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Abstract

In this paper we propose a new framewaork for Bayesian nonparametric modelling with continuous
covariates. In particular, we allow the nhonparametric distribution to depend on covariates through order-
ing the random variables building the weights in the stick-breaking representation. We focus mostly on
the class of random distributions which induces a Dirichlet process at each covariate value. We derive
the correlation between distributions at different covariate values, and use a point process to imple-
ment a practically useful type of ordering. Two main constructions with analytically known correlation
structures are proposed. Practical and efficient computational methods are introduced. We apply our
framework, though mixtures of these processes, to regression modelling, the modelling of stochastic
volatility in time series data and spatial geostatistical modelling.

Keywords: Bayesian nonparametrics, Markov chain Monte Carlo, Nonparametric Regression, Spatial
Modelling, Volatility Modelling.

1 Introduction

Bayesian nonparametric method have become increasingly popular in empirical studies. The Dirichlet
process (Ferguson 1973) has been the overwhelming mechanism used as the prior for the unknown distri-
bution in the model specification. Some recent examples include applications in econometrics (Chib and
Hamilton 2002; Hirano 2002), medicine (Kottasal. 2002), health (O’Hagan and Stevens 2003), audit-

ing (Laws and O’Hagan 2002), animal breeding (van der Merwe and Pretorius 2003), survival analysis
(Doss and Huffer 2003), directional data (Ghestal. 2003), meta analysis (Chumg al. 2002), genet-

ics (Medvedovic and Sivaganesan 2002) and density estimation (Hansen and Lauritzen 2002). However,
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modelling the relationship between covariates and the unknown distribution cannot be achieved directly
using the Dirichlet process described by Ferguson.

Therefore, an active area of research is extending these methods to a wider class of models where the
unknown distribution depends on covariates. If the covariates have a finite number of levels the Product
of Dirichlet processes model introduced by Cifarelli and Regazzini (1978) allows the modelling of de-
pendent distributions. Dependence is introduced through the use of a parametric regression model as the
centring distribution of independent Dirichlet processes at each level of the covariates. These method
have recently been applied to problems in biostatistics (Carota and Parmigiani 2002), econometrics (Grif-
fin and Steel 2004) and survival analysis (Guidical. 2003) and a similar idea was proposed in Mallick
and Walker (1997). In the present paper we focus on introducing dependence on continuous covariates.
Other approaches to this problem exist in the literaturéllé and Rosner (1998) propose including the
covariates in the nonparametric distribution and focusing on the conditional given the covariates only.
Since this implies leaving out a factor in the likelihoodjiMr et al. (2004) change the prior on the
process to counteract this fact. Finally, the method described by MacEaethak{2001) is closest
to the approach developed here, as both approaches start from the Sethuraman (1994) representation,
mentioned in the following subsection.

Here we introduce dependence in nonparametric distributions by making the weights in the Sethu-
raman representation dependent on the covariates. Each weight is a transformation of i.i.d. random
variables. The way we implement the dependence is by inducing an ordeghthese random vari-
ables at each covariate value such that distributions for similar covariates values will be associated with
similar orderings and, thus, be close. At any covariate value, the random distribution will be a so-
called stick-breaking prior. We focus on the special case where we choose the Dirichlet process for this
stick-breaking prior, and we shall call the induced class of processes Order-Based Dependent Dirichlet
Processes, shortenediBDP.

We derive theoretical properties, such as the correlation between distributions at different covariate
values, and use a point process to implement a practically useful type of ordering. Two main construc-
tions with analytically known correlation structures are proposed. Practical computational methods are
introduced, where we control the truncation error in an intuitive fashion through truncation of the point
process and we use sequential allocation as an efficient way to avoid the sampler getting stuck in local
modes. We apply our basic framework, though mixturegDDP processes, in three quite different
settings. We use it for curve fitting, the modelling of stochastic volatility in time series data and spatial
geostatistical modelling.

Subsection 1.1 describes stick-breaking priors, while Section 2 introduces the ideas underlying
wDDP processes and their practical implementation. Section 3 briefly discusses mixtures of these pro-
cesses, and Section 4 concerns elicitation of the prior. Computational issues are dealt with in Section 5
and Section 6 describes the three applications. The final section concludes.

Proofs will be grouped in Appendix A without explicit mention in the text.



1.1 Stick-breaking priors

The class of stick-breaking priors was defined by Ishwaran and James (2001). A random distrifyution,
has a stick-breaking prior if

N
FEN" pidg,, (1)
=1

whered, denotes a Dirac measure gatp; = V; Hj<¢(1 — Vj) with Vj, independent draws from a
Betday, bi,) anddy, are independent draws from a distributih Ishwaran and James (2001) give the
following condition to determine if the distribution is well-defined fir= co

Y pp=1as. < > E(log(l-V;)) =—oc.
k=1 k=1

For finite N the conditiony "y, px = 1 is satisfied ify = 1 so thatpy = []
interesting processes fall into this class:

jen(1=Vj). Several
1. The Dirichlet process prior (Ferguson 1973) characterisefi/lly, whereM is a positive scalar,
arises wherV; follow a Betg 1, M). This was established by Sethuraman (1994).

2. The Pitman-Yor process occursiif follow a Betg1 — a,b + ai) with 0 < a < 1 andb > —a. As
special cases we can identify the Dirichlet process:fer 0 and the stable law when= 0.

This representation will provide the basis for our development of dependent probability measures and,
in particular, the development of a dependent Dirichlet process. We will refer to the eleménis of
locations and the elements Bfas masses.

2 Dependent Dirichlet Processes

2.1 General construction

A dependent Dirichlet process is a stochastic process defined on the space of probability measures over
a domain, indexed by time, space or a selection of other covariates in such a way that the marginal
distribution at any point in the domain follows a Dirichlet process. This problem has received little
attention in the Bayesian literature. Some recent work follows MacEachern (1999). The latter paper
considers the possibility of allowing the masséspr the locationsd, of the atoms to follow a stochastic
process defined over the domain. An important constraint imposed by the definition of the Dirichlet
process is that the processes for each element of dtloerl” must be independent. The work of
MacEachern and coauthors concentrates on the “spigheedel where only the location#, follow
stochastic processes. An application to spatial modelling is further developed in Getfah¢2004)

by allowing the location$ to be drawn from a random field (a Gaussian process). The same method to
induce dependence is used in De logtoal. (2004) to achieve an analysis of variance (ANOVA)-type
structure.



In general, such approaches which allow only value# tf depend on the covariates are subject to
certain problems. In particular, MacEachern notes that the distributidh adn then be expressed as
a mixture of Dirichlet processes. The posterior process will have an updated mass pafdmeter
wheren is the sample sizagt all values of the indexThis latter fact is counterintuitive, in our view. A
useful property would rather be that the process returns to the prior distribution (with mass pafdineter
at points in the domain “far” from the observed data. This seems a major shortcoming of these single-
models.

In contrast to the models described above, the processes developed in this paper allow the values
of the weightsp in (1) to change over the domain of the covariates. For ease of presentation it will be
assumed that each locatigh, does not depend on the covariates. However, the ideas that are developed
could be extended to allow for the introduction of dependence through the locatmrdrgwn from
independent stochastic processes). MacEachern (2000) has some useful results in this direction.

