Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother - Supplementary Material

J.E. Griffin and M. F. J. Steel

University of Kent and University of Warwick

Appendix A: Proofs

Proof of Proposition 1

Let $Z \sim H$. Then

$$
\mathrm{E}\left[\mu_{x}^{(k)}\right]=\mathrm{E}\left[\sum_{i=1}^{\infty} p_{i}(x) \theta_{i}^{k}\right]=\mathrm{E}\left[Z^{k}\right] \sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x)\right]=\mathrm{E}\left[Z^{k}\right] .
$$

Similarly, $\mathrm{E}\left[\mu_{y}^{(k)}\right]=\mathrm{E}\left[Z^{k}\right]$.

$$
\begin{aligned}
\mathrm{E}\left[\mu_{x}^{(k)} \mu_{y}^{(k)}\right]= & \mathrm{E}\left[\left(\sum_{i=1}^{\infty} p_{i}(x) \theta_{i}^{k}\right)\left(\sum_{i=1}^{\infty} p_{i}(y) \theta_{i}^{k}\right)\right] \\
= & \sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x) p_{i}(y)\right] \mathrm{E}\left[\theta_{i}^{2 k}\right]+\sum_{i=1}^{\infty} \sum_{j=1 ; j \neq i}^{\infty} \mathrm{E}\left[p_{i}(x) p_{j}(y)\right] \mathrm{E}\left[\theta_{i}^{k}\right] \mathrm{E}\left[\theta_{j}^{k}\right] \\
= & \mathrm{E}\left[Z^{2 k}\right] \sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x) p_{i}(j)\right]+\mathrm{E}\left[Z^{k}\right]^{2}\left(1-\sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x) p_{i}(y)\right]\right) \\
= & \mathrm{E}\left[Z^{k}\right]^{2}+\operatorname{Var}\left[Z^{k}\right] \sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x) p_{i}(y)\right] \\
& \operatorname{Cov}\left(\mu_{x}^{(k)}, \mu_{y}^{(k)}\right)=\operatorname{Var}\left[Z^{k}\right] \sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x) p_{i}(y)\right]
\end{aligned}
$$

and so

$$
\operatorname{Corr}\left(\mu_{x}^{(k)}, \mu_{y}^{(k)}\right)=\frac{\sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x) p_{i}(y)\right]}{\sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x)^{2}\right]}
$$

which follows from the stationarity of $p_{1}(x), p_{2}(x), p_{3}(x), \ldots$

Proof of Theorem 1

It is easy to show (see GS) that for any measurable set B

$$
\operatorname{Corr}\left(F_{x}(B), F_{y}(B)\right)=(M+1) \sum_{i=1}^{\infty} \mathrm{E}\left[p_{i}(x) p_{i}(y)\right]
$$

In this case, if $x \notin S\left(\phi_{i}\right)$ or $y \notin S\left(\phi_{i}\right)$ then

$$
\mathrm{E}\left[p_{i}(x) p_{i}(y)\right]=0
$$

Otherwise, let $R_{i}^{(1)}=\left\{j<i \mid x \in S\left(\phi_{i}\right)\right.$ and $\left.y \in S\left(\phi_{i}\right)\right\}, R_{i}^{(2)}=\left\{j<i \mid x \in S\left(\phi_{i}\right)\right.$ and $\left.y \notin S\left(\phi_{i}\right)\right\}$ and $R_{i}^{(3)}=\left\{j<i \mid x \notin S\left(\phi_{i}\right)\right.$ and $\left.y \in S\left(\phi_{i}\right)\right\}$

$$
\begin{aligned}
\mathrm{E}\left[p_{i}(x) p_{i}(y)\right] & =\mathrm{E}\left[V_{i}^{2} \prod_{j \in R_{i}^{(1)}}\left(1-V_{i}\right)^{2} \prod_{j \in R_{i}^{(2)}}\left(1-V_{i}\right) \prod_{j \in R_{i}^{(3)}}\left(1-V_{i}\right)\right] \\
& =\frac{2}{(M+1)(M+2)} \mathrm{E}\left[\left(\frac{M}{M+2}\right)^{\# R_{i}^{(1)}}\left(\frac{M}{M+1}\right)^{\# R_{i}^{(2)}}\left(\frac{M}{M+1}\right)^{\# R_{i}^{(3)}}\right]
\end{aligned}
$$

and so

$$
\operatorname{Corr}\left(F_{x}(B), F_{y}(B)\right)=\frac{2}{M+2} \mathrm{E}\left[\sum_{i=1}^{\infty} B_{i}\left(\frac{M}{M+1}\right)^{\sum_{j=1}^{i-1} A_{j}}\left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_{j}}\right]
$$

