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Abstract

In this paper we propose a new framework for Bayesian nonparametric modelling with continuous

covariates. In particular, we allow the nonparametric distribution to depend on covariates through order-

ing the random variables building the weights in the stick-breaking representation. We focus mostly on

the class of random distributions which induces a Dirichlet process at each covariate value. We derive

the correlation between distributions at different covariate values, and use a point process to imple-

ment a practically useful type of ordering. Two main constructions with analytically known correlation

structures are proposed. Practical and efficient computational methods are introduced. We apply our

framework, though mixtures of these processes, to regression modelling, the modelling of stochastic

volatility in time series data and spatial geostatistical modelling.

Keywords: Bayesian nonparametrics, Markov chain Monte Carlo, Nonparametric Regression, Spatial

Modelling, Volatility Modelling.

1 Introduction

Bayesian nonparametric method have become increasingly popular in empirical studies. The Dirichlet

process (Ferguson 1973) has been the overwhelming mechanism used as the prior for the unknown distri-

bution in the model specification. Some recent examples include applications in econometrics (Chib and

Hamilton 2002; Hirano 2002), medicine (Kottaset al.2002), health (O’Hagan and Stevens 2003), audit-

ing (Laws and O’Hagan 2002), animal breeding (van der Merwe and Pretorius 2003), survival analysis

(Doss and Huffer 2003), directional data (Ghoshet al.2003), meta analysis (Chunget al.2002), genet-

ics (Medvedovic and Sivaganesan 2002) and density estimation (Hansen and Lauritzen 2002). However,
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modelling the relationship between covariates and the unknown distribution cannot be achieved directly

using the Dirichlet process described by Ferguson.

Therefore, an active area of research is extending these methods to a wider class of models where the

unknown distribution depends on covariates. If the covariates have a finite number of levels the Product

of Dirichlet processes model introduced by Cifarelli and Regazzini (1978) allows the modelling of de-

pendent distributions. Dependence is introduced through the use of a parametric regression model as the

centring distribution of independent Dirichlet processes at each level of the covariates. These method

have recently been applied to problems in biostatistics (Carota and Parmigiani 2002), econometrics (Grif-

fin and Steel 2004) and survival analysis (Guidiciet al.2003) and a similar idea was proposed in Mallick

and Walker (1997). In the present paper we focus on introducing dependence on continuous covariates.

Other approaches to this problem exist in the literature. Müller and Rosner (1998) propose including the

covariates in the nonparametric distribution and focusing on the conditional given the covariates only.

Since this implies leaving out a factor in the likelihood, Müller et al. (2004) change the prior on the

process to counteract this fact. Finally, the method described by MacEachernet al. (2001) is closest

to the approach developed here, as both approaches start from the Sethuraman (1994) representation,

mentioned in the following subsection.

Here we introduce dependence in nonparametric distributions by making the weights in the Sethu-

raman representation dependent on the covariates. Each weight is a transformation of i.i.d. random

variables. The way we implement the dependence is by inducing an orderingπ of these random vari-

ables at each covariate value such that distributions for similar covariates values will be associated with

similar orderings and, thus, be close. At any covariate value, the random distribution will be a so-

called stick-breaking prior. We focus on the special case where we choose the Dirichlet process for this

stick-breaking prior, and we shall call the induced class of processes Order-Based Dependent Dirichlet

Processes, shortened toπDDP.

We derive theoretical properties, such as the correlation between distributions at different covariate

values, and use a point process to implement a practically useful type of ordering. Two main construc-

tions with analytically known correlation structures are proposed. Practical computational methods are

introduced, where we control the truncation error in an intuitive fashion through truncation of the point

process and we use sequential allocation as an efficient way to avoid the sampler getting stuck in local

modes. We apply our basic framework, though mixtures ofπDDP processes, in three quite different

settings. We use it for curve fitting, the modelling of stochastic volatility in time series data and spatial

geostatistical modelling.

Subsection 1.1 describes stick-breaking priors, while Section 2 introduces the ideas underlying

πDDP processes and their practical implementation. Section 3 briefly discusses mixtures of these pro-

cesses, and Section 4 concerns elicitation of the prior. Computational issues are dealt with in Section 5

and Section 6 describes the three applications. The final section concludes.

Proofs will be grouped in Appendix A without explicit mention in the text.
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1.1 Stick-breaking priors

The class of stick-breaking priors was defined by Ishwaran and James (2001). A random distribution,F ,

has a stick-breaking prior if

F
d=

N∑

i=1

piδθi , (1)

whereδz denotes a Dirac measure atz, pi = Vi
∏

j<i(1 − Vj) with Vk independent draws from a

Beta(ak, bk) andθk are independent draws from a distributionH. Ishwaran and James (2001) give the

following condition to determine if the distribution is well-defined forN = ∞
∞∑

k=1

pk = 1 a.s. ⇐⇒
∞∑

k=1

E(log(1− Vk)) = −∞.

For finiteN the condition
∑N

k=1 pk = 1 is satisfied ifVN = 1 so thatpN =
∏

j<N (1 − Vj). Several

interesting processes fall into this class:

1. The Dirichlet process prior (Ferguson 1973) characterised byMH, whereM is a positive scalar,

arises whenVi follow a Beta(1,M). This was established by Sethuraman (1994).

2. The Pitman-Yor process occurs ifVi follow a Beta(1− a, b + ai) with 0 ≤ a < 1 andb > −a. As

special cases we can identify the Dirichlet process fora = 0 and the stable law whenb = 0.

This representation will provide the basis for our development of dependent probability measures and,

in particular, the development of a dependent Dirichlet process. We will refer to the elements ofθ as

locations and the elements ofV as masses.

2 Dependent Dirichlet Processes

2.1 General construction

A dependent Dirichlet process is a stochastic process defined on the space of probability measures over

a domain, indexed by time, space or a selection of other covariates in such a way that the marginal

distribution at any point in the domain follows a Dirichlet process. This problem has received little

attention in the Bayesian literature. Some recent work follows MacEachern (1999). The latter paper

considers the possibility of allowing the masses,V , or the locations,θ, of the atoms to follow a stochastic

process defined over the domain. An important constraint imposed by the definition of the Dirichlet

process is that the processes for each element of eitherθ or V must be independent. The work of

MacEachern and coauthors concentrates on the “single-p” model where only the locations,θ, follow

stochastic processes. An application to spatial modelling is further developed in Gelfandet al. (2004)

by allowing the locationsθ to be drawn from a random field (a Gaussian process). The same method to

induce dependence is used in De Iorioet al. (2004) to achieve an analysis of variance (ANOVA)-type

structure.
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In general, such approaches which allow only values ofθ to depend on the covariates are subject to

certain problems. In particular, MacEachern notes that the distribution ofF can then be expressed as

a mixture of Dirichlet processes. The posterior process will have an updated mass parameterM + n,

wheren is the sample size,at all values of the index. This latter fact is counterintuitive, in our view. A

useful property would rather be that the process returns to the prior distribution (with mass parameterM )

at points in the domain “far” from the observed data. This seems a major shortcoming of these single-p

models.

In contrast to the models described above, the processes developed in this paper allow the values

of the weightsp in (1) to change over the domain of the covariates. For ease of presentation it will be

assumed that each location,θi, does not depend on the covariates. However, the ideas that are developed

could be extended to allow for the introduction of dependence through the locations (i.e. drawn from

independent stochastic processes). MacEachern (2000) has some useful results in this direction.