Definition 1 An Order-based Dependent Stick-Breaking Prior is defined on a spalbg a sequence
{ax, by}, centring distribution” and a stochastic procegsr(z) },<p for which:

1. Onlymy(z), ..., Ty(y)(z) are defined for some(x).
2. mi(z)e{l,...,N}, i=1,...,n(x) <N
3. mi(x) = mj(x) ifand only ifi = j.

Random variable$y,...,0y andVy,..., Vy_1 are independentj; M4 and Vi b Be(ay, by).
The distribution at a point € D is defined by

n
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and for finiten(z)

pn(a:)(x) = H (1 - Vﬂj(x))'

j<n(z)

The stick-breaking prior in Subsection 1.1 is recovered for any given D. We obtain the same
distribution over the entire spadeif m;(z) = iforallz € D andi = 1,..., N. As a more interesting
example, the stochastic process) could be defined on the space of permutation§lof.., N} (i.e.

n(x) = N for all z € D), allowing for F, to change withz. However, the definition allows the
stochastic process to be defined on more general structures. In particular, some elements of the ordering
at a given point need not appear in the ordering at another point. An example of such a process is
given in Subsection 2.2.2. In general, we will be interested in definhing oo so thatF, can follow a

Dirichlet process. We restrict our attention to specific constructions for the stochastic process rather than
developing a general theory for this case.



The prior distribution forF, inherits some properties of stick-breaking priors. For example, the first
moment measure df is

n(z)

> pi(@)s, ., (B)| =E | pilw) | E [5%@ (B)} — H(B),
i=1 i=1

and

n(z)

B CL1+1) b(bz )
Var[F(B)] = H(B) ; ame a2+bz+1)H(al+b)(a Fb+ 1)

In the sequel we will assume that = 1,b, = M and thatV = oo so that we recover a Dirichlet
process at any € D if n(x) = oo. For the variance, we then obtain

H(B)(1 - H(B))
M+1

Var[F;(B)] = (2)

The associated subclass of processes will be denotédsr-Based Dependent Dirichlet Processes
abbreviated asDDP and characterised by a mass parametecentring distribution and a stochastic

processw(z)}zepn-
The construction in Definition 1 is motivated by the observation that for a stick-breaking prior

Elpi] < E[pi-1]

and the influence oV; diminishes as its index increases. The correlation between the realised distri-
butions drawn at two points; andz; is controlled by the similarity int(z;) and7(z2). To make

the notion of correlation between distributions more concrete we consider two related measures: the
correlation between the measures of somesat z; andz, (which generalizes the standard moment
measures) and the correlation between points drawn at random from the two distributions. First, we
consider a fixed ordering at, andx-, and later develop the random ordering case.

Theorem 1 Let T'(xz1,22) = {k|there exists, j such thatr;(z1) = m;(z2) = k} and letA;, =
{mj(x)|7 < iwherer;(x;) = k} for k € T(x1,z2). The correlation Cor(F,, (B), F,,(B)) can
be expressed as

2 M\FS o \#
Corr(Fy, (B), Fiy (B)) = M 1o keT(Z : M + 2) ( ) “
T1,T2

where# A is the number of distinct elements in a geadnd
Sy = A1 N Agg

S,/€ = Alk U Agk — Sk



If we consider the firsk elements of the orderings at andx,, Sy is the set of elements shared by the
two orderings and;. are those elements that only appear in one of the orderings. For akgiregiucing
#5S), by one will induce adding two elements %, thus reducing the correlation, as expected.

Since the autocorrelation is not a function®f we can think of “the” autocorrelation betweéh,
and F,,, which is indicated as Caf,,, Fy,). The correlation between two observatiansand y-
drawn at random from the distributio#$, and F,, has the form

2 M ON\*S oM \#S
Corr =
w1, 72) (M+1)(M+2)keT(z: )<M+2> <M+1>
Z1,T2

:M1+ 1Corr(Fgcl,sz).

We can now clearly identify the separate roles of the parameters afab®: the centring distribu-
tion H determines the mean &f,, the mass parametéd controls the precision and the orderingr)
will, in combination with M, determine the dependence across the domain. In the limif as co we
tend to the parametric case, and we will lose the dependence since the ordering then no longer matters
(i.e. E(p;) will tend to E(p;_1)).

Theorem 1 formalises the relationship between the orderifigs) andr (z2) and the autocorrelation
between the distributions),, and F,,. In general, we want to define random orderings and we will
need to take expectations with respectSoand S;, which will typically be random sets. The next
subsection describes a class of processes for which the autocorrelation function can be expressed in
terms of deterministic integrals. In certain cases analytic expressions can even be derived.

2.2 Orderings derived from a point process

In the sequel, we concentrate on a specific class of varying orderings that are defined by a driving point
processh and a sequence of séfgx) for all valuese € D. U(x) defines the region in which points are
relevant for determining the orderingat The orderings (), satisfies the condition

|2 = 2m @) < 2 = 2my@) 1<l 2 = 2752y 1<

where|| - || is a distance measure and ® N U(x). We assume there are no ties, which is a.s. the case
for e.g.Poisson point processes. Associating each dfign®;) with the element of the point process
defines a marked point process from which we can define the distribtitiéor anyx € D.

Figure 1:A section of a point process and two covariate valugandzs

Figure 1 illustrates this idea for a realisation of the point processefined on the region (-4,5). If
U(z) = [—4, 5], the ordering at:; would bel, 2, 3, 4, 5 and the ordering at would be4, 5, 3,2, 1. This
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choice ofU(x) leads to each ordering being a permutation. Howevérif) = [—4, =], the orderings
atz, andx, would bel and3, 2, 1 respectively.

Specifying the type of point process allows us to derive more operational expressions for the auto-
correlation function on the basis of (3).

The autocorrelation function now involves an expectation over the point précess

n(z) #8S; #S!
2 M M i

Cor(F,,, Fy,) = ——E
Oy, Fr ) M+2¢{Z<M+2> <M+1> ]

=1

whereS; and S} are as defined in Theorem 1. With the construction defined above, these sets have a
simple form. We make a slight change of notation by thinking of sets of points rather than indices so that
now

T(x1,29) = PNU(z1) NU(x2)

andA;, = A;(z) which in general can be expressed as
Alz)={yednUx)| |y —x ||<|| z—a; ||} forz € DN U ().