Proof of Theorem 2

$$
\begin{aligned}
& \mathrm{E}\left[\sum_{i=1}^{\infty} B_{i}\left(\frac{M}{M+1}\right)^{\sum_{j=1}^{i-1} A_{j}}\left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_{j}}\right] \\
= & \mathrm{E}\left[\sum_{\left\{i \mid y \in S\left(\phi_{i}\right) \text { or } x \in S\left(\phi_{i}\right)\right\}} B_{i}\left(\frac{M}{M+1}\right)^{\sum_{j=1}^{i-1} A_{j}}\left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_{j}}\right]
\end{aligned}
$$

The set $\left\{i \mid y \in S\left(\phi_{i}\right)\right.$ or $\left.x \in S\left(\phi_{i}\right)\right\}$ must have infinite size since it is contained by the set $\{i \mid x \in$ $\left.S\left(\phi_{i}\right)\right\}$ which has infinite size. Let $\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}, \ldots$ be the subset of $\phi_{1}, \phi_{2}, \phi_{3}$ for which $\{i \mid y \in$ $S\left(\phi_{i}\right)$ or $\left.x \in S\left(\phi_{i}\right)\right\}$ and define $B_{i}^{\prime}=\mathrm{I}\left(y \in S\left(\phi_{i}^{\prime}\right)\right.$ and $\left.x \in S\left(\phi_{i}^{\prime}\right)\right)$ then

$$
\begin{aligned}
\operatorname{Corr}\left(F_{s}, F_{v}\right) & =\frac{2}{M+2} \mathrm{E}\left[\sum_{i=1}^{\infty} B_{i}^{\prime}\left(\frac{M}{M+1}\right)^{i}\left(\frac{M+1}{M+2}\right)^{\sum_{j=1}^{i-1} B_{j}^{\prime}}\right] \\
& =\frac{2}{M+2} \sum_{i=1}^{\infty}\left(\frac{M}{M+1}\right)^{i} \mathrm{E}\left[B_{i}^{\prime}\right] \prod_{j=1}^{i-1} \mathrm{E}\left[\left(\frac{M+1}{M+2}\right)^{B_{j}^{\prime}}\right] \\
& =\frac{2}{M+2} \sum_{i=1}^{\infty}\left(\frac{M}{M+1}\right)^{i} p_{s, v}\left[\left(\frac{M+1}{M+2}\right) p_{s, v}+\left(1-p_{s, v}\right)\right]^{i-1} \\
& =\frac{2}{M+2}\left(\frac{M}{M+1}\right) \sum_{i=0}^{\infty}\left(\frac{M}{M+1}\right)^{i} p_{s, v}\left[\left(\frac{M+1}{M+2}\right) p_{s, v}+\left(1-p_{s, v}\right)\right]^{i} \\
& =\frac{2}{M+2}\left(\frac{M}{M+1}\right) p_{s, v} \frac{1}{1-\left[\left(\frac{M}{M+2}\right) p_{s, v}+\frac{M}{M+1}\left(1-p_{s, v}\right)\right]} \\
& =\frac{2 \frac{M}{M+2} p_{s, v}}{1+\frac{M}{M+2} p_{s, v}}
\end{aligned}
$$