Definition 1 An Order-based Dependent Stick-Breaking Prior is defined on a spaceD by a sequence

{ak, bk}, centring distributionH and a stochastic process{π(x)}x∈D for which:

1. Onlyπ1(x), . . . , πn(x)(x) are defined for somen(x).

2. πi(x) ∈ {1, . . . , N}, i = 1, . . . , n(x) ≤ N

3. πi(x) = πj(x) if and only ifi = j.

Random variablesθ1, . . . , θN and V1, . . . , VN−1 are independent,θk
i.i.d.∼ H and Vk

i.i.d.∼ Be(ak, bk).
The distribution at a pointx ∈ D is defined by

Fx
d=

n(x)∑

i=1

pi(x)δθπi(x)

pi(x) = Vπi(x)

∏

j<i

(1− Vπj(x)),

and for finiten(x)
pn(x)(x) =

∏

j<n(x)

(1− Vπj(x)).

The stick-breaking prior in Subsection 1.1 is recovered for any givenx ∈ D. We obtain the same

distribution over the entire spaceD if πi(x) = i for all x ∈ D andi = 1, . . . , N . As a more interesting

example, the stochastic processπ(x) could be defined on the space of permutations of{1, . . . , N} (i.e.

n(x) = N for all x ∈ D), allowing for Fx to change withx. However, the definition allows the

stochastic process to be defined on more general structures. In particular, some elements of the ordering

at a given point need not appear in the ordering at another point. An example of such a process is

given in Subsection 2.2.2. In general, we will be interested in definingN = ∞ so thatFx can follow a

Dirichlet process. We restrict our attention to specific constructions for the stochastic process rather than

developing a general theory for this case.
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The prior distribution forFx inherits some properties of stick-breaking priors. For example, the first

moment measure ofF is

E[Fx(B)] = E




n(x)∑

i=1

pi(x)δθπi(x)
(B)


 = E




n(x)∑

i=1

pi(x)


 E

[
δθπi(x)

(B)
]

= H(B),

and

Var[Fx(B)] = H(B)(1−H(B))
n(x)∑

i=1

ai(ai + 1)
(ai + bi)(ai + bi + 1)

∏

j<i

bi(bi + 1)
(ai + bi)(ai + bi + 1)

.

In the sequel we will assume thatak = 1, bk = M and thatN = ∞ so that we recover a Dirichlet

process at anyx ∈ D if n(x) = ∞. For the variance, we then obtain

Var [Fx(B)] =
H(B)(1−H(B))

M + 1
. (2)

The associated subclass of processes will be denoted byOrder-Based Dependent Dirichlet Processes,

abbreviated asπDDP and characterised by a mass parameterM , centring distributionH and a stochastic

process{π(x)}x∈D.

The construction in Definition 1 is motivated by the observation that for a stick-breaking prior

E[pi] < E[pi−1]

and the influence ofVi diminishes as its index increases. The correlation between the realised distri-

butions drawn at two pointsx1 andx2 is controlled by the similarity inπ(x1) andπ(x2). To make

the notion of correlation between distributions more concrete we consider two related measures: the

correlation between the measures of some setB at x1 andx2 (which generalizes the standard moment

measures) and the correlation between points drawn at random from the two distributions. First, we

consider a fixed ordering atx1 andx2, and later develop the random ordering case.

Theorem 1 Let T (x1, x2) = {k|there existsi, j such thatπi(x1) = πj(x2) = k} and let Alk =
{πj(xl)|j < i whereπi(xl) = k} for k ∈ T (x1, x2). The correlation Corr(Fx1(B), Fx2(B)) can

be expressed as

Corr(Fx1(B), Fx2(B)) =
2

M + 2

∑

k∈T (x1,x2)

(
M

M + 2

)#Sk
(

M

M + 1

)#S′k
(3)

where#A is the number of distinct elements in a setA and

Sk = A1k ∩A2k

S′k = A1k ∪A2k − Sk.
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If we consider the firstk elements of the orderings atx1 andx2, Sk is the set of elements shared by the

two orderings andS′k are those elements that only appear in one of the orderings. For a givenk, reducing

#Sk by one will induce adding two elements toS′k, thus reducing the correlation, as expected.

Since the autocorrelation is not a function ofB, we can think of “the” autocorrelation betweenFx1

andFx2 , which is indicated as Corr(Fx1 , Fx2). The correlation between two observationsy1 andy2

drawn at random from the distributionsFx1 andFx2 has the form

Corr(y1, y2) =
2

(M + 1)(M + 2)

∑

k∈T (x1,x2)

(
M

M + 2

)#Sk
(

M

M + 1

)#S′k

=
1

M + 1
Corr(Fx1 , Fx2).

We can now clearly identify the separate roles of the parameters of theπDDP: the centring distribu-

tion H determines the mean ofFx, the mass parameterM controls the precision and the orderingπ(x)
will, in combination withM , determine the dependence across the domain. In the limit asM →∞ we

tend to the parametric case, and we will lose the dependence since the ordering then no longer matters

(i.e.E(pi) will tend to E(pi−1)).
Theorem 1 formalises the relationship between the orderingsπ(x1) andπ(x2) and the autocorrelation

between the distributionsFx1 andFx2 . In general, we want to define random orderings and we will

need to take expectations with respect toSk andS′k, which will typically be random sets. The next

subsection describes a class of processes for which the autocorrelation function can be expressed in

terms of deterministic integrals. In certain cases analytic expressions can even be derived.

2.2 Orderings derived from a point process

In the sequel, we concentrate on a specific class of varying orderings that are defined by a driving point

processΦ and a sequence of setsU(x) for all valuesx ∈ D. U(x) defines the region in which points are

relevant for determining the ordering atx. The ordering,π(x), satisfies the condition

‖ x− zπ1(x) ‖<‖ x− zπ2(x) ‖<‖ x− zπ3(x) ‖< . . . ,

where‖ · ‖ is a distance measure andz ∈ Φ ∩ U(x). We assume there are no ties, which is a.s. the case

for e.g.Poisson point processes. Associating each atom(Vi, θi) with the element of the point processzi

defines a marked point process from which we can define the distributionFx for anyx ∈ D.

x
1

x
2

z
1

z
2

z
3

z
4

z
5

−4 5

Figure 1:A section of a point process and two covariate valuesx1 andx2

Figure 1 illustrates this idea for a realisation of the point process,z, defined on the region (-4,5). If

U(x) = [−4, 5], the ordering atx1 would be1, 2, 3, 4, 5 and the ordering atx2 would be4, 5, 3, 2, 1. This
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choice ofU(x) leads to each ordering being a permutation. However, ifU(x) = [−4, x], the orderings

atx1 andx2 would be1 and3, 2, 1 respectively.

Specifying the type of point process allows us to derive more operational expressions for the auto-

correlation function on the basis of (3).