Similarly, defineS(z) = Ai(z) N Ax(z) and S'(z) = Ai(z) U Aa(z) — S(z) for z € T(x1,x2).
Thus,S(z) = {y € T(z1,22)| || y — =1 |I<|| z— 21 || and || y — z2 ||<|| 2 — =2 ||}, which
clearly highlights thatS(z) groups all relevant points closer 19 andz; than toz. These points are all
associated with atoms that precede the atom corresponding tbe orderings at both; andxs. S’(2)
is its complement in the set of relevant points. The autocorrelation function is thus expressed as

5 MONESE oap \#SE)
()M{ S (25)" (2

z€T(x1,22)

When® is a stationary point process, the refined Campbell theorem (S&iyanl 995, p. 120) allows
the autocorrelation to be expressed in terms of the Palm distribution of the point preceStdyanet
al. 1995, Ch. 7). Firstly, note thagtS(z) = ®(S(z)) and similarly forS’(z). For a stationary point
process with intensity, the refined Campbell theorem states that

Eo |: Z h(z,@)] = A/(](xl)ﬂU(xg)/h(Z’@_z) Py(dy) dz,

z€T(z1,22)

where P,(dy) is the Palm distribution of® at the origin andy_, is the realisation of® translated by
—z. In our case

M p—z(5-2(2)) M p-=(5".(2))

whereS_.(z) andS’_,(z) are both translated byz, which leads to

p—2(S-2(2)) @_Z(SLz(z))
Corl’(Fm, sz) = 22 / / M M Po(dgﬂ) dz.
M+ 2 U(z1)NU (z2) M +2 M +1

)




The simplest choice for the driving point process is the stationary Poisson process. In the sequel we
show that this leads to a simpler form for the autocorrelation function that can be expressed in terms of
deterministic integrals. These results are also useful when dealing with more general driving processes,
such as Cox processes, as explained in Subsection 2.3.

Theorem 2 If ® follows a Poisson process with intensiythe autocorrelation can be expressed as

2 A
Corr(Fy,, Fy,) = —2— 2 g dz,
orr(Fy,, Fy,) M+2/U(x1)ﬂU(a:2) exp{ 1 12(2)} 2

with dia(z) = v({A1(2)}-.) + v({A2(2)}-2) — 7757(S-=(2)), where{4;(z)} _. indicates the set
A(z) translated by—z andv/(-) is the Lebesgue measuredmimensions.

The autocorrelation function has been expressed in terms of an integral over a function of the areas
of geometric objectsd;, A2 andS, which should help with its calculation. The following subsections
describe two possible constructions which are useful in practical applications and for which an analytic
expression for the autocorrelation function is available.

2.2.1 Permutations

A construction suitable for general smoothing problems and spatial modelling is obtained through defin-
ing D C R? (d = 2 for most spatial problems) arid(x) = D for all values ofz. In one dimension
(d = 1), we can derive an analytic form for the autocorrelation function.

Corollary 1 Let® be Poisson with intensity, D C RandU(z) = D for all z. Then we obtain

2\h —2)\h
Corr(Fy,, Fy,) = <1 + L 2) exp {M—I— . } ,

whereh = |z — 2| is the distance between and ;.

Note the unusual form of the correlation structure above. It is decreasing in the distance, but is the
weighted sum of a M&trn correlation function with smoothness paramét& (with weight (M +
1)/(M + 2)) and an exponential correlation function (with weidkhit M + 2)), which is a less smooth
member of the Mdrn class, with smoothness paramdt&2. So for M — 0 the correlation function
will tend to the arithmetic average of both and for lafgethe correlation structure will behave like a
Matérn with smootness paramesi2.

In higher dimensions, faf > 2, the autocorrelation function can be expressed as a two-dimensional
integral, as detailed in Appendix B.

2.2.2 Arrivals ordering

A framework which might be considered more suitable for modelling time series is obtained by choosing
D =R andU(z) = (—o0, z]. In this case only those points with arrival times beforeill be used in
determining the ordering at time



Corollary 2 Let® be Poisson with intensity, D C RandU(x) = (—o0, z| for all . Then we obtain

Ah
Corr(Fy,, Fy,) = exp {_M n 1} )

whereh is as defined in Corollary 1.

Thus, this construction leads to the well-known exponential correlation structure.

The relative ordering of the points that are already in the representation remains the same as time
goes on. At each arrival a new point is added, which will be allocated the first rank in the ordering, with
weightp; = V. (,,). Thus, ifz, is the previous arrival time and the new arrival time corresponding to
atomo, (,.,) isxy > 21, then

Fgc2 i (1 — Vm(xz)) Fxl + Vﬂl(m)(;g

w1 (2z2)”

This form is reminiscent of a first-order random coefficient autoregressive process with jumps.

Throughout this Subsection 2.2, the correlation dependa and M roughly through the ratio
A/(M + 1). This is not surprising: for smald/, only the first few atoms will matter and then we
only need a few points per unit volume to induce a certain correlation/ 1§ larger, we need to re-
order many atoms to change the distribution appreciably, and thus we need a targetain the same
correlation.

2.3 More flexible autocorrelation functions

An attractive option for defining more general forms of autocorrelation function is to use a Cox process
as the driving point proceds. Examples include mixed Poisson processes and Poisson cluster processes.
Mgller (2003) defines shot noise Cox processes which could generate a very wide class of potential forms
for the autocorrelation function. We assume tdllows a Poisson point process conditional on the
intensity A, which is a random measure drawn from a distributign For example, a mixed Poisson
process arises { has a discrete distribution with a finite expectation. Stationaritly will follow from

the stationarity ofA. Standard results are readily available for the Palm distribution of a Cox process,
which is

AR(Y) = [ uP(Y)Qn)

whereP}' is the Palm distribution of a Poisson process with intensiagnd\ = [ .Q(du).
The dependence structure is now characterized by

2\ M p—2(S-2(2)) M LP*Z(SLz(z))
Cort sy, ) = 3125 |, e / ( - +2) ( M+1> P(dg) dz

=) (ot}
= I expq — dia(z) p Q(dp) dz.
M+2 Ue1)NU (z2) TERR A

With the arrivals construction, for example, this correlation function simplifies to

2 h




3 Mixtures of Order-based Dependent Dirichlet processes

The Dirichlet process provides random distributions with discrete realisations. The mixture of Dirichlet
process model (Antoniak, 1974) provides an alternative framework which can generate absolutely con-
tinuous distributions. This model has proved popular in applied Bayesian nonparametric work. It can be
expressed hierarchically for observatioas

pWilvi) = f(yilvi)
F ~ DP(MH).

The #DDP can be used to extend this model to spatial, time series or regression problems by simply
replacingF' by F,, given by
F, ~ 7tDDP(MH, \),

where the notatiomDDP(M H, \) denotes arDDP process characterised by mass paranidtecen-
tring distributionH and an ordering induced by a Poisson point process with inteksity

This model includes the Bayesian Partition Model (sggDenisonet al. 2002) as a limiting case.
As M — 0, the random distribution tends to a Dirac measure at the first element of the ordering.
Observations whose covariate values are closest to a particular point will have equal valye¥ fud
same model would arise by defining a Voronoi tessellation of the domain using the points as centres and
assuming that all observations with covariates in the same region have common parameter values. This
model was proposed for general non-linear regression problems and has been used for spatial mapping
problems €.g.Ferreiraet al.2002 and Knorr-Held and Raf3er 2000). As the intensity 0, we will not
get any switches in the ordering af will no longer depend on. Thus, we will recover the mixture
of Dirichlet process model.

