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Summary

Bayesian Model averaging is a natural response to model uncertainty. It has become an important
practical tool for dealing with model uncertainty, in particular in empirical settings with large numbers
of potential models and relatively limited numbers of observations. Most of this paper focuses on the
problem of variable selection in normal linear regression models, but also briefly considers a more gen-
eral setting. The article surveys a number of prior structures proposed in the literature, and presents
in some detail the most commonly used prior setup. Model selection consistency and practical imple-
mentation are also briefly discussed.
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1 Model uncertainty

The issue of model uncertainty <stat07398> is a very important one in statistical practice. It affects

the vast majority of applied modelling and its consequences need to be taken into account whenever
we are interested in quantities that are not model-specific (such as predictions or effects of regressors).
Generally, one important and potentially dangerous consequence of neglecting model uncertainty is that
we assign more precision to our inference than is warranted by the data, and this leads to overly confident
decisions and predictions. In addition, our inference can be severely biased. See [6] and [10] for extensive

discussions of model uncertainty.

The standard Bayesian response to dealing with uncertainty is to average. When dealing with param-
eter uncertainty, this involves averaging over parameter values with the posterior distribution in order to
conduct inference. Analogously, model uncertainty is also resolved through averaging, but this time aver-
aging over models with the (discrete) posterior model distribution. The latter procedure is usually called
Bayesian Model Averaging (BMA) and was already described in [22] and later in e.g. [31]. Averaging
immediately leads to predictive distributions, usually a key quantity of interest. In particular, assume we
are interested in predicting the unobserved quantity y; on the basis of the observations y. Let us denote
the sampling model for y; and y jointly by p(y¢|y, 8, M;)p(y|6;, M;), where M, is the model selected
from a set of K possible models, and 0; € ©; groups the (unknown) parameters of M. In a Bayesian
framework, any uncertainty is reflected by a probability distribution (or measure) so we assign a (typically
continuous) prior p(6;|M;) for the parameters and a discrete prior P()/;) defined on the model space. We

then compute the predictive distribution as
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where the quantity in square brackets is the predictive distribution given M; obtained using the posterior

of 0; given M, which is computed as
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with the second equality defining p(y|M;), which is used in computing the posterior probability assigned
to M as
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Clearly, the predictive in (1) indeed involves averaging at two levels: over (continuous) parameter values,

P(Mjly) =

3)

given each possible model, and discrete averaging over all possible models. The denominator (or integrat-
ing constant) in (2) is the so-called marginal likelihood <stat05901> of model j, p(y|}/;) and is a key

quantity for model comparison. In particular, the Bayes factor <stat00224.pub2> between two models
is the ratio of their marginal likelihoods and the posterior odds are directly obtained as the product of the
Bayes factor and the prior odds. The denominator in (3), p(y), is defined as a sum and the challenge in its

calculation often lies in the very large number of possible models, i.e. K.

Bayesian model averaging as described above is thus the formal probabilistic way of obtaining pre-

dictive inference or, more generally, inference on quantities of interest that are not model-specific.

The importance of Bayesian model averaging as a solution to model uncertainty is illustrated by the
fact that Google Scholar returns 12,800 articles in a search for “Bayesian model averaging”, about half of
which date from 2011 and later (data from October 30, 2015).

1.1 Covariate selection in the normal linear regression model

Most of the relevant literature assumes the simple case of the normal linear regression model. This model
is often used in empirical work and is fortunately also quite tractable. Model uncertainty then typically
relates to the choice of which covariates should be included in the model, i.e. under model j the n obser-

vation in y are generated from the normal sampling model
y|0j7Mj NN(a+Xj/Bj7J2)7 (4)

where the n x p; matrix X, groups p; of the possible p covariates and 3; € RP7 are its corresponding
regression coefficients. Furthermore, the models considered all contain an intercept & € R and the scale
o > 0 has a common interpretation across all models. The covariates are standardized by subtracting
their means, which makes them orthogonal to the intercept and renders the interpretation of the intercept
common to all models. The model space then consists of all possible subsets of the covariates and thus

contains K = 2P models in total.