Proof of Theorem 3

Since (C, r, t) follows a Poisson process on $\mathbb{R}^{p} \times \mathbb{R}_{+}^{2}$ with intensity $f(r), p\left(C_{k} \mid s \in S\left(\phi_{k}\right)\right.$ or $v \in$ $\left.S\left(\phi_{k}\right), r_{k}\right)$ is uniformly distributed on $B_{r_{k}}(s) \cup B_{r_{k}}(v)$ and $p\left(r_{k} \mid s \in S\left(\phi_{k}\right)\right.$ or $\left.v \in S\left(\phi_{k}\right)\right)=$ $\frac{\nu\left(B_{r_{k}}(s) \cup B_{r_{k}}(v)\right) f\left(r_{k}\right)}{\int \nu\left(B_{r_{k}}(s) \cup B_{r_{k}}(v)\right) f\left(r_{k}\right) d r_{k}}$ where $\nu(\cdot)$ is Lebesgue measure. Then

$$
\begin{aligned}
p_{s, v} & =P\left(s, v \in S\left(\phi_{k}\right) \mid s \in S_{k} \text { or } v \in S\left(\phi_{k}\right)\right) \\
& =\iint_{B_{r_{k}}(s) \cap B_{r_{k}}(v)} p\left(C_{k}, r_{k} \mid s \in S\left(\phi_{k}\right) \text { or } v \in S\left(\phi_{k}\right)\right) d C_{k} d r_{k} \\
& =\frac{\int \nu\left(B_{r_{k}}(s) \cap B_{r_{k}}(v)\right) f\left(r_{k}\right) d r_{k}}{\int \nu\left(B_{r_{k}}(s) \cup B_{r_{k}}(v)\right) f\left(r_{k}\right) d r_{k}} .
\end{aligned}
$$

Proof of Theorem 4

The autocorrelation function can be expressed as $f\left(p_{s, s+u}\right)$ where $f(x)=2\left(\frac{M+1}{M+2}\right) /\left(1+\frac{M}{M+2} x\right)$. Then by Faá di Bruno's formula

$$
\frac{d^{n}}{d u^{n}} f\left(p_{s, s+u}\right)=\sum \frac{n!}{m_{1}!m_{2}!m_{3}!\ldots} \frac{d^{m_{1}+\cdots+m_{n}} f}{d p_{s, s+u}^{m_{1}+\cdots+m_{n}}} \prod_{\left\{j \mid m_{j} \neq 0\right\}}\left(\frac{d^{j} p_{s, s+u}}{d u^{j}} \frac{1}{j!}\right)^{m_{j}}
$$

where $m_{1}+2 m_{2}+3 m_{3}+\cdots+n m_{n}=n$ with $m_{j} \geq 0, j=1, \ldots, n$, and so

$$
\lim _{u \rightarrow 0} \frac{d^{n}}{d u^{n}} f\left(p_{s, s+u}\right)=\sum \frac{n!}{m_{1}!m_{2}!m_{3}!\ldots} \lim _{u \rightarrow 0} \frac{d^{m_{1}+\cdots+m_{n}} f}{d p_{s, s+u}^{m_{1}+\cdots+m_{n}}} \prod_{\left\{j \mid m_{j} \neq 0\right\}}\left(\frac{d^{j} p_{s, s+u}}{d u^{j}} \frac{1}{j!}\right)^{m_{j}}
$$

Since $\lim _{u \rightarrow 0} \frac{d^{m_{1}+\cdots+m_{n}} f}{d p_{s, s+u}^{m_{1}+\cdots+m_{n}}}=\lim _{p_{s, s+u} \rightarrow 1} \frac{d^{m_{1}+\cdots+m_{n}} f}{d p_{s, s+u}^{m_{1}+\cdots+m_{n}}}$ is finite and non-zero for all values of n, the degree of differentiability of the autocorrelation function is equal to the degree of differentiability of $p_{s, s+u}$. We can write $p_{s, s+u}=\left(\frac{4 \mu}{a}-1\right)^{-1}$ with $a=2 \mu_{2}-u I$. Now $\frac{d^{k} p_{s, s+u}}{a^{k}}=(k-1)!(4 \mu-a)^{-k}$ and $\lim _{u \rightarrow 0} \frac{d^{k} p_{s, s+u}}{d a^{k}}=(k-1)!(2 \mu)^{-k}$ which is finite and non-zero. By application of Faá di Bruno's formula