4  Prior distributions for M and \

In general, inference about the parametefsand A is not possible when we observe continuous data.
However, in the mixture of Dirichlet processes model inference is possibld/aodn be interpreted as
controlling the probability that); = +; for i # j. Consequently, we will make inference in the model
described above. The prior distribution fbf is an inverted Beta distribution
ngl(2n) M1

I'(n)? (M +ng)*"’
which was introduced by Griffin and Steel (2004) and where the hyperparamgeter0 is the prior
median of M and the prior variance al/ (which exists ifn > 2) is a decreasing function of. It
implies that{ = M /(M + ng) follows a Bdn,n) distribution and thaty = 1/(M + 1) has a Gauss
hypergeometric distribution (see Johnsdral. 1995, p. 253):

p(6) = ”ﬁfﬁ? (1= )16 (1 + (ng — 1)6) 2"

p(M) =
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The parametey € (0,1), which appears in equation (2), is of interest as it relates the variance of the
measurd' to the variance of the measuke(our parametric centring distribution) and can be interpreted
as a measure of the appropriateness of the parametric mbdehlues ofyp away from zero indicate a
failure of the modeH to capture the conditional (with respectitpdistribution of the data at hand.

An independent prior distribution on the autocorrelation function specifies a corresponding prior
distribution for\ given M. The prior distribution can be defined for any valid stationary autocorrelation
function and is specified by choosing a valtfe=|| z1 — x> ||, for which the correlation Cof#,,, F,)
follows a uniform prior distribution. In the case of the arrivals construction, this choice implies that
A ~ Exp(t*/(M + 1)) and that the correlation at distankds distributed as Beta*/h,1). For the
permutation construction witth = 1, the induced distribution of is

22N+ 1) 2t
PN = G Dot 2) eXp{_MHA}'

If d > 1, the autocorrelation function is not available in closed form and so there will be no closed form
expression for the implied prior ok In that case, we will approximate this prior numerically.

5 Computational method

We assume that we have observed valuegyfor. ., y,, associated with covariate values, ..., z,.

Some of the computational methods for these models carry over from the paper by Ishwaran and James
(2001) who use the Gibbs sampler. The main difference with our model is the need to sample the
point process: and the intensity parametér. Conditionally onz, sampling the other parts of the
model roughly follow Ishwaran and James (2001) with the exception of the paraidetEneir method
introduces allocation variables, . . ., s,, that link observations to the distinct elemefitsfs,.... In

contrast to Ishwaran and James (2001), we will use the Gibbs sampler for the posterior distribution
marginalised over the parametdrsand, where possible, over the parametersviodel where this is
possible are typically called conjugate Dirichlet process mixture models.

A feature of method described in Ishawaran and James (2001) is the need to truncate the stick-
breaking representation at an appropriate valugecently, Papaspiliopoulos and Roberts 2004 have
developed an algorithm where truncation is not necessary). Since the weights of the discrete distribution
I, are stochastically ordered, Ishwaran and Zarepour (2000) suggest choosing a véltrebbounds
the expectation of the errdr’;® ., p;, which has the form{AZ/(M + 1), In our case, it is more
natural to define a truncated region (which we will call the computational region) for the point process
that includes the range of the covariatesThe truncation error will be largest at the extreme values of
this region. Let us first assume thaits one-dimensional, that the smallest and largestlues arel, and
dy, respectively, that we choose the computational re@ioh) and that: follows a Poisson process with
intensity \. The expectation of the errgr;> . | p; atx = d;, will then beexp{—A(b — dy)/(M +1)}.

If we want fix the error at, say;, € (0,1) then we need to choose= d;, — {(M + 1)loge}/A and
similarly a = d, + {(M + 1)loge}/A. This choice of truncation leads to the nice property that the
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number of points in the computational region outside the data regioni®independent oA which
avoids some overconditioning issues.

If d > 1, we choose a bounding box s@y, b1 ) x (az, b2) X - - - X (ag, bg) @s the computational region
and letd,; anddy; respectively be the minimum and maximum values of dimensiori. The truncation
error will be greatest at the corners of the box. If we define: d,; — r andb; = dy; + r, the truncation

1/d
27Td/2 /

r(§)d
We now turn our attention to updating the point procesthe intensity\ and the mass parameter

M. The following discussion is conditional on possible extra parameters in the sampling model for the
observables or parameters describhig

(£)?}, which implies a value of = 2 frd);’ Mt 1og L

€

errore will be exp{— M+1

5.1 Updatingz

The point process is updated using a hybrid Reversible Jump step (Green, 1995). There are three
possible updates: move a current point, birth of a new point or death of a current point. In each case,
we assume that the locatiorts, can be marginalised from the posterior distribution. If this is not the
case, standard reversible jump methodology could be used to propose new valdestbe birth and

death steps. For the latter two moves there is some updating of the allocatier(s, ..., s,). We
assume that the current relevant elements of the Poisson point process=afey, ..., z7). Define

n; to be the number of observations allocated to a peirft.e. for whichs; = i) andW; = #{k =
1,...,n|there existg < j for whichm;(z;) = i wherer;(x;) = s;} (i.e. the number of observations

for which i appears beforey in the ordering atr). In all cases a parameter with a dash will represent
the proposed value of that parameter.

5.1.1 Move

A point z; is chosen at random and a normally distributed random variable with mean zero and a tuning
variance is added te,. The move is rejected if the point moves outside the computational region.
Otherwise, the acceptance probability is

(ni+1)/(n;+1+ W]+ M)
(ni +1)/ nz+1+W¢+M)'

T

=1

5.1.2 Birth and death

The birth and death moves come as a pair that maintain reversibility of the sampler. After a point has
been added (birth) or removed (death) from the point process the allocations of certain observations are
updated. For the death move, a poi, is chosen uniformly from, ..., 2. To complete the move,

the observations allocated t9 must be re-allocated. The set of possible points is restricted to be close

to z; and is defined by = {i||z; — z;| < ¢,i # j}. The observations that need to be re-allocated are

Ip = {ilsi = j} = {i1,..-,in,; }- We will work sequentially through this set and re-allocate according
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to the discrete distribution with probabilities proportional to
p(si, =1YW,s®), 1eTp

whereS*) = {s;|s; # j} U {8t n8h ) andY®) = {yi|si # 5y Uy, i b,k =1,...,n;j.
Without requiring additional user input, this provides an efficient solution to the problem of Gibbs steps,
which have a tendency to get stuck in local modes. See Dahl (2003) for a discussion of a similar idea,
and alternatives, when sampling a Dirichlet process mixture model.

In the case of the reverse birth move, a new pejnt;, is chosen uniformly over the computational
region. Reversibility suggests that the observations that could be re-allocated are the ones which are
allocated to points in the s€z = {i||z; — 2z741| < ¢,i = 1,...,T}. If this set is empty then the
proposal is rejected. Léip = {i|s; € Tp} = {i1,...,in} be the points that can be re-allocated. Then
the elements of  are allocated sequentially. The observatigis allocated to:p; with probability
proportional to

p(sh, =T +1V, 8)

and not re-allocated with probability proportional to

3 p(s, = IV, S,

J€TB

k .
whereSy) = {sili ¢ T} U {s},.... s, }and¥y) = {yili ¢ T} U {yirs-- vk = L...,m.

