, \theta_2) \dots, (V_K, \theta_K)$ for which $|\tilde{x} - C_i| < r_i$. Then

$$F_{\tilde{x}} = \sum_{i=1}^{J} \delta_{\tilde{\theta}_{i}} \tilde{V}_{i} \prod_{j < i} (1 - \tilde{V}_{j}) \prod_{j \le i} \prod_{l=1}^{n_{j}} \left(1 - V_{l}^{(j)} \right) + \prod_{i \le J} \prod_{j=1}^{n_{i}} \left(1 - V_{j}^{(i)} \right) \sum_{l=J+1}^{\infty} \delta_{\tilde{\theta}_{l}} \tilde{V}_{l} \prod_{m < l} (1 - \tilde{V}_{m})$$
$$+ \sum_{i=1}^{N} \sum_{j=1}^{n_{i}} \delta_{\theta_{j}^{(i)}} V_{j}^{(i)} \prod_{l < j} \left(1 - V_{l}^{(i)} \right) \prod_{l < i} (1 - V_{l}) \prod_{m=1}^{n_{l}} \left(1 - V_{m}^{(l)} \right)$$

where n_j is a geometric random variable with success probability $1-\tilde{p}, \theta_j^{(i)} \sim H, V_j^{(i)} \sim \text{Be}(1, M)$, $\tilde{\theta}_m \sim H$ and $\tilde{V}_m \sim \text{Be}(1, M)$ for m > N. We calculate \tilde{p} in the following way. If $x_{min} < \tilde{x} < x_{max}$, define *i* so that $x_{(i)} < \tilde{x} < x_{(i+1)}$, where $x_{(1)}, \ldots, x_{(n)}$ is an ordered version of x_1, \ldots, x_n , then $\tilde{p} = \frac{\beta}{2\alpha}\tilde{q}$ where

$$\begin{split} \tilde{q} = & (x_{(i+1)} - x_{(i)}) \mathcal{I}\left(\frac{x_{(i+1)} - x_{(i)}}{2}\right) + (x_{(i)} - \tilde{x}) \mathcal{I}\left(\frac{\tilde{x} - x_{(i)}}{2}\right) - (x_{(i+1)} - \tilde{x}) \mathcal{I}\left(\frac{x_{(i+1)} - \tilde{x}}{2}\right) \\ & - 2\mu^{\star}\left(\frac{x_{(i+1)} - x_{(i)}}{2}\right) + 2\mu^{\star}\left(\frac{\tilde{x} - x_{(i)}}{2}\right) + 2\mu^{\star}\left(\frac{x_{(i+1)} - \tilde{x}}{2}\right) \end{split}$$

with $\mathcal{I}(y) = \int_0^y f(r) dr$ and $\mu^*(y) = \int_0^y rf(r) dr$. Otherwise if $\tilde{x} < x_{min}$

$$\tilde{q} = 2\mu^{\star} \left(\frac{x_{\min} - \tilde{x}}{2} \right) + (x_{\min} - \tilde{x}) \left(1 - \mathcal{I} \left(\frac{x_{\min} - \tilde{x}}{2} \right) \right)$$

and if $\tilde{x} > x_{max}$

$$\tilde{q} = 2\mu^{\star} \left(\frac{\tilde{x} - x_{max}}{2} \right) + (\tilde{x} - x_{max}) \left(1 - \mathcal{I} \left(\frac{\tilde{x} - x_{max}}{2} \right) \right).$$

We use a truncated version of $F_{\tilde{x}}$ with h elements which are chosen so that $\sum_{i=1}^{h} p_i = 1 - \epsilon$ where ϵ is usually taken to be 0.001.

Model 2

This section is restricted to discussing the implementation when m(x) follows a Gaussian process prior where we define $P_{ij} = \rho(x_i, x_j)$. We also reparametrise from u_i to $\phi_i = \sigma^2 \psi_i$.

Updating $\psi_i | s$

The full conditional distribution has the density

$$p(\phi_i) \propto \phi_i^{0.5(1-\sum \mathbf{I}(s_j=i,1\le j\le n))} \exp\{-0.5\phi_i/\sigma^2\}, \qquad \phi_i > \phi_{min}$$

where $\phi_{min} = \max \{(y_i - m(x_i))^2 | s_j = i, 1 \le j \le n\}$. A rejection sampler for this full conditional distribution can be constructed using the envelope

$$h^{\star}(\phi_{i}) \propto \begin{cases} \phi_{i}^{0.5(1-\sum I(s_{j}=i,1\leq j\leq n))} & \phi_{min} < \phi_{i} < z \\ z^{0.5(1-\sum I(s_{j}=i,1\leq j\leq n))} \exp\{-0.5(\phi_{i}-z)/\sigma^{2}\} & \phi_{i} > z \end{cases}$$

which can be sampled using inversion sampling. The acceptance probability is

$$\alpha(\phi_i) = \begin{cases} \exp\{-0.5(\phi_i - \phi_{min})/\sigma^2\} & \phi_{min} < \phi_i < z \\ \left(\frac{\phi_i}{z}\right)^{0.5 - 0.5k} \exp\{-0.5(z - \phi_{min})/\sigma^2\} & \phi_i > z \end{cases}$$

and the choice $z = \sigma^2 \sum I(s_j = i, 1 \le j \le n)$ maximizes the acceptance rate.

Updating σ^{-2}

Using the prior Gamma(ν_1, ν_2), the full conditional distribution of σ^{-2} is again a Gamma distribution, where we define $P = (P_{ij})$

$$\sigma^{-2} \sim \operatorname{Ga}\left(\nu_1 + \frac{3K}{2} + \frac{n}{2}, \nu_2 + \frac{1}{2}\sum_{i=1}^{K}\phi_i + \frac{1}{2\omega}m(x)^T P^{-1}m(x)\right).$$

Updating $m(x_1), \ldots, m(x_n)$

It is possible to update $m(x_i)$ using its full conditional distribution. However this tends to lead to slowly mixing algorithms. A more useful approach uses the transformation $m(x) = C^* z$ where C^* is the Cholesky factor of $\sigma_0^{-2}P^{-1}$, where $z \sim N(0, I)$. We then update z_j using their full conditional distribution which is a standard normal distribution truncated to the region $\bigcap_{i=1}^{n} (y_i - \sum_{k \neq j} C_{ik} z_k - \sqrt{\phi_i}, y_i - \sum_{k \neq j} C_{ik} z_k + \sqrt{\phi_i})$.

Updating ω

We define $\omega^2 = \sigma^2/\sigma_0^2$. If ω^2 follows a Gamma distribution with parameters a_0 and b_0 then the full conditional of σ_0^{-2} follows a Gamma distribution with parameters $a_0 + n/2$ and $b_0 + \sigma^{-2}m(x)^T P^{-1}m(x)/2$. A similar updating occurs for the Generalized inverse Gaussian prior used here.

Updating the Matèrn parameters

We update any parameters of the Matèrn correlation structure by a Metropolis-Hastings random walk. The full conditional distribution of the parameters (ζ, τ) would be proportional to

$$|P|^{-1/2} \exp\left\{-\sigma^{-2}\omega^{-2}m(x)^T P^{-1}m(x)\right\} p(\zeta,\tau).$$