This problem has received quite a lot of attention from the statistical community. Traditional methods
(such as stepwise regression <stat03252>, LASSO <stat07543.pub2> and methods based on




information criteria <stat04463>) aim at uncovering a single “best” model. In other words, they are

model selection methods (see stat(00228), as opposed to model averaging methods. As it is often unlikely
that reality can be adequately captured by a simple normal linear regression model, it is risky to rely on a
single model for inference, forecasts and (policy) conclusions. An averaging method usually gives a better

approximation to reality and improves our estimate of the uncertainty associated with our conclusions.

2 Bayesian Model averaging

2.1 Priors on model parameters

The priors for the model parameters, i.e. p(#;|M;) needs to be proper on model-specific parameters. In

our normal linear model in (4) the model-specific parameters are the 3;s.

Here we focus on the prior structure proposed by [12], which is in line with the majority of the current
literature. [12] adopt Jeffreys-style non-informative priors for o and 0. For the regression coefficients 3;,

they propose the g-prior specification of [35] for the covariance structure. The prior density is then
pla, B0 | My) oc o ff (B510,0%g(X7X5) 7, (5)

where f7,(-|m, V') denotes the density function of a ¢g-dimensional Normal distribution with mean m and
covariance matrix V. The regression coefficients not appearing in M; are exactly zero, corresponding to
a prior point mass at zero. The amount of prior information requested from the user is limited to a single
scalar g > 0. The g-prior is a convenient prior with nice properties, such as invariance to reparameteriza-
tion under affine transformations. In addition, the marginal likelihood for each model (and thus the Bayes

factor between each pair of models) can be calculated in closed form.

There are a number of suggestions in the literature for the choice of values for g. The unit information
prior of [20] corresponds to the amount of information contained in one observation. This gives us g = n
and log Bayes factors that behave asymptotically like the BIC (see [12]). The RIC prior of [13] is based
on the Risk inflation criterion which leads to ¢ = p? using a minimax <stat01687> perspective. Finally,

the benchmark prior of [12] corresponds to ¢ = max(n, p?).

When faced with a variety of possible prior choices for g, a natural Bayesian response is to formu-
late a hyperprior on g. This was already implicit in the Zellner-Siow prior of [36] who use a Cauchy
<stat05830> prior on the regression coefficients, corresponding to an inverse gamma <stat01030> prior

on g. This idea was investigated further in [26], where hyperpriors on g are shown to alleviate certain
paradoxes that appear with fixed choices for g. Hierarchical priors on g were also discussed and compared

in [24], whereas [33] proposed independent mixtures of g-priors on blocks of regression coefficients.

In the context of applications to genetic data, it is common to use priors where X7 X in the covariance
in (5) is replaced by an identity matrix (since the covariates are typically comparable in scale). Similarly,
[31] propose a (proper natural-conjugate <stat00214>) prior with a diagonal covariance structure (except

for categorical predictors where a g-prior structure is used).
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A different approach was proposed by [16, 17], who use a prior on the regression coefficients which
does not include point masses at zero. In particular, they advocate a normal prior with mean zero on the
entire p-dimensional vector of regression coefficients given the model M; which assigns a small prior vari-
ance to the coefficients of the variables excluded in M; and a larger variance to the remaining coefficients.

In addition, their overall prior is proper and does not assume a common intercept.

Another class of priors are intrinsic priors, which underlie the intrinsic Bayes factors of [2], and are

used in this context in [29].

2.2 Priors over models

The prior P(M;) on model space is typically constructed through the probability of inclusion of the co-
variates. If the latter is the same for each covariate, say w, and we assume covariate inclusions are prior

independent, then
P(M;) =wP (1 —w)P™. (6)

This implies that prior odds will favour larger models if w > 0.5 and the opposite if w < 0.5. Forw = 0.5
all model have equal prior probability 1/K. Defining model size as the number of included covariates, it
is easy to elicit w through the prior mean model size, which is pw. As the choice of w can have a large
effect on the results, various authors [5, 8, 23] have suggested to put a Beta(a, b) <stat04850> hyperprior

on w. This leads to
I'(a+b) I'(a+p)l'(b+p—p;)

P(M;) =
(M;) ['(a)T(b) ['(a+b+p) ’
which results in much less informative priors in terms of model size. [23] compare both approaches and

(7

suggest choosing @ = 1 and b = (p—m)/m, where m is the chosen prior mean model size. They conclude

that the choice of m is much less critical for the results in the hierarchical case (7) than for fixed w in (6).