The acceptance rate for the birth move can be calculated using the following argument. Let the proposed
new point bezy, 1. The probability of the birth proposal can be written as

o< o (=) )

k=1 p(s;k—T+1D} )+Z€TB <1k_]| Pk) S(’c))

and the probability of the reverse proposal can be written as

I(s, =T+1)
m S; D}(k S(k? 'k
(s, 9) = H( (o ) p -
)

S jery P (s = JIVE.S

This leads to the acceptance rate

p(yls")p(s'|M)q(s', 5)
p(yls)p(s|M)q(s,s’)

The acceptance rate for the death move can be calculated in a similar way.

5.2 Updating M

The definition of the computational region means that the number of points which are in the computa-
tional region but not in the data region dependsién The usual Gibbs step would be affected by the

13



current number of these points which has been chosen conditional on the current veluSioice this
definition is chosen to avoid edge-effects, it seems undesirable that it should also affect the sampler. The
following update removes the associated term from the acceptance probability. A new vallésof
proposed such thavg M’ ~ N(log M, o3,) whereas?, can be chosen to control the overall acceptance
rate of this step. I\’ > M then the computational region is expanded and the unobserved part of the
Poisson process is sampled. M’ < M, the natural reverse contracts the computational region and
removes from the sampler those points that now fall outside this region. If the latter points have any
observations allocated to them, the proposal is rejected. This move is in effect a reversible jump move
where we sample extra points from the prior distribution. The acceptance rate in this case is

M p(M'|\) 11 mi+ 1+ Wi+ M
M p(M]|N) i:1n1+1+Wi’+M"

5.3 Updating A

The parametek can sometimes suffer from the problem of overconditioning (Papaspiliopetdd2003),
which occurs because the full conditional fodepends on which itself is latent. The lack of direct data
information for A can lead to slow mixing chains. Separate sampling schemesdoe described for
d = 1 (i.e.univariater) andd > 1. In both case, we make use the ideas described in Papaspiliogbulos
al. (2003) for sampling Poisson processes. Each point of the Poisson ptpiegven a mark; which

is uniformly distributed or{0, 1). A new value of the parametésg \' ~ N(log A, o) is proposed. For
d = 1,if ' < X those points in the data region for whigh> \’/\ are removed from the point process,
otherwiset; = t; A/ and if A’ > X then a new Poisson process with intensity- A is drawn in the data
region. The value of; for each new point = 7'+ 1,...,T" is proposed from a uniform distribution
on the regiof\ /X', 1) and the proposed value for=1,..., T ist; = t;\/\". The proposed values for
points outside the data region are as follows:; ik d,, z; = dg + (2 — da)dﬂ*“’ and if z; > d; then

dg—a
2 = dy + (2 — db)’};:jb. If \ > ), the proposed points are worked through sequentially. For each

new point, the allocatiobns are updated as in the birth step introduced in Subsection S\1.2.Xf the
allocations are updated for each deleted point in turn as in the death step.

If d > 1, the number of points outside the data region is not independext Gobonsequently, the
updating mechanism is the same for point in the data region but outside the data region a different scheme
is used. If\" < ), all points outside the new computational region are deleted and all point inside the
new computational region for whiah > X'/ are deleted, otherwise we assign= t;\/X. If ' > ), a
new Poisson process with intensity— X is drawn on the computational region defined by the previous
parameter values and a Poisson process with intek'sisydrawn on the part of the computational region
that has been added. Once again, the proposed #/dlaeeach new point = 7'+ 1,...,7" is from a
uniform distribution on the regiop\ /X, 1) and the proposed value for=1,..., T ist, = t;\/ X'

For any value ofd, the acceptance rate fof > )\ can be calculated in the following way. Let

the points added to the processdje ,, ...,z and letz, ..., 2, be the position ok, ..., zr after
potential moves. Lef; = {i||z; — 274;| < ¢, = 1,...,T}. If this set is empty then the proposal
is rejected. LelZ; = {i|s; € 7;} = {ij1,...,ijm,} be the points that can be re-allocated. ko=
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1,. mj,letS —{sz\zgél}u{s“,...,l
J(k—1)
probablllty of the birth proposal can be written as

T ( ien P\ ( fu =3 Sw))) - ey (sélk =T+ 19", g(k)>|(s%kT+1>

T

e p(sglk =T+ 1)) ,Sl(’“)) +nglp( = jln S(k)

and the probability of the reverse proposal can be written as

}andy = {y1|l ¢Ij}u{yij17"'?yijk}' The

I(s) =T+1)

T my P (Silk| yl(m’ Sl(m)

T

(k) ok
=1 k=1 Zje']jp<5i1k :j‘yl( )7Sl( ))
leading to the acceptance rate

p(yls")p(s'|M)q(s', s)N'p(M|N)p(X)
p(yls)p(s|M)q(s, s ) Ap(M[N)p(A)

6 Applications

Here we describe three rather different settings where mixtures of order-based dependent Dirichlet pro-

cesses prove useful. We use generated data from a regression example with a scalar covariate, observed

time series data where we allow for volatility changing over time, and spatial temperature data.
Throughout, we use a Poisson point process with intenditygenerate the ordering in combination

with the permutations construction for the regression and spatial applications and the arrivals construc-

tion for the time series application.

6.1 Regression Modelling

A model for curve-fitting can be defined by extending the model for density estimation described by
Escobar and West (1995). They use a Dirichlet process mixture of normals which can be extended
simply by defining an order-based DDP in place of the Dirichlet process. In contrast to their work, we
will assume a common variance for the conditional distribution of the observagjori$ e model can
be expressed as the following hierarchical model
Yi ~ N(Miv 02)
FE, ~ 7DDP(MH, \).

The model is centred in the usual sense sifgéollows a Dirichlet process for any and so marginal-
ising overF' gives

pyils) = / N (i, 0%)dH (1)

This model limits to a piecewise constant modeh#s— 0.
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Figure 2: Sine curve regression data: The posterior distribution @fi-5 and the predictive distributiop(y|z)
summarised by the median (solid line) and the 95% credible intervals (dashed lines) as a functidhef = 100
data points are indicated as dots. We have chesen0.2 in the prior for\.

An alternative model can be defined by also modeltingith the Dirichlet process.

The following simulated example illustrates the flexibility of the Dirichlet process to adapt to the
properties of the phenomenon under consideration. A sample-ef100 data-points was generated
randomly around a sine curve in the inter{@l1] from

p(yilzi) = N(y;| sin(27a;), 0.01).

We fit these data (indicated by dots in Figure 2) with the model in (4). For the centring distril{iti
take N0, 02 /x) wherex ~ 1G(0.001,0.00001) (IG(«, 3) denotes an inverse gamma distribution with
shape parameter and scalg?) and the prior distribution om is 1G(0.001,0.001). We take the values

ng = 1 andn = 0.5 in the prior for M. We use the permutations construction to induce the ordering to
vary with z and experiment with various valuesiofin the prior on\.