$$
\frac{d^{n}}{d u^{n}} p_{s, s+u}=\sum \frac{n!}{m_{1}!m_{2}!m_{3}!\ldots} \frac{d^{m_{1}+\cdots+m_{n}} p_{s, s+u}}{d a^{m_{1}+\cdots+m_{n}}} \prod_{\left\{j \mid m_{j} \neq 0\right\}}\left(\frac{d^{j} a}{d u^{j}} \frac{1}{j!}\right)^{m_{j}}
$$

and the degree of differentiability is determined by the degree of differentiability of a. If $p(r) \sim$ $\operatorname{Ga}(\alpha, \beta)$ then $\frac{d \mu_{2}}{d u}=-\frac{1}{2}\left(\frac{u}{2}\right)^{\alpha} \exp \{-u / 2\}$ and $\frac{d I}{d u}=-\frac{1}{2}\left(\frac{u}{2}\right)^{\alpha-1} \exp \{-u / 2\}$ and it is easy to show that $\frac{d^{n} a}{d u^{n}}=C_{n} u^{\alpha-n+1} \exp \{-u / 2\}+\zeta$ where ζ contains terms with power of x greater than $\alpha-n+1$. If $\lim _{u \rightarrow 0} u^{\alpha} \exp \{-u / 2\}$ is finite then so is $\lim _{u \rightarrow 0} u^{\alpha+k} \exp \{u / 2\}$ for $k>0$ and so the limit will be finite iff $\alpha-n+1 \geq 0$, i.e. $\alpha \geq n-1$.

Appendix B: Computational details

As we conduct inference on the basis of the Poisson process restricted to the set R, all quantities (C, r, t, V, θ) should have a superscript R. To keep notation manageable, these superscripts are not explicitly used in this Appendix.

Updating the centres

We update each centre C_{1}, \ldots, C_{K} from its full conditional distribution Metropolis-Hastings random walk step. A new value C_{i}^{\prime} for the i-th centre is proposed from $\mathrm{N}\left(C_{i}, \sigma_{C}^{2}\right)$ where σ_{C}^{2} is chosen so that the acceptance rate is approximately 0.25 . If there is no x_{i} such that $x_{i} \in\left(C_{i}^{\prime}-r_{i}, C_{i}^{\prime}+r_{i}\right)$ or if there is one value of j such that $s_{j}=i$ for which $x_{i} \notin\left(C_{i}^{\prime}-r_{i}, C_{i}^{\prime}+r_{i}\right)$ then $\alpha\left(C_{i}, C_{i}^{\prime}\right)=0$. Otherwise, the acceptance probability has the form

$$
\alpha\left(C_{i}, C_{i}^{\prime}\right)=\frac{\prod_{j=1}^{n} \prod_{h<s_{j}} \text { and } C_{h}^{\prime}-r_{h}<x_{j}<C_{h}^{\prime}+r_{h}}{}\left(1-V_{h}\right) .
$$

Updating the distances

The distances can be updated using a Gibbs step since the full conditional distribution of r_{k} has a simple piecewise form. Recall that $d_{i k}=\left|x_{i}-C_{k}\right|$ and let $\mathcal{S}_{k}=\left\{j \mid s_{j} \geq k\right\}$. We define $\mathcal{S}_{k}^{\text {ord }}$ to be a version of \mathcal{S}_{k} where the element have been ordered to be increasing in $d_{i k}$, i.e. if $i>j$ and $i, j \in \mathcal{S}_{k}^{\text {ord }}$ then $d_{i k}>d_{j k}$. Finally we define $d_{k}^{\star}=\max \left[\left\{x_{\min }-C_{k}, C_{k}-x_{\max }\right\} \cup\left\{d_{i k} \mid s_{i}=k\right\}\right]$ and m^{\star} be such that $x_{i} \in S_{k}^{o r d}$ and $x_{m^{\star}}>d_{k}^{\star}$ and $x_{m^{\star}-1}<d_{k}^{\star}$. Let l be the length of $S_{k}^{o r d}$. The full conditional distribution has density

$$
f^{\star}(z) \propto \begin{cases}f(z) & \text { if } d_{k}^{\star}<z \leq d_{S_{m \star}^{\text {ord }} k} \\ f(z)\left(1-V_{k}\right)^{i-m^{\star}+1} & \text { if } d_{S_{i}^{\text {ord }} k}<z \leq d_{S_{i+1} \text { ord } k}, \quad i=m^{\star}, \ldots, l-1 . \\ f(z)\left(1-V_{k}\right)^{l-m^{\star}+1} & \text { if } z>d_{S_{l}^{\text {ord }} k}\end{cases}
$$