[14] raises the issue of “dilution”, which occurs when posterior probabilities are spread among many
similar models, and suggest that prior model probabilities could have a built-in adjustment to compensate
for dilution by down-weighting prior probabilities on sets of similar models. These so-called “dilution pri-
ors” were implemented by [11] through defining priors that are uniform on theories (i.e. neighbourhoods

of similar models) rather than on individual models.

2.3 Empirical Bayes Priors

As explained in e.g. [3] and [12], it is virtually impossible to find a single default choice for g and w
that performs well in all cases. Therefore, as stated above, hyperpriors on g and w have been proposed.
An alternative approach to this issue is to use the data to estimate g and w, leading to empirical Bayes
<stat00257.pub2> (EB) procedures. A local EB method was proposed by [19] which uses a different
g for each model estimated by maximizing the marginal likelihood. [15] develop a global EB approach,

which assumes one common ¢ and w for all models and borrows strength from all models by estimating g

and w by maximizing the marginal likelihood, averaged over all models.
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2.4 Consistency

One of the desiderata in [1] for objective model selection priors is model selection consistency (introduced
by [12]), which implies that if data have been generated by A/;, then the posterior probability of M;
should converge to unity with sample size. [12] present general conditions for the case with non-random
g and show that consistency holds for e.g. the unit information and benchmark priors (but not for the RIC
prior). When we consider hierarchical priors on g, model selection consistency is achieved by the Zellner-
Siow prior in [36] but not by local and global EB priors nor by the hyper-¢g prior in [26], who therefore
introduce a consistent modification (the hyper-g/n prior). [29] consider model selection consistency when
the number of potential regressors p grows with sample size. Consistency is found to depend not only on
the priors for the model parameters, but also on the priors in model space. They conclude thatif p = O°(n),
the unit information prior, the Zellner-Siow prior and the intrinsic prior lead to consistency for0 < b < 1/2
under the uniform prior over model space, while consistency holds for 0 < b < 1 if we use a Beta(1,1)

hyperprior on w in (7).

2.5 Practical implementation

The main challenge is typically the very large number of models, which makes complete enumeration
impossible. Note that the marginal likelihood for each visited model can be computed analytically under
the prior structure in (5), so all we need is to run a Markov chain Monte Carlo (MCMC) <stat03616>
algorithm in model space, such as the MC? methods of [27], which is a random-walk Metropolis-Hastings
sampler. If we use the prior by [16, 17] a Gibbs sampler (see stat00211, stat07189) can be used for
inference: usually this is referred to as Stochastic search variable selection or SSVS <stat07829>. For

mixtures of g-priors, we can either add a step for g (see [24]) or use Laplace approximations as in [26].

These methods are quite easy to implement. However, more sophisticated methods can be required
for settings where covariates are highly correlated or for very large model spaces, such as adaptive MCMC
(e.g. [30], [21] and [18]), evolutionary Monte Carlo [4] and Bayesian adaptive sampling proposed in [9],

which samples models without replacement.

2.6 Covariate selection in generalized linear models

Generalized linear models (GLMs) describe a more general class of models (see [28], stat06576, stat06942)
that covers the normal linear model but also regression models where the response variable is non-normal,
such as binomial <stat04852> (e.g. logistic or logit regression <stat06902> models, probit models
<stat07555>), Poisson <stat01112>, multinomial <stat04877> (e.g. ordered response models,
proportional odds models <stat06805>) or gamma <stat00989> distributed. [32] consider the interpre-

tation of the g-prior in linear models as the conditional posterior of the regression coefficients given a
locally uniform prior and an imaginary sample of zeros with design matrix X; and a scaled error variance,
and extend this to the GLM context. Asymptotically, this leads to a prior which is very similar to the



standard g-prior. This idea was already used in the conjugate prior proposed by [7], although they do not
treat the intercept separately. For priors on g, [32] consider a Zellner-Siow prior and a hyper-g/n prior.

Both choices lead to consistent model selection, as shown in [34].

The priors on the model parameters designed for GLMs in [25] are based on a different type of
“centering” (induced by a block diagonal observed information matrix at the MLE of the coefficients)
and employ a wider class of (potentially truncated) hyper-priors for g. As a consequence, these priors are
slightly more complicated, and, more importantly, are data-dependent (depending on y, not just the design

matrix).
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