The estimate of the function is illustrated in Figure 2 which presents the posterior mediah%nd
credible region o2 [y|x], as well as the predictive median and credible region. The results illustrate the
ability of the dependent Dirichlet process to fit the data under consideration despite its simple form.

Posterior distributions om and other quantities of interest are given in Figure 3. Besides the posterior
of o, we present the correlation at distaricei.e. Corr(h) = Corr(E,, F,.+1), and the posterior of
¢ = 1/(M + 1). The latter indicates that the normal centring distribution (with mean zero) is a very
inadequate description of the data, as could be expected.

Here we present results obtained with the choicg ef 0.2 in the prior forA. The findings are not
very sensitive to the value of. Takingt* = 0.05 gives virtually the same results, with the only slight
differences occurring for Cofh).
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Figure 3:Sine curve regression data: The posterior distributions for the paramatet some quantities of interest.

The middle panel displays the median (solid line) and the 95% credible intervals (dashed lines}of &arfunction

of h. In the third panel posterior and prior density functions are indicated by solid and dashed lines, respectively. We
have chosen* = 0.2 in the prior for\.
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Figure 4: Stock market data: The data on returns are displayed in the top panel. The bottom panels indicate the
posterior median (solid lines) and 95% credible intervals (dashed lines) for the volatility distritbutidrne lower
right panel relates to a subset of the data around the 1987 crash. The prior uses tive=al0é.

6.2 Volatility Modelling in Time Series

Here we apply our framework to the modelling of financial time series with changing volatility. The
modelling of high-frequency financial data, such as exchange rates and stock prices is heavily influenced
by two important stylised facts: empirical tails are often heavier than normal and observed series display
volatility clustering, in that large values often appear clustered together in time, suggesting that the
volatility changes over time.

Many parametric models have been proposed in order to capture these unusual features including
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1z

Figure 5:Stock market data: Posterior median (solid lines) and 95% credible intervals (dashed lines) for the volatility
distribution F;. The prior uses the valug = 300.

t=25 t=1972 t = 2005

Figure 6:Stock market data: The posterior predictive volatility distribution at various times, tsiagl00.

(G)ARCH and stochastic volatility models (segq.Shephard 1996). A Bayesian semiparametric model
is proposed by Kacperczy al. (2003) who parametrically model the volatility whilst using a Dirichlet
process mixture of uniform distributions to model the standardized returns. Jensen (2004) uses a Dirich-
let process prior on the wavelet representation of the observables to conduct Bayesian inference in a
stochastic volatility model with long memory.

We take the alternative approach to model the volatility througtD®P process, thus inducing
time dependence and volatility clustering. In particular, we propose the following discrete-time model
where timet = 1,...,T need not be equally spaced (allowing for possible weekend effects or missing
observations):

yi ~ N(0,07)

O'? ~ Ft
F, ~ tDDP(MH, \),

choosingH to be IG«, 3). We complete the specification with the gamma prior distributjgiag =
Ga(0.001,0.001) andp(3) = Ga0.001,0.001) and use* = 100 andny = 10, n = 1 in the priors

for A and M. The mixture of normals structure of the model will naturally impose heavier than normal
tail behaviour. As we are dealing with time series here, we use the arrivals construction to induce the
ordering to vary over time.
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We useT = 2023 daily returns (January 2, 1980 until December 30, 1987) from the Standard and
Poor 500 stock price index, displayed in Figure 4 (top panel). The October 19, 1987 crash is immediately
obvious from the plot, which also suggests volatility clustering. Sample kurtosis of the returns is 90.3,
clearly indicating heavy tails. Figure 4 also tracks the posterior median and the 95% credible interval of
the volatility distribution (the time period around the 1987 crash is highlighted in the lower right panel).
The flexibility of this modelling of the volatility distribution is apparent: a wide variety of distributions
is displayed in Figure 4 and the changegirare quite rapid: the volatility distribution has the potential
to change dramatically in a matter of mere days if extreme data events occur. The variety of shapes is
illustrated by Figure 6, where the volatility distributions are plotted at various time points, including the
crash datet(= 1972). Fort* = 300, as expected, we find that the volatility distributions are somewhat
more correlated over time. This leads to a smoother behaviour of the median and credible intervals in
Figure 5, which is especially noticeable after the crash date.

t* =100

t* =300

Corr(h) ¢

Figure 7:Stock market data: Posterior distributions of the autocorrelation functioganad /(M + 1). In the left

panels the solid line are the posterior medians and dashed lines indicate the 95% credible intervals. In the right panel

solid lines represent posterior densities and dashed lines priors. The upper panelg*ate 100 in the prior for\
and the lower ones correspondtto= 300.

More results are presented in Figure 7, where we see confirmation that the autocorrelation of the
volatility distribution is somewhat affected by the choice of prior hyperparametdihe inference o
indicates that the inverse gamma centring distribution provides a poor fit to the data.
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6.3 Spatial Modelling

An increasingly popular modelling framework for point-referenced spatial data, which originated in
geostatistics, is given by

yz:a+f/(xz)ﬁ+uz+apw Z:1,7TL, (5)

where the mean functiofi(z;) indicates a known vector function of the continuously varying spatial
coordinates, with unknown coefficient vecter= (i, ..., 3y), (u1,...,uy,) is a realization from a
Gaussian process with some spatial correlation structure, ang &éne i.i.d. standard normal, capturing
the so-called “nugget effect”. The parameteis a positive scalar. The Gaussian assumptiom.0is
often considered overly restrictive for practical modelling and a number of more flexible proposals exist.
Of particular relevance for this paper is the nonparametric approach of Gelfaald(2004), where
the locationd of the stick-breaking representation of a Dirichlet process are assumed to come from a
Gaussian process.

Here we will, instead, use our order-based DDP framework and combine (5) with

o+ u; ~ Fy,

F, ~ mDDP(MH, \),

whereH is a N(i, 02 /k), with £ ~ 1G(0.001,0.00001). The prior distributions assumed férand o>
are N0, 1000021, and 1G(0.01,0.01), respectively. The parametgris the prior predictive mean of
and is chosen to be the sample mean 32.8.

Rather than inducing the dependence through the centring distribution, as in Gatlfain(2004),
we introduce it through similarities in the ordering. Note that we do not need replication, in contrast to
the approach of Gelfanet al. (2004), and we will use our model on a purely spatial set of temperature
data, where only one multivariate observation is available.

In particular, we use the maximum temperatures recorded in an unusually hot week in May 2001 in
63 locations within the Spanish Basque country. As this region is quite mountainous, altitude is added
as an extra explanatory variable in the mean function. Throughout, we report results with which
are very close to those obtained with= 4. For the prior onM, we useny = 1 andn = 1.

The main purpose of geostatistical models is prediction, and in Figure 8 we display the posterior
predictive distributions at a number of unsampled locations. The lower right panel indicates the location
of these unobserved locations (with numbers), as well as the observed ones (with dots). Clearly, there is
a variety of predictive shapes with some predictives being multimodal.