Swapping the positions of atoms

The ordering of the atoms should also be updated in the sampler. One of the K included atoms, say $\left(V_{i}, \theta_{i}, C_{i}, r_{i}\right)$, is chosen at random to be swapped with the subsequent atom $\left(V_{i+1}, \theta_{i+1}, C_{i+1}, r_{i+1}\right)$. If $i<K$, the acceptance probability of this move is $\min \left\{1,\left(1-V_{i+1}\right)^{n_{i}} /\left(1-V_{i}\right)^{n_{i+1}}\right\}$. If $i=K$, then a new point $\left(V_{K+1}, \theta_{K+1}, C_{K+1}, r_{K+1}\right)$ is proposed from their prior and the swap is accepted with probability $\min \left\{1,\left(1-V_{K+1}\right)^{n_{i}}\right\}$.

Updating θ and V

The full conditional distribution of θ_{i} is proportional to $h\left(\theta_{i}\right) \prod_{\left\{j \mid s_{i}\right\}} k\left(y_{j} \mid \theta_{i}\right)$, where h is the density function of H. We update V_{i} from a Beta distribution with parameters $1+\sum_{j=1}^{n} \mathrm{I}\left(s_{j}=i\right)$ and $M+\sum_{j=1}^{n} \mathrm{I}\left(s_{j}>i,\left|x_{j}-C_{i}\right|<r_{i}\right)$.

Updating M

This parameter can be updated by a random walk on the \log scale. Propose $M^{\prime}=M \exp (\epsilon)$ where $\epsilon \sim \mathrm{N}\left(0, \sigma_{M}^{2}\right)$ with σ_{M}^{2} a tuning parameter chosen to maintain an acceptance rate close to 0.25 . The proposed value should be accepted with probability

$$
\frac{M^{\prime K+1}\left[\prod_{i=1}^{K}\left(1-V_{i}\right)\right]^{M^{\prime}} \beta\left(M^{\prime}\right)^{\alpha K} \exp \left\{-\beta\left(M^{\prime}\right) \sum_{i=1}^{K} r_{i}\right\} p\left(M^{\prime}\right)}{M^{K+1}\left[\prod_{i=1}^{K}\left(1-V_{i}\right)\right]^{M} \beta(M)^{\alpha K} \exp \left\{-\beta(M) \sum_{i=1}^{K} r_{i}\right\} p(M)}
$$

where $\beta(M)$ is β expressed as a function of M, as in our suggested form

$$
\beta=\frac{2}{x^{\star}} \log \left(\frac{1+M+\varepsilon}{\varepsilon(M+2)}\right) .
$$

Posterior inferences on $F_{\hat{x}}$

We are often interested in inference at some point $\tilde{x} \in \mathcal{X}$ about the distribution $F_{\tilde{x}}$. We define $\left(\tilde{V}_{1}, \tilde{\theta}_{1}\right),\left(\tilde{V}_{2}, \tilde{\theta}_{2}\right), \ldots,\left(\tilde{V}_{J}, \tilde{\theta}_{J}\right)$ to be the subset of $\left(V_{1}, \theta_{1}\right),\left(V_{1}, \theta_{2}\right) \ldots,\left(V_{K}, \theta_{K}\right)$ for which $\mid \tilde{x}-$ $C_{i} \mid<r_{i}$. Then