The autocorrelation function now involves an expectation over the point processΦ:

Corr(Fx1 , Fx2) =
2

M + 2
EΦ




n(x)∑

i=1

(
M

M + 2

)#Si
(

M

M + 1

)#S′i



whereSi andS′i are as defined in Theorem 1. With the construction defined above, these sets have a

simple form. We make a slight change of notation by thinking of sets of points rather than indices so that

now

T (x1, x2) = Φ ∩ U(x1) ∩ U(x2)

andAlk = Al(zk) which in general can be expressed as

Al(z) = {y ∈ Φ ∩ U(xl)| ‖ y − xl ‖<‖ z − xl ‖} for z ∈ Φ ∩ U(xl).

Similarly, defineS(z) = A1(z) ∩ A2(z) and S′(z) = A1(z) ∪ A2(z) − S(z) for z ∈ T (x1, x2).
Thus,S(z) = {y ∈ T (x1, x2)| ‖ y − x1 ‖<‖ z − x1 ‖ and ‖ y − x2 ‖<‖ z − x2 ‖}, which

clearly highlights thatS(z) groups all relevant points closer tox1 andx2 than toz. These points are all

associated with atoms that precede the atom corresponding toz in the orderings at bothx1 andx2. S′(z)
is its complement in the set of relevant points. The autocorrelation function is thus expressed as

Corr(Fx1 , Fx2) =
2

M + 2
EΦ


 ∑

z∈T (x1,x2)

(
M

M + 2

)#S(z) (
M

M + 1

)#S′(z)

 .

WhenΦ is a stationary point process, the refined Campbell theorem (Stoyanet al.1995, p. 120) allows

the autocorrelation to be expressed in terms of the Palm distribution of the point process (e.g.Stoyanet

al. 1995, Ch. 7). Firstly, note that#S(z) = Φ(S(z)) and similarly forS′(z). For a stationary point

process with intensityλ, the refined Campbell theorem states that

EΦ


 ∑

z∈T (x1,x2)

h(z, Φ)


 = λ

∫

U(x1)∩U(x2)

∫
h(z, ϕ−z) Po(dϕ) dz,

wherePo(dϕ) is the Palm distribution ofΦ at the origin andϕ−z is the realisation ofΦ translated by

−z. In our case

h(z, ϕ−z) =
(

M

M + 2

)ϕ−z(S−z(z)) (
M

M + 1

)ϕ−z(S′−z(z))

,

whereS−z(z) andS′−z(z) are both translated by−z, which leads to

Corr(Fx1 , Fx2) =
2λ

M + 2

∫

U(x1)∩U(x2)

∫ (
M

M + 2

)ϕ−z(S−z(z)) (
M

M + 1

)ϕ−z(S′−z(z))

Po(dϕ) dz.
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The simplest choice for the driving point process is the stationary Poisson process. In the sequel we

show that this leads to a simpler form for the autocorrelation function that can be expressed in terms of

deterministic integrals. These results are also useful when dealing with more general driving processes,

such as Cox processes, as explained in Subsection 2.3.

Theorem 2 If Φ follows a Poisson process with intensityλ, the autocorrelation can be expressed as

Corr(Fx1 , Fx2) =
2λ

M + 2

∫

U(x1)∩U(x2)
exp

{
− λ

M + 1
d12(z)

}
dz,

with d12(z) = ν({A1(z)}−z) + ν({A2(z)}−z) − 2
M+2ν(S−z(z)), where{Al(z)}−z indicates the set

Al(z) translated by−z andν(·) is the Lebesgue measure ind dimensions.

The autocorrelation function has been expressed in terms of an integral over a function of the areas

of geometric objects,A1, A2 andS, which should help with its calculation. The following subsections

describe two possible constructions which are useful in practical applications and for which an analytic

expression for the autocorrelation function is available.

2.2.1 Permutations

A construction suitable for general smoothing problems and spatial modelling is obtained through defin-

ing D ⊂ Rd (d = 2 for most spatial problems) andU(x) = D for all values ofx. In one dimension

(d = 1), we can derive an analytic form for the autocorrelation function.

Corollary 1 LetΦ be Poisson with intensityλ, D ⊂ R andU(x) = D for all x. Then we obtain

Corr(Fx1 , Fx2) =
(

1 +
2λh

M + 2

)
exp

{ −2λh

M + 1

}
,

whereh = |x1 − x2| is the distance betweenx1 andx2.

Note the unusual form of the correlation structure above. It is decreasing in the distance, but is the

weighted sum of a Matérn correlation function with smoothness parameter3/2 (with weight (M +
1)/(M + 2)) and an exponential correlation function (with weight1/(M + 2)), which is a less smooth

member of the Mat́ern class, with smoothness parameter1/2. So forM → 0 the correlation function

will tend to the arithmetic average of both and for largeM the correlation structure will behave like a

Matérn with smootness parameter3/2.

In higher dimensions, ford ≥ 2, the autocorrelation function can be expressed as a two-dimensional

integral, as detailed in Appendix B.

2.2.2 Arrivals ordering

A framework which might be considered more suitable for modelling time series is obtained by choosing

D = R andU(x) = (−∞, x]. In this case only those points with arrival times beforex will be used in

determining the ordering at timex.
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Corollary 2 LetΦ be Poisson with intensityλ, D ⊂ R andU(x) = (−∞, x] for all x. Then we obtain

Corr(Fx1 , Fx2) = exp
{
− λh

M + 1

}
,

whereh is as defined in Corollary 1.

Thus, this construction leads to the well-known exponential correlation structure.

The relative ordering of the points that are already in the representation remains the same as time

goes on. At each arrival a new point is added, which will be allocated the first rank in the ordering, with

weightp1 = Vπ1(x2). Thus, ifx1 is the previous arrival time and the new arrival time corresponding to

atomθπ1(x2) is x2 > x1, then

Fx2

d=
(
1− Vπ1(x2)

)
Fx1 + Vπ1(x2)δθπ1(x2)

.

This form is reminiscent of a first-order random coefficient autoregressive process with jumps.

Throughout this Subsection 2.2, the correlation depends onλ and M roughly through the ratio

λ/(M + 1). This is not surprising: for smallM , only the first few atoms will matter and then we

only need a few points per unit volume to induce a certain correlation. IfM is larger, we need to re-

order many atoms to change the distribution appreciably, and thus we need a largeλ to obtain the same

correlation.

2.3 More flexible autocorrelation functions

An attractive option for defining more general forms of autocorrelation function is to use a Cox process

as the driving point processΦ. Examples include mixed Poisson processes and Poisson cluster processes.

Møller (2003) defines shot noise Cox processes which could generate a very wide class of potential forms

for the autocorrelation function. We assume thatΦ follows a Poisson point process conditional on the

intensityΛ, which is a random measure drawn from a distributionQ. For example, a mixed Poisson

process arises ifQ has a discrete distribution with a finite expectation. Stationarity ofΦ will follow from

the stationarity ofΛ. Standard results are readily available for the Palm distribution of a Cox process,

which is

λPo(Y ) =
∫

µPµ
o (Y )Q(dµ)

wherePµ
o is the Palm distribution of a Poisson process with intensityµ andλ =

∫
µQ(dµ).

The dependence structure is now characterized by

Corr(Fx1 , Fx2) =
2λ

M + 2

∫

U(x1)∩U(x2)

∫ (
M

M + 2

)ϕ−z(S−z(z)) (
M

M + 1

)ϕ−z(S′−z(z))

Po(dϕ) dz

=
2

M + 2

∫
µ

∫

U(x1)∩U(x2)
exp

{
− µ

M + 1
d12(z)

}
Q(dµ) dz.