Inference on the correlation between distributions at locations that are a distaapaat is given in
Figure 9. In comparison with the prior on C@rr), which is uniform, the posterior puts less mass on
the extremes. The right panel in Figure 9 displays the posterigr, @rhich indicates that the Gaussian
centring distribution is inadequate, but perhaps not dramatically so. Of coursd)Bfé mixture model
not only allows for departures of the Gaussian model, but also serves to introduce the spatial correlation.
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Figure 8:Temperature data: The posterior predictive distribution at five unobserved locations. The latter are indicated
by numbers in the lower right-hand panel, where the observed locations are denoted by dots. The grice @ses

2 4

Corr(t*) o)

Figure 9: Temperature data: Posterior distributions (solid lines) of the correlation between distributions at distance
t* and of¢p = 1/(M + 1) usingt* = 2. Prior densities are indicated by dashed lines in both panels.

7 Conclusion

We have introduced a framework for nonparametric modelling with dependence on continuous covari-
ates. Starting from the stick-breaking representation we induce dependence in the weights through sim-
ilarities in the ordering of the atoms. By viewing the atoms as marks in a point process, we implement
such orderings through distance measures. Using a Dirichlet stick-breaking representation, we define
the class of order-based dependent Dirichlet processes, abbreviate®Bs

TheserDDP processes, in combination with Poisson point processes, lead to simple expressions for

21



the correlation function of the distribution, and we propose two specific constructions for inducing an
ordering. For mixtures ofDDP processes, we design an efficient MCMC sampling algorithm which is
able to deal with practically relevant applications.

We apply our framework to a variety of examples: a regression example with simulated data, a
stochastic volatility model using a time series of a stock price index, and a spatial model with temper-
ature data. In all cases, the approach using a mixtureD&dP processes produces sensible results,
without excessive computational effort. We believe the current implementation allows for ample flexi-
bility without requiring very large amounts of data for practically useful inference.

In a wider setting, the basic idea of Order-Based Dependent Stick-Breaking Priors can be used with
different marginal stick-breaking priors and different ways of inducing random orderings. The present
paper focuses on what we consider a practical implementation, but many other models can be constructed
using this or similar frameworks, wheeeg.we also allow the location$to depend on the covariates.

A Proofs

Proof of Theorem 1

i=1 j=1
Now
1 0, €B,0;¢eB
bo,(B)dy,(B) = { '
0 otherwise
H(B 1=7
)60, (B)3, (B = TP =]
(H(B))* otherwise
so that
n(z1) n(z2)
E(F,,(B) Fy,(B)) = (H(B))* E pi(z1)pj(z1)
i=1 j=1

+{H(B)) - (H(B))*} > E [pi(x1)p;(x2)]
{G9)|mi(x1)=m;(z2)}

=(H(B))* + {H(B) - (H(B))*} > E [pi(z1)p;(22)],
{G)|mi(z1)=m;(z2)}
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COV(le (B)> Fy, (B)) = E[Fm (B)sz (B)] - E[le (B)]E[Ffm (B)]
—nma-mm) Y e [[El-v T]En-v)

keT (z1,22) JESK JeSs;,
_ 2H(B)(1 - H(B)) M \#S M \*S
(M +1) (M +2) M +2 M+1 '

Using the form for the variance given in (2), we obtain

2 M\FSe o \#
Corr(Fy, (B), Fyy (B)) = M+2I<:6T(Z : <M+2> <M+1) .
1,T2

Before proving theorem 2, we need the following result:

Lemma 1 For a bounded Borel seB, a stationary Poisson procedswith intensityA andq € [0, 1]
Eo |¢")] = exp (-1 - g)n(B))

wherev is the Lesbesgue measure in the appropriate dimension.

Proof: This follows from the definition of the generating functional of a Poisson process. See $toyan
al. (1995, Example 4.2).

Proof of Theorem 2

We need to find the following expectation with respect to the point process:

M p—2(5-2(2)) M (p,z(S/_z(Z))
<M + 2) <M + 1> '

The reduced Palm distribution of a Poisson process is that of a Poisson process with the same intensity
(Slivnyak’s theorem) and so by Lemma 1 the expectation becomes

EPO(QD)

exp { g8+ fexp { “A g (86D | = exp{-Aglan, )

where

sloran ) = (37 ) M-+ (e ) PUAE) ) + r({(Ax2)-) - 20(5.(2)

1
M +1

[a({fh(z)}z) Fu({Ar()}os)

which directly leads to the result.
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Proof of Corollary 1

We consider three different situations.zlk 1, zo then

A=)} = (0.2(e1 — 2)), {A2(2)} -2 = (0,22 — 2)),  S—o(2) = (0,2(1 — 2))
v({AL(2)} =) = 21 — ), V({As(2)}2) = 2ws — 2), v(S_a(2)) = 2a1 - 2).

If 21 < 2 < 29,

{A1(2)} - = (2(21 = 2),0), {A2(2)}— = (0,2(z2 — 2)), S_.=10
v({Ai1(2)}-2) = 2(z —21), v({A2(2)}-z) =2(22 — 2), v(5-:) =0.

If 2> 21,29,

{A1(2)}-2 = 2(z1 = 2),0), {A2(2)}-. = (2(z2 — 2),0), S_.(2) = (2(z2 - 2),0)
v({A1(2)}-2) = 2(z — 1), v({A2(2)} —2) = 2(2 —22), v(5-;) =2(2 — 22)

The integral in the expression for the correlation function can now be evaluated for the three regions
separately

/:exp{ MA 1 [2(:1:1z)+2(:1:22) M‘i2(mlz)” dz = M4_)‘:2exp{(]w2j\_l)(:1:2x1)}
{57
/I:Oexp{ M/\+1 [2(z—xl)+2(z—x2)— M4+2(Z_x2)H dz — M;Qexp{—(]\fil)(xz—xl)},

which leads to the result. Far > x5 the proof is analogous.

2t — =)+ 2(z —@)]} dz = exp{—MQi (2 —1:1)} (22 — 21)

Proof of Corollary 2

Similar to the proof of Corollary 1. Now, however, the only nonzero integral corresponds<to
x1,x2, Since otherwise ¢ T'(x1,x2). For this case, we have

{A1(2)} 2 = (0,21 —2),  {A2(2)}—2 = (0,22 — 2)
and forz; < xg, we getS_.(z) = (0, z; — z), which immediately leads to
2) 1 A 2
Corr(Fy,, F,,) = 1o /_Ooexp{—]\/[+ . |:(£l31 —2)+ (2 — 2) — M+2(CL'1 —z)]} dz

_ exp{—M/:_ (2 —xl)}.
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B Correlation functions in higher dimensions with permuta-
tions

The 2-dimensional case
For Euclidean distance in 2 dimensions we get

v({Ai(2)}-z) =7 [ 21— = |?
v({Az(2)}-2) = || 22 — 2 |I%,

and the correlation can be expressed as

A 2
Corr(Fy,, F,,) = /exp{—M+ 1 |:7T | z1 — 2 H? +7 || 22— 2 ”2 _M+2V<S_Z(Z))]} dz

A o Y A 9 1
- - 9 — R
2exp{ M+1h}/0 /0 rexp{ M+1<7“ rh cos ¢ 52 (r,h,d)))}drd(b

B _ . _ h—r cos ¢
whereh =|| z1—x3 ||, A(r, h, ¢) = r2¢+(r?>—2rh cos ¢p+h?)h—rhsin ¢ andcos 1) = T rheosg i
So

4\ A
Corr(Fy,, Fy,) = exp{— T h2}

M+1

M+2
A 9 1
/ / Texp{ Ml (r —ThCOSQb—MA(T,h,(b))} dr d¢
& A
—/0 ; M+2exp{ M+1/{(r,h,¢)} drdo,

2
(M +2)

where

w(r, h, ) = 2r* — 2rhcos ¢ — A(r,h, ¢) + h*.