$$
\begin{aligned}
F_{\tilde{x}}= & \sum_{i=1}^{J} \delta_{\tilde{\theta}_{i}} \tilde{V}_{i} \prod_{j<i}\left(1-\tilde{V}_{j}\right) \prod_{j \leq i} \prod_{l=1}^{n_{j}}\left(1-V_{l}^{(j)}\right)+\prod_{i \leq J} \prod_{j=1}^{n_{i}}\left(1-V_{j}^{(i)}\right) \sum_{l=J+1}^{\infty} \delta_{\tilde{\theta}_{l}} \tilde{V}_{l} \prod_{m<l}\left(1-\tilde{V}_{m}\right) \\
& +\sum_{i=1}^{N} \sum_{j=1}^{n_{i}} \delta_{\theta_{j}^{(i)}} V_{j}^{(i)} \prod_{l<j}\left(1-V_{l}^{(i)}\right) \prod_{l<i}\left(1-V_{l}\right) \prod_{m=1}^{n_{l}}\left(1-V_{m}^{(l)}\right)
\end{aligned}
$$

where n_{j} is a geometric random variable with success probability $1-\tilde{p}, \theta_{j}^{(i)} \sim H, V_{j}^{(i)} \sim \operatorname{Be}(1, M)$, $\tilde{\theta}_{m} \sim H$ and $\tilde{V}_{m} \sim \operatorname{Be}(1, M)$ for $m>N$. We calculate \tilde{p} in the following way. If $x_{m i n}<\tilde{x}<$ $x_{\text {max }}$, define i so that $x_{(i)}<\tilde{x}<x_{(i+1)}$, where $x_{(1)}, \ldots, x_{(n)}$ is an ordered version of x_{1}, \ldots, x_{n}, then $\tilde{p}=\frac{\beta}{2 \alpha} \tilde{q}$ where

$$
\begin{aligned}
\tilde{q}= & \left(x_{(i+1)}-x_{(i)} \mathcal{I}\left(\frac{x_{(i+1)}-x_{(i)}}{2}\right)+\left(x_{(i)}-\tilde{x}\right) \mathcal{I}\left(\frac{\tilde{x}-x_{(i)}}{2}\right)-\left(x_{(i+1)}-\tilde{x}\right) \mathcal{I}\left(\frac{x_{(i+1)}-\tilde{x}}{2}\right)\right. \\
& -2 \mu^{\star}\left(\frac{x_{(i+1)}-x_{(i)}}{2}\right)+2 \mu^{\star}\left(\frac{\tilde{x}-x_{(i)}}{2}\right)+2 \mu^{\star}\left(\frac{x_{(i+1)}-\tilde{x}}{2}\right)
\end{aligned}
$$

with $\mathcal{I}(y)=\int_{0}^{y} f(r) d r$ and $\mu^{\star}(y)=\int_{0}^{y} r f(r) d r$. Otherwise if $\tilde{x}<x_{\text {min }}$

$$
\tilde{q}=2 \mu^{\star}\left(\frac{x_{\min }-\tilde{x}}{2}\right)+\left(x_{\min }-\tilde{x}\right)\left(1-\mathcal{I}\left(\frac{x_{\min }-\tilde{x}}{2}\right)\right)
$$

and if $\tilde{x}>x_{\text {max }}$

$$
\tilde{q}=2 \mu^{\star}\left(\frac{\tilde{x}-x_{\max }}{2}\right)+\left(\tilde{x}-x_{\max }\right)\left(1-\mathcal{I}\left(\frac{\tilde{x}-x_{\max }}{2}\right)\right) .
$$

We use a truncated version of $F_{\tilde{x}}$ with h elements which are chosen so that $\sum_{i=1}^{h} p_{i}=1-\epsilon$ where ϵ is usually taken to be 0.001 .

Model 2

This section is restricted to discussing the implementation when $m(x)$ follows a Gaussian process prior where we define $P_{i j}=\rho\left(x_{i}, x_{j}\right)$. We also reparametrise from u_{i} to $\phi_{i}=\sigma^{2} \psi_{i}$.