With the arrivals construction, for example, this correlation function simplifies to

Corr(Fx, Fx+h) =
2

M + 2

∫
µ

λ
exp

{
− µh

M + 1

}
Q(dµ).
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3 Mixtures of Order-based Dependent Dirichlet processes

The Dirichlet process provides random distributions with discrete realisations. The mixture of Dirichlet

process model (Antoniak, 1974) provides an alternative framework which can generate absolutely con-

tinuous distributions. This model has proved popular in applied Bayesian nonparametric work. It can be

expressed hierarchically for observationi as

p(yi|ψi) = f(yi|ψi)

ψi
i.i.d.∼ F

F ∼ DP(MH).

The πDDP can be used to extend this model to spatial, time series or regression problems by simply

replacingF by Fxi , given by

Fx ∼ πDDP(MH, λ),

where the notationπDDP(MH, λ) denotes aπDDP process characterised by mass parameterM , cen-

tring distributionH and an ordering induced by a Poisson point process with intensityλ.

This model includes the Bayesian Partition Model (seee.g.Denisonet al. 2002) as a limiting case.

As M → 0, the random distribution tends to a Dirac measure at the first element of the ordering.

Observations whose covariate values are closest to a particular point will have equal values ofψi. The

same model would arise by defining a Voronoi tessellation of the domain using the points as centres and

assuming that all observations with covariates in the same region have common parameter values. This

model was proposed for general non-linear regression problems and has been used for spatial mapping

problems (e.g.Ferreiraet al.2002 and Knorr-Held and Raßer 2000). As the intensityλ → 0, we will not

get any switches in the ordering andFx will no longer depend onx. Thus, we will recover the mixture

of Dirichlet process model.

4 Prior distributions for M and λ

In general, inference about the parametersM andλ is not possible when we observe continuous data.

However, in the mixture of Dirichlet processes model inference is possible andM can be interpreted as

controlling the probability thatψi = ψj for i 6= j. Consequently, we will make inference in the model

described above. The prior distribution forM is an inverted Beta distribution

p(M) =
nη

0Γ(2η)
Γ(η)2

Mη−1

(M + n0)2η
,

which was introduced by Griffin and Steel (2004) and where the hyperparametern0 > 0 is the prior

median ofM and the prior variance ofM (which exists ifη > 2) is a decreasing function ofη. It

implies thatζ = M/(M + n0) follows a Be(η, η) distribution and thatφ = 1/(M + 1) has a Gauss

hypergeometric distribution (see Johnsonet al.1995, p. 253):

p(φ) =
nη

0Γ(2η)
Γ(η)2

(1− φ)η−1φη−1(1 + (n0 − 1)φ)−2η.
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The parameterφ ∈ (0, 1), which appears in equation (2), is of interest as it relates the variance of the

measureF to the variance of the measureH (our parametric centring distribution) and can be interpreted

as a measure of the appropriateness of the parametric modelH. Values ofφ away from zero indicate a

failure of the modelH to capture the conditional (with respect tox) distribution of the data at hand.

An independent prior distribution on the autocorrelation function specifies a corresponding prior

distribution forλ givenM . The prior distribution can be defined for any valid stationary autocorrelation

function and is specified by choosing a value,t? =‖ x1−x2 ‖, for which the correlation Corr(Fx1 , Fx2)
follows a uniform prior distribution. In the case of the arrivals construction, this choice implies that

λ ∼ Exp(t?/(M + 1)) and that the correlation at distanceh is distributed as Beta(t?/h, 1). For the

permutation construction withd = 1, the induced distribution ofλ is

p(λ) =
2t?(2t?λ + 1)

(M + 1)(M + 2)
exp

{
− 2t?

M + 1
λ

}
.

If d > 1, the autocorrelation function is not available in closed form and so there will be no closed form

expression for the implied prior onλ. In that case, we will approximate this prior numerically.

5 Computational method

We assume that we have observed values fory1, . . . , yn, associated with covariate valuesx1, . . . , xn.

Some of the computational methods for these models carry over from the paper by Ishwaran and James

(2001) who use the Gibbs sampler. The main difference with our model is the need to sample the

point processz and the intensity parameterλ. Conditionally onz, sampling the other parts of the

model roughly follow Ishwaran and James (2001) with the exception of the parameterM . Their method

introduces allocation variabless1, . . . , sn that link observations to the distinct elementsθ1, θ2, . . . . In

contrast to Ishwaran and James (2001), we will use the Gibbs sampler for the posterior distribution

marginalised over the parametersV and, where possible, over the parametersθ. Model where this is

possible are typically called conjugate Dirichlet process mixture models.

A feature of method described in Ishawaran and James (2001) is the need to truncate the stick-

breaking representation at an appropriate valueN (recently, Papaspiliopoulos and Roberts 2004 have

developed an algorithm where truncation is not necessary). Since the weights of the discrete distribution

Fx are stochastically ordered, Ishwaran and Zarepour (2000) suggest choosing a value ofN that bounds

the expectation of the error
∑∞

i=N+1 pi, which has the form(M/(M + 1))N . In our case, it is more

natural to define a truncated region (which we will call the computational region) for the point processz

that includes the range of the covariatesx. The truncation error will be largest at the extreme values of

this region. Let us first assume thatx is one-dimensional, that the smallest and largestx values areda and

db, respectively, that we choose the computational region(a, b) and thatz follows a Poisson process with

intensityλ. The expectation of the error
∑∞

i=N+1 pi atx = db will then beexp{−λ(b− db)/(M + 1)}.
If we want fix the error at, say,ε ∈ (0, 1) then we need to chooseb = db − {(M + 1) log ε}/λ and

similarly a = da + {(M + 1) log ε}/λ. This choice of truncation leads to the nice property that the

11



number of points in the computational region outside the data region ofx is independent ofλ which

avoids some overconditioning issues.

If d > 1, we choose a bounding box say(a1, b1)×(a2, b2)×· · ·×(ad, bd) as the computational region

and letdai anddbi respectively be the minimum and maximum values ofx in dimensioni. The truncation

error will be greatest at the corners of the box. If we defineai = dai− r andbi = dbi + r, the truncation

errorε will be exp{− λ
M+1

2πd/2

Γ( d
2
)d

(
r
2

)d}, which implies a value ofr = 2
(

Γ( d
2
)d

2πd/2
M+1

λ log 1
ε

)1/d

.

We now turn our attention to updating the point processz, the intensityλ and the mass parameter

M . The following discussion is conditional on possible extra parameters in the sampling model for the

observables or parameters describingH.

5.1 Updatingz

The point processz is updated using a hybrid Reversible Jump step (Green, 1995). There are three

possible updates: move a current point, birth of a new point or death of a current point. In each case,

we assume that the locations,θ, can be marginalised from the posterior distribution. If this is not the

case, standard reversible jump methodology could be used to propose new values ofθ for the birth and

death steps. For the latter two moves there is some updating of the allocationss = (s1, . . . , sn). We

assume that the current relevant elements of the Poisson point process arez = (z1, . . . , zT ). Define

ni to be the number of observations allocated to a pointzi (i.e. for which sj = i) andWi = #{k =
1, . . . , n|there existsl < j for whichπl(xk) = i whereπj(xk) = sk} (i.e. the number of observations

for which i appears beforesk in the ordering atxk). In all cases a parameter with a dash will represent

the proposed value of that parameter.

5.1.1 Move

A point zi is chosen at random and a normally distributed random variable with mean zero and a tuning

variance is added tozi. The move is rejected if the point moves outside the computational region.

Otherwise, the acceptance probability is

T∏

i=1

(n′i + 1)/(n′i + 1 + W ′
i + M)

(ni + 1)/(ni + 1 + Wi + M)
.

5.1.2 Birth and death

The birth and death moves come as a pair that maintain reversibility of the sampler. After a point has

been added (birth) or removed (death) from the point process the allocations of certain observations are

updated. For the death move, a point,zj , is chosen uniformly fromz1, . . . , zT . To complete the move,

the observations allocated tozj must be re-allocated. The set of possible points is restricted to be close

to zj and is defined byTD = {i||zi − zj | ≤ c, i 6= j}. The observations that need to be re-allocated are

ID = {i|si = j} = {i1, . . . , inj}. We will work sequentially through this set and re-allocate according
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to the discrete distribution with probabilities proportional to

p(s′ik = l|Y(k),S(k)), l ∈ TD

whereS(k) = {si|si 6= j} ∪ {s′i1 , . . . , s′ik−1
} andY(k) = {yi|si 6= j} ∪ {yi1 , . . . , yik}, k = 1, . . . , nj .

Without requiring additional user input, this provides an efficient solution to the problem of Gibbs steps,

which have a tendency to get stuck in local modes. See Dahl (2003) for a discussion of a similar idea,

and alternatives, when sampling a Dirichlet process mixture model.

In the case of the reverse birth move, a new pointzT+1, is chosen uniformly over the computational

region. Reversibility suggests that the observations that could be re-allocated are the ones which are

allocated to points in the setTB = {i||zi − zT+1| ≤ c, i = 1, . . . , T}. If this set is empty then the

proposal is rejected. LetIB = {i|si ∈ TB} = {i1, . . . , im} be the points that can be re-allocated. Then

the elements ofIB are allocated sequentially. The observationik is allocated tozT+1 with probability

proportional to

p(s′ik = T + 1|Y(k)
B ,S(k)

B )

and not re-allocated with probability proportional to

∑

j∈TB

p(s′ik = j|Y(k)
B ,S(k)

B ),

whereS(k)
B = {si|i /∈ IB} ∪ {s′i1 , . . . , s′ik−1

} andY(k)
B = {yi|i /∈ IB} ∪ {yi1 , . . . , yik}, k = 1, . . . ,m.

The acceptance rate for the birth move can be calculated using the following argument. Let the proposed

new point bezT+1. The probability of the birth proposal can be written as

q(s, s′) =
m∏

k=1

(∑
j∈TB

p
(
s′ik = j|Y(k)

B ,S(k)
B

))I(s′ik=sik
)
p

(
s′ik = T + 1|Y(k)

B ,S(k)
B

)I(s′ik=T+1)

p
(
s′ik = T + 1|Y(k)

B ,S(k)
B

)
+

∑
j∈TB

p
(
s′ik = j|Y(k)

B ,S(k)
B

)

and the probability of the reverse proposal can be written as

q(s′, s) =
m∏

k=1


 p

(
sik |Y(k)

B ,S(k)
B

)

∑
j∈TB

p
(
sik = j|Y(k)

B ,S(k)
B

)



I(s′ik=T+1)

.

This leads to the acceptance rate

p(y|s′)p(s′|M)q(s′, s)
p(y|s)p(s|M)q(s, s′)

.

The acceptance rate for the death move can be calculated in a similar way.

5.2 UpdatingM

The definition of the computational region means that the number of points which are in the computa-

tional region but not in the data region depends onM . The usual Gibbs step would be affected by the
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current number of these points which has been chosen conditional on the current value ofM . Since this

definition is chosen to avoid edge-effects, it seems undesirable that it should also affect the sampler. The

following update removes the associated term from the acceptance probability. A new value ofM is

proposed such thatlog M ′ ∼ N(log M, σ2
M ) whereσ2

M can be chosen to control the overall acceptance

rate of this step. IfM ′ > M then the computational region is expanded and the unobserved part of the

Poisson process is sampled. IfM ′ < M , the natural reverse contracts the computational region and

removes from the sampler those points that now fall outside this region. If the latter points have any

observations allocated to them, the proposal is rejected. This move is in effect a reversible jump move

where we sample extra points from the prior distribution. The acceptance rate in this case is

M ′

M

p(M ′|λ)
p(M |λ)

T∏

i=1

ni + 1 + Wi + M

ni + 1 + W ′
i + M ′ .

5.3 Updatingλ

The parameterλ can sometimes suffer from the problem of overconditioning (Papaspiliopouloset al.2003),

which occurs because the full conditional forλ depends onz which itself is latent. The lack of direct data

information forλ can lead to slow mixing chains. Separate sampling schemes forλ are described for

d = 1 (i.e.univariatex) andd > 1. In both case, we make use the ideas described in Papaspiliopouloset

al. (2003) for sampling Poisson processes. Each point of the Poisson processzi is given a markti which

is uniformly distributed on(0, 1). A new value of the parameterlog λ′ ∼ N(log λ, σ2
λ) is proposed. For

d = 1, if λ′ < λ those points in the data region for whichti > λ′/λ are removed from the point process,

otherwiset′i = tiλ/λ′ and ifλ′ > λ then a new Poisson process with intensityλ′−λ is drawn in the data

region. The value oft′i for each new pointi = T + 1, . . . , T ′ is proposed from a uniform distribution

on the region[λ/λ′, 1) and the proposed value fori = 1, . . . , T is t′i = tiλ/λ′. The proposed values for

points outside the data region are as follows: ifzi < da, z′i = da + (zi − da)da−a′
da−a and if zi > db then

z′i = db + (zi − db) b′−db
b−db

. If λ′ > λ, the proposed points are worked through sequentially. For each

new point, the allocations are updated as in the birth step introduced in Subsection 5.1.2. Ifλ′ < λ, the

allocations are updated for each deleted point in turn as in the death step.