Updating $\psi_{i} \mid s$

The full conditional distribution has the density

$$
p\left(\phi_{i}\right) \propto \phi_{i}^{0.5\left(1-\sum \mathbf{I}\left(s_{j}=i, 1 \leq j \leq n\right)\right)} \exp \left\{-0.5 \phi_{i} / \sigma^{2}\right\}, \quad \phi_{i}>\phi_{\text {min }}
$$

where $\phi_{\text {min }}=\max \left\{\left(y_{i}-m\left(x_{i}\right)\right)^{2} \mid s_{j}=i, 1 \leq j \leq n\right\}$. A rejection sampler for this full conditional distribution can be constructed using the envelope

$$
h^{\star}\left(\phi_{i}\right) \propto\left\{\begin{array}{cc}
\phi_{i}^{0.5\left(1-\sum \mathbf{I}\left(s_{j}=i, 1 \leq j \leq n\right)\right)} & \phi_{\min }<\phi_{i}<z \\
z^{0.5\left(1-\sum \mathbf{I}\left(s_{j}=i, 1 \leq j \leq n\right)\right)} \exp \left\{-0.5\left(\phi_{i}-z\right) / \sigma^{2}\right\} & \phi_{i}>z
\end{array}\right.
$$

which can be sampled using inversion sampling. The acceptance probability is

$$
\alpha\left(\phi_{i}\right)=\left\{\begin{array}{cc}
\exp \left\{-0.5\left(\phi_{i}-\phi_{\text {min }}\right) / \sigma^{2}\right\} & \phi_{\text {min }}<\phi_{i}<z \\
\left(\frac{\phi_{i}}{z}\right)^{0.5-0.5 k} \exp \left\{-0.5\left(z-\phi_{\text {min }}\right) / \sigma^{2}\right\} & \phi_{i}>z
\end{array}\right.
$$

and the choice $z=\sigma^{2} \sum \mathrm{I}\left(s_{j}=i, 1 \leq j \leq n\right)$ maximizes the acceptance rate.

Updating σ^{-2}

Using the prior $\operatorname{Gamma}\left(\nu_{1}, \nu_{2}\right)$, the full conditional distribution of σ^{-2} is again a Gamma distribution, where we define $P=\left(P_{i j}\right)$

$$
\sigma^{-2} \sim \mathrm{Ga}\left(\nu_{1}+\frac{3 K}{2}+\frac{n}{2}, \nu_{2}+\frac{1}{2} \sum_{i=1}^{K} \phi_{i}+\frac{1}{2 \omega} m(x)^{T} P^{-1} m(x)\right) .
$$

Updating $m\left(x_{1}\right), \ldots, m\left(x_{n}\right)$

It is possible to update $m\left(x_{i}\right)$ using its full conditional distribution. However this tends to lead to slowly mixing algorithms. A more useful approach uses the transformation $m(x)=C^{\star} z$ where C^{\star} is the Cholesky factor of $\sigma_{0}^{-2} P^{-1}$, where $z \sim \mathrm{~N}(0, I)$. We then update z_{j} using their full conditional distribution which is a standard normal distribution truncated to the region $\cap_{i=1}^{n}\left(y_{i}-\right.$ $\left.\sum_{k \neq j} C_{i k} z_{k}-\sqrt{\phi_{i}}, y_{i}-\sum_{k \neq j} C_{i k} z_{k}+\sqrt{\phi_{i}}\right)$.

Updating ω

We define $\omega^{2}=\sigma^{2} / \sigma_{0}^{2}$. If ω^{2} follows a Gamma distribution with parameters a_{0} and b_{0} then the full conditional of σ_{0}^{-2} follows a Gamma distribution with parameters $a_{0}+n / 2$ and $b_{0}+$ $\sigma^{-2} m(x)^{T} P^{-1} m(x) / 2$. A similar updating occurs for the Generalized inverse Gaussian prior used here.

Updating the Matèrn parameters

We update any parameters of the Matèrn correlation structure by a Metropolis-Hastings random walk. The full conditional distribution of the parameters (ζ, τ) would be proportional to

$$
|P|^{-1 / 2} \exp \left\{-\sigma^{-2} \omega^{-2} m(x)^{T} P^{-1} m(x)\right\} p(\zeta, \tau) .
$$