If d > 1, the number of points outside the data region is not independent ofλ. Consequently, the

updating mechanism is the same for point in the data region but outside the data region a different scheme

is used. Ifλ′ < λ, all points outside the new computational region are deleted and all point inside the

new computational region for whichti > λ′/λ are deleted, otherwise we assignt′i = tiλ/λ′. If λ′ > λ, a

new Poisson process with intensityλ′ − λ is drawn on the computational region defined by the previous

parameter values and a Poisson process with intensityλ′ is drawn on the part of the computational region

that has been added. Once again, the proposed valuet′i for each new pointi = T + 1, . . . , T ′ is from a

uniform distribution on the region[λ/λ′, 1) and the proposed value fori = 1, . . . , T is t′i = tiλ/λ′.
For any value ofd, the acceptance rate forλ′ > λ can be calculated in the following way. Let

the points added to the process bez′T+1, . . . , z
′
T ′ and letz′1, . . . , z

′
T be the position ofz1, . . . , zT after

potential moves. LetTj = {i||zi − zT+j | ≤ c, i = 1, . . . , T}. If this set is empty then the proposal

is rejected. LetIj = {i|si ∈ Tj} = {ij1, . . . , ijmj} be the points that can be re-allocated. Fork =
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1, . . . , mj , letS(k)
j = {si|i /∈ Ij} ∪ {s′ij1 , . . . , s′ij(k−1)

} andY(k)
j = {yi|i /∈ Ij} ∪ {yij1 , . . . , yijk

}. The

probability of the birth proposal can be written as

q(s, s′) =
T ′−T∏

l=1

ml∏

k=1

(∑
j∈Tl

p
(
s′ilk = j|Y(k)

l ,S(k)
l

))I(s′ilk=silk
)
p

(
s′ilk = T + 1|Y(k)

l ,S(k)
l

)I(s′ilk=T+1)

p
(
s′ilk = T + 1|Y(k)

l ,S(k)
l

)
+

∑
j∈Tl

p
(
s′ilk = j|Y(k)

l ,S(k)
l

)

and the probability of the reverse proposal can be written as

q(s′, s) =
T ′−T∏

l=1

ml∏

k=1


 p

(
silk |Y(k)

l ,S(k)
l

)

∑
j∈Tl

p
(
silk = j|Y(k)

l ,S(k)
l

)



I(s′ilk=T+1)

,

leading to the acceptance rate

p(y|s′)p(s′|M)q(s′, s)λ′p(M |λ′)p(λ′)
p(y|s)p(s|M)q(s, s′)λp(M |λ)p(λ)

.

6 Applications

Here we describe three rather different settings where mixtures of order-based dependent Dirichlet pro-

cesses prove useful. We use generated data from a regression example with a scalar covariate, observed

time series data where we allow for volatility changing over time, and spatial temperature data.

Throughout, we use a Poisson point process with intensityλ to generate the ordering in combination

with the permutations construction for the regression and spatial applications and the arrivals construc-

tion for the time series application.

6.1 Regression Modelling

A model for curve-fitting can be defined by extending the model for density estimation described by

Escobar and West (1995). They use a Dirichlet process mixture of normals which can be extended

simply by defining an order-based DDP in place of the Dirichlet process. In contrast to their work, we

will assume a common variance for the conditional distribution of the observationsyi. The model can

be expressed as the following hierarchical model

yi ∼ N(µi, σ
2)

µi ∼ Fxi (4)

Fx ∼ πDDP(MH, λ).

The model is centred in the usual sense sinceFx follows a Dirichlet process for anyx and so marginal-

ising overF gives

p(yi|xi) =
∫

N(µi, σ
2)dH(µi).

This model limits to a piecewise constant model asM → 0.
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Figure 2: Sine curve regression data: The posterior distribution of E(y|x) and the predictive distributionp(y|x)
summarised by the median (solid line) and the 95% credible intervals (dashed lines) as a function ofx. Then = 100
data points are indicated as dots. We have chosent? = 0.2 in the prior forλ.

An alternative model can be defined by also modellingσ with the Dirichlet process.

The following simulated example illustrates the flexibility of the Dirichlet process to adapt to the

properties of the phenomenon under consideration. A sample ofn = 100 data-points was generated

randomly around a sine curve in the interval[0, 1] from

p(yi|xi) = N(yi| sin(2πxi), 0.01).

We fit these data (indicated by dots in Figure 2) with the model in (4). For the centring distributionH we

take N(0, σ2/κ) whereκ ∼ IG(0.001, 0.00001) (IG(α, β) denotes an inverse gamma distribution with

shape parameterα and scaleβ) and the prior distribution onσ is IG(0.001, 0.001). We take the values

n0 = 1 andη = 0.5 in the prior forM . We use the permutations construction to induce the ordering to

vary withx and experiment with various values oft? in the prior onλ.

The estimate of the function is illustrated in Figure 2 which presents the posterior median and95%
credible region ofE[y|x], as well as the predictive median and credible region. The results illustrate the

ability of the dependent Dirichlet process to fit the data under consideration despite its simple form.

Posterior distributions onσ and other quantities of interest are given in Figure 3. Besides the posterior

of σ, we present the correlation at distanceh, i.e. Corr(h) = Corr(Fx, Fx+h), and the posterior of

φ = 1/(M + 1). The latter indicates that the normal centring distribution (with mean zero) is a very

inadequate description of the data, as could be expected.

Here we present results obtained with the choice oft? = 0.2 in the prior forλ. The findings are not

very sensitive to the value oft?. Takingt? = 0.05 gives virtually the same results, with the only slight

differences occurring for Corr(h).

16



σ2 Corr(h) φ

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Figure 3:Sine curve regression data: The posterior distributions for the parameterσ and some quantities of interest.

The middle panel displays the median (solid line) and the 95% credible intervals (dashed lines) of Corr(h) as a function

of h. In the third panel posterior and prior density functions are indicated by solid and dashed lines, respectively. We

have chosent? = 0.2 in the prior forλ.
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Figure 4: Stock market data: The data on returns are displayed in the top panel. The bottom panels indicate the

posterior median (solid lines) and 95% credible intervals (dashed lines) for the volatility distributionFt. The lower

right panel relates to a subset of the data around the 1987 crash. The prior uses the valuet? = 100.

6.2 Volatility Modelling in Time Series

Here we apply our framework to the modelling of financial time series with changing volatility. The

modelling of high-frequency financial data, such as exchange rates and stock prices is heavily influenced

by two important stylised facts: empirical tails are often heavier than normal and observed series display

volatility clustering, in that large values often appear clustered together in time, suggesting that the

volatility changes over time.

Many parametric models have been proposed in order to capture these unusual features including
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Figure 5:Stock market data: Posterior median (solid lines) and 95% credible intervals (dashed lines) for the volatility

distributionFt. The prior uses the valuet? = 300.

t = 5 t = 1972 t = 2005

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6:Stock market data: The posterior predictive volatility distribution at various times, usingt? = 100.

(G)ARCH and stochastic volatility models (seee.g.Shephard 1996). A Bayesian semiparametric model

is proposed by Kacperczyket al.(2003) who parametrically model the volatility whilst using a Dirichlet

process mixture of uniform distributions to model the standardized returns. Jensen (2004) uses a Dirich-

let process prior on the wavelet representation of the observables to conduct Bayesian inference in a

stochastic volatility model with long memory.

We take the alternative approach to model the volatility through aπDDP process, thus inducing

time dependence and volatility clustering. In particular, we propose the following discrete-time model

where timet = 1, . . . , T need not be equally spaced (allowing for possible weekend effects or missing

observations):

yt ∼ N(0, σ2
t )

σ2
t ∼ Ft

Ft ∼ πDDP(MH, λ),

choosingH to be IG(α, β). We complete the specification with the gamma prior distributionsp(α) =
Ga(0.001, 0.001) andp(β) = Ga(0.001, 0.001) and uset? = 100 andn0 = 10, η = 1 in the priors

for λ andM . The mixture of normals structure of the model will naturally impose heavier than normal

tail behaviour. As we are dealing with time series here, we use the arrivals construction to induce the

ordering to vary over time.
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We useT = 2023 daily returns (January 2, 1980 until December 30, 1987) from the Standard and

Poor 500 stock price index, displayed in Figure 4 (top panel). The October 19, 1987 crash is immediately

obvious from the plot, which also suggests volatility clustering. Sample kurtosis of the returns is 90.3,

clearly indicating heavy tails. Figure 4 also tracks the posterior median and the 95% credible interval of

the volatility distribution (the time period around the 1987 crash is highlighted in the lower right panel).

The flexibility of this modelling of the volatility distribution is apparent: a wide variety of distributions

is displayed in Figure 4 and the changes inFt are quite rapid: the volatility distribution has the potential

to change dramatically in a matter of mere days if extreme data events occur. The variety of shapes is

illustrated by Figure 6, where the volatility distributions are plotted at various time points, including the

crash date (t = 1972). For t? = 300, as expected, we find that the volatility distributions are somewhat

more correlated over time. This leads to a smoother behaviour of the median and credible intervals in

Figure 5, which is especially noticeable after the crash date.
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Figure 7:Stock market data: Posterior distributions of the autocorrelation function andφ = 1/(M + 1). In the left

panels the solid line are the posterior medians and dashed lines indicate the 95% credible intervals. In the right panels

solid lines represent posterior densities and dashed lines priors. The upper panels are fort? = 100 in the prior forλ

and the lower ones correspond tot? = 300.

More results are presented in Figure 7, where we see confirmation that the autocorrelation of the

volatility distribution is somewhat affected by the choice of prior hyperparametert?. The inference onφ

indicates that the inverse gamma centring distribution provides a poor fit to the data.
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6.3 Spatial Modelling

An increasingly popular modelling framework for point-referenced spatial data, which originated in

geostatistics, is given by

yi = α + f ′(xi)β + ui + σρi, i = 1, . . . , n, (5)

where the mean functionf(xi) indicates a known vector function of the continuously varying spatial

coordinates, with unknown coefficient vectorβ = (β1, . . . , βp), (u1, . . . , un) is a realization from a

Gaussian process with some spatial correlation structure, and theρi are i.i.d. standard normal, capturing

the so-called “nugget effect”. The parameterσ is a positive scalar. The Gaussian assumption onui is

often considered overly restrictive for practical modelling and a number of more flexible proposals exist.

Of particular relevance for this paper is the nonparametric approach of Gelfandet al. (2004), where

the locationsθ of the stick-breaking representation of a Dirichlet process are assumed to come from a

Gaussian process.

Here we will, instead, use our order-based DDP framework and combine (5) with

α + ui ∼ Fxi

Fx ∼ πDDP(MH, λ),

whereH is a N(µ, σ2/κ), with κ ∼ IG(0.001, 0.00001). The prior distributions assumed forβ andσ2

are N(0, 1000σ2Ip) and IG(0.01, 0.01), respectively. The parameterµ is the prior predictive mean ofyi

and is chosen to be the sample mean 32.8.

Rather than inducing the dependence through the centring distribution, as in Gelfandet al. (2004),

we introduce it through similarities in the ordering. Note that we do not need replication, in contrast to

the approach of Gelfandet al. (2004), and we will use our model on a purely spatial set of temperature

data, where only one multivariate observation is available.

In particular, we use the maximum temperatures recorded in an unusually hot week in May 2001 in

63 locations within the Spanish Basque country. As this region is quite mountainous, altitude is added

as an extra explanatory variable in the mean function. Throughout, we report results witht? = 2, which

are very close to those obtained witht? = 4. For the prior onM , we usen0 = 1 andη = 1.

The main purpose of geostatistical models is prediction, and in Figure 8 we display the posterior

predictive distributions at a number of unsampled locations. The lower right panel indicates the location

of these unobserved locations (with numbers), as well as the observed ones (with dots). Clearly, there is

a variety of predictive shapes with some predictives being multimodal.

Inference on the correlation between distributions at locations that are a distancet? apart is given in

Figure 9. In comparison with the prior on Corr(t?), which is uniform, the posterior puts less mass on

the extremes. The right panel in Figure 9 displays the posterior onφ, which indicates that the Gaussian

centring distribution is inadequate, but perhaps not dramatically so. Of course, theπDDP mixture model

not only allows for departures of the Gaussian model, but also serves to introduce the spatial correlation.
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Figure 8:Temperature data: The posterior predictive distribution at five unobserved locations. The latter are indicated

by numbers in the lower right-hand panel, where the observed locations are denoted by dots. The prior usest? = 2.
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Figure 9:Temperature data: Posterior distributions (solid lines) of the correlation between distributions at distance

t? and ofφ = 1/(M + 1) usingt? = 2. Prior densities are indicated by dashed lines in both panels.

7 Conclusion

We have introduced a framework for nonparametric modelling with dependence on continuous covari-

ates. Starting from the stick-breaking representation we induce dependence in the weights through sim-

ilarities in the ordering of the atoms. By viewing the atoms as marks in a point process, we implement

such orderings through distance measures. Using a Dirichlet stick-breaking representation, we define

the class of order-based dependent Dirichlet processes, abbreviated asπDDP.

TheseπDDP processes, in combination with Poisson point processes, lead to simple expressions for
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the correlation function of the distribution, and we propose two specific constructions for inducing an

ordering. For mixtures ofπDDP processes, we design an efficient MCMC sampling algorithm which is

able to deal with practically relevant applications.

We apply our framework to a variety of examples: a regression example with simulated data, a

stochastic volatility model using a time series of a stock price index, and a spatial model with temper-

ature data. In all cases, the approach using a mixture ofπDDP processes produces sensible results,

without excessive computational effort. We believe the current implementation allows for ample flexi-

bility without requiring very large amounts of data for practically useful inference.

In a wider setting, the basic idea of Order-Based Dependent Stick-Breaking Priors can be used with

different marginal stick-breaking priors and different ways of inducing random orderings. The present

paper focuses on what we consider a practical implementation, but many other models can be constructed

using this or similar frameworks, wheree.g.we also allow the locationsθ to depend on the covariates.

A Proofs

Proof of Theorem 1

E(Fx1(B) Fx2(B)) = E




n(x1)∑

i=1

pi(x1)δθπi(x1)
(B)

n(x2)∑

j=1

pj(x2)δθπj(x2)
(B)




=
n(x1)∑

i=1

n(x2)∑

j=1

E [pi(x1)pj(x2)] E
[
δθπi(x1)

(B)δθπj(x2)
(B)

]
.

Now

δθi(B)δθj (B) =

{
1 θi ∈ B, θj ∈ B

0 otherwise

Eθ[δθi(B)δθj (B)] =

{
H(B) i = j

(H(B))2 otherwise

so that

E(Fx1(B) Fx2(B)) = (H(B))2 E




n(x1)∑

i=1

n(x2)∑

j=1

pi(x1)pj(x1)




+
{
H(B))− (H(B))2

} ∑

{(i,j)|πi(x1)=πj(x2)}
E [pi(x1)pj(x2)]

= (H(B))2 +
{
H(B)− (H(B))2

} ∑

{(i,j)|πi(x1)=πj(x2)}
E [pi(x1)pj(x2)] ,
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Cov(Fx1(B), Fx2(B)) = E[Fx1(B)Fx2(B)]− E[Fx1(B)]E[Fx2(B)]

= H(B)(1−H(B))
∑

k∈T (x1,x2)

E
[
V 2

k

] ∏

j∈Sk

E
[
(1− Vj)2

] ∏

j∈S′k

E [1− Vj ]

=
2H(B)(1−H(B))
(M + 1)(M + 2)

∑

k∈T (x1,x2)

(
M

M + 2

)#Sk
(

M

M + 1

)#S′k
.

Using the form for the variance given in (2), we obtain

Corr(Fx1(B), Fx2(B)) =
2

M + 2

∑

k∈T (x1,x2)

(
M

M + 2

)#Sk
(

M

M + 1

)#S′k
.

Before proving theorem 2, we need the following result:

Lemma 1 For a bounded Borel setB, a stationary Poisson processΦ with intensityλ andq ∈ [0, 1]

EΦ

[
qΦ(B)

]
= exp {−λ(1− q)ν(B)}

whereν is the Lesbesgue measure in the appropriate dimension.

Proof: This follows from the definition of the generating functional of a Poisson process. See Stoyanet

al. (1995, Example 4.2).

Proof of Theorem 2

We need to find the following expectation with respect to the point process:

EPo(ϕ)

[(
M

M + 2

)ϕ−z(S−z(z)) (
M

M + 1

)ϕ−z(S′−z(z))
]

.

The reduced Palm distribution of a Poisson process is that of a Poisson process with the same intensity

(Slivnyak’s theorem) and so by Lemma 1 the expectation becomes

exp
{
−λ

2
M + 2

ν(S−z(z))
}

exp
{
−λ

1
M + 1

ν(S′−z(z))
}

= exp{−λg(x1, x2, z)},

where

g(x1, x2, z) =
(

2
M + 2

)
ν(S−z(z)) +

(
1

M + 1

)
[ν({A1(z)}−z) + ν({A2(z)}−z)− 2ν(S−z(z))]

=
1

M + 1

[
ν({A1(z)}−z) + ν({A2(z)}−z)− 2

M + 2
ν(S−z)

]
,

which directly leads to the result.
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Proof of Corollary 1

We consider three different situations. Ifz < x1, x2 then

{A1(z)}−z = (0, 2(x1 − z)), {A2(z)}−z = (0, 2(x2 − z)), S−z(z) = (0, 2(x1 − z))
ν({A1(z)}−z) = 2(x1 − z), ν({A2(z)}−z) = 2(x2 − z), ν(S−z(z)) = 2(x1 − z).

If x1 < z < x2,

{A1(z)}−z = (2(x1 − z), 0), {A2(z)}−z = (0, 2(x2 − z)), S−z = ∅
ν({A1(z)}−z) = 2(z − x1), ν({A2(z)}−z) = 2(x2 − z), ν(S−z) = 0.

If z > x1, x2,

{A1(z)}−z = (2(x1 − z), 0), {A2(z)}−z = (2(x2 − z), 0), S−z(z) = (2(x2 − z), 0)
ν({A1(z)}−z) = 2(z − x1), ν({A2(z)}−z) = 2(z − x2), ν(S−z) = 2(z − x2)

The integral in the expression for the correlation function can now be evaluated for the three regions

separately

∫ x1

−∞
exp

{
− λ

M + 1

[
2(x1 − z) + 2(x2 − z)− 4

M + 2
(x1 − z)

]}
dz =

M + 2
4λ

exp
{
− 2λ

(M + 1)
(x2 − x1)

}

∫ x2

x1

exp
{

λ

M + 1
[2(x1 − z) + 2(z − x2)]

}
dz = exp

{
− 2λ

M + 1
(x2 − x1)

}
(x2 − x1)

∫ ∞

x2

exp
{
− λ

M + 1

[
2(z − x1) + 2(z − x2)− 4

M + 2
(z − x2)

]}
dz =

M + 2
4λ

exp
{
− 2λ

(M + 1)
(x2 − x1)

}
,

which leads to the result. Forx1 > x2 the proof is analogous.

Proof of Corollary 2

Similar to the proof of Corollary 1. Now, however, the only nonzero integral corresponds toz <

x1, x2, since otherwisez /∈ T (x1, x2). For this case, we have

{A1(z)}−z = (0, x1 − z), {A2(z)}−z = (0, x2 − z)

and forx1 < x2, we getS−z(z) = (0, x1 − z), which immediately leads to

Corr(Fx1 , Fx2) =
2λ

M + 2

∫ x1

−∞
exp

{
− λ

M + 1

[
(x1 − z) + (x2 − z)− 2

M + 2
(x1 − z)

]}
dz

= exp
{
− λ

M + 1
(x2 − x1)

}
.

24



B Correlation functions in higher dimensions with permuta-

tions

The 2-dimensional case

For Euclidean distance in 2 dimensions we get

ν({A1(z)}−z) = π ‖ x1 − z ‖2

ν({A2(z)}−z) = π ‖ x2 − z ‖2,

and the correlation can be expressed as

Corr(Fx1 , Fx2) =
∫

exp
{
− λ

M + 1

[
π ‖ x1 − z ‖2 +π ‖ x2 − z ‖2 − 2

M + 2
ν(S−z(z))

]}
dz

= 2 exp
{
− πλ

M + 1
h2

} ∫ π

0

∫ ∞

0
r exp

{
−2

πλ

M + 1

(
r2 − rh cosφ− 1

π(M + 2)
A(r, h, φ)

)}
dr dφ

whereh =‖ x1−x2 ‖, A(r, h, φ) = r2φ+(r2−2rh cosφ+h2)ψ−rh sinφ andcosψ = h−r cos φ√
r2−2rh cos φ+h2

.

So

Corr(Fx1 , Fx2) =
4λ

M + 2
exp

{
− πλ

M + 1
h2

}

×
∫ π

0

∫ ∞

0
r exp

{
−2

πλ

M + 1

(
r2 − rh cosφ− 1

π(M + 2)
A(r, h, φ)

)}
dr dφ

=
∫ π

0

∫ ∞

0
r

4λ

M + 2
exp

{
− πλ

M + 1
κ(r, h, φ)

}
dr dφ,

where

κ(r, h, φ) = 2r2 − 2rh cosφ− 2
π(M + 2)

A(r, h, φ) + h2.

The d-dimensional case

If we considerd > 2 dimensions and again use Euclidean distanceh =‖ x1 − x2 ‖, then

Corr(Fx1 , Fx2)) =
∫ ∞

0

∫ π

0

(∫

Sd−2

dΩd−2

)
exp

{
− λ

M + 1
S(r, h, φ)

}
rd−1 sinφ dφ dr

= 2d−2

∫ ∞

0

∫ π

0
exp

{
− λ

M + 1
S(r, h, φ)

}
rd−1 sinφdφ dr,

whereSk is the surface of ak-dimensional unit sphere and

S(r, h, φ) =
2d−1π

d
(rd+r̂d)− 2

M + 2

[
2d−2π

d
(rd(1− cosφ) + r̂d(1− cosψ))− 2d−2π

d(d− 1)
hrd−1 sind−1 φ

]
,

with r̂ = (r2 − 2rh cosφ + h2)1/2 andψ is as defined before, leading to

Corr(Fx1 , Fx2) =
2d−1λ

M + 2

∫ ∞

0

∫ π

0
exp

{
− λ

M + 1
S(r, h, φ)

}
rd−1 sinφdφ dr.
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