The d-dimensional case
If we considerd > 2 dimensions and again use Euclidean distdned| x; — x5 ||, then

Corr(Fy,, Fy,)) = /OOO /07r (/Sd2 de_2> exp {—ZW)\_HS(r,h’gb)} rsin ¢ do dr

:2d_2/0 /0 exp{]wAHS(r, h,qf))}rd_l sin ¢ do dr,

whereS* is the surface of &-dimensional unit sphere and

2 [zd% 2d—2,

d—1
2 Vsl d (rd(l—cosgb)—I—fd(l—cosw))—d(d_l)

=T (i) —

y hdl dld),

S(r,h,¢) =

with 7 = (12 — 2rh cos ¢ + h?)/? andv is as defined before, leading to
24-1)
Corr(Fy,, Fy,) = M+2/ / {

25

(r, h, ) } r41sin ¢ do dr.



References

Antoniak, C. E. (1974): “Mixtures of Dirichlet processes with applications to non-parametric prob-
lems,” Journal of the American Statistical Associati@) 1152-74.

Carota, C. and Parmigiani, G. (2002): “Semiparametric regression for count Batajetrika 89,
265-281.

Chib, S. and Hamilton, B. H. (2002), “Semiparametric Bayes Analysis of Longitudinal Data Treatment
Models,” Journal of Econometrigsl10, 67-89.

Chung, Y. S., Dey, D. K. and Jang, J. H. (2002): “Semiparametric hierarchical selection models for
Bayesian meta analysislburnal of Statistical Computation and Simulatjai2, 825-839.

Cifarelli, D.M. and Regazzini, E. (1978): “Nonparametric statistical problems under partial exchange-
ability. The use of associative means,” (in Italisgnnali del'Instituto di Matematica Finianziara
dell’Universita di Torino, Serie 1] 12, 1-36.

Dahl, D. B. (2003): “An improved merge-split sampler for conjugate Dirichlet Process mixture mod-
els,” Technical Report 1086, Department of Statistics, University of Wisconsin.

De lorio, M., Miller, P., Rosner, G.L. and MacEachern, S.N. (2004): “An ANOVA Model for Depen-
dent Random Measureslburnal of the American Statistical Associatji@9, 205-215.

Denison, D. G. T., Holmes, C. C., Mallick, B. K. and Smith, A. F. M. (2002): “Bayesian Methods for
Nonlinear Classification and Regression,” Wiley : Chichester.

Doss, D. and Huffer, F. W. (2003): “Monte Carlo methods for Bayesian analysis of survival data using
mixtures of Dirichlet process priorJournal of Computational and Graphical Statistid®, 282-
307.

Escobar, M. D. and West, M. (1995): “Bayesian density estimation and inference using mixtures,”
Journal of the American Statistical Associati@®, 577-588.

Ferguson, T. S. (1973): “A Bayesian analysis of some nonparametric problénrgls of Statistics
1, 209-30.

Ferreira, J.T.A.S., Denison, D.G.T. and Holmes, C.C. (2002), “Partition Modellingpatial Cluster
Modelling eds. A.B. Lawson and D.G.T. Denison, Boca Raton: Chapman-Hall, pp. 125-145.

Gelfand, A.E., Kottas, A. and MacEachern, S.N. (2004): “Bayesian Nonparametric Spatial Modelling
With Dirichlet Processes Mixing”, technical report, Duke University, ISDS.

Ghosh, K., Jammalamadaka, S. R. and Tiwari, R. C. (2003): “Semiparametric Bayesian techniques for
problems in circular data,Journal of Applied Statisti¢80, 145-161.

Green, P.J. (1995): “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model
Determination, Biometrikg 82, 711-732.

Griffin, J. E. and Steel, M. F. J. (2004): “Semiparametric Bayesian Inference for Stochastic Frontier
Models,” Journal of Econometrigsl23, 121-152.

26



Guidici, P., Mezzetti, M. and Muliere, P. (2003): “Mixtures of products of Dirichlet processes for
variable selection in survival analysigburnal of Statistical Planning and Inferencéll, 101-
115.

Hansen, M. B. and Lauritzen, S. L. (2002): “Nonparametric Bayes inference for concave distribution
functions,” Statistica Neerlandiceb6, 110-127.

Hirano, K. (2002): “Semiparametric Bayesian inference in autoregressive panel data nmedeths*”
metricg 70, 781-799.

Ishwaran, H. and James, L. (2001): “Gibbs Sampling Methods for Stick-Breaking Ptdotsrial of
the American Statistical Associatid®6, 161-73.

Ishwaran, H. and Zarepour, M. (2000): “Markov chain Monte Carlo in approximate Dirichlet and beta
two-parameter process hierarchical modebgmetrikg 87, 371-390.

Jensen, M.J. (2004), “Semiparametric Bayesian Inference of Long-Memory Stochastic Volatility Mod-
els,” Journal of Time Series Analysi®rthcoming.

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1996pntinuous Univariate Distributions, Vol., 2
2nd. ed., Wiley: New York.

Kacperczyk, M., Damien, P. and Walker, S. G. (2003): “A new class of Bayesian semiparametric
models with applications to option pricing,” mimeo, University of Michigan Business School.

Knorr-Held, L. and RalRer, G. (2000): “Bayesian Detection of Clusters and Discontinuities in Disease
Maps,” Biometrics 56, 13-21.

Kottas, A., Branco, M. D. and Gelfand, A. E. (2002): “A nonparametric Bayesian modeling approach
for cytogenetic dosimetryBiometrics 58, 593-600.

Laws, D. J. and O’Hagan, A. (2002): “A hierarchical Bayes model for multilocation auditiogfnal
of the Royal Statistical Society, B1, 431-450.

MacEachern, S.N. (1999): “Dependent Nonparametric Processes3AnProceedings of the Section
on Bayesian Statistical Sciendslexandria, VA: American Statistical Association.

MacEachern, S.N. (2000): “Dependent Dirichlet Processes,” Technical Report, Department of Statis-
tics, Ohio State University.

MacEachern, S.N., Kottas, A. and Gelfand, A.E. (2001): “Spatial Nonparametric Bayesian Models,”
technical report, Duke University, ISDS.

Mallick, B.K. and Walker, S.G. (1997): “Combining Information From Several Experiments With
Nonparametric PriorsBiometrikg 84, 697-706.

Medvedovic, M. and Sivaganesan, S. (2002): “Bayesian infinite mixture model based clustering of
gene expression profileBioinformatics 18, 1194-1206.

Mgller, J. (2003): “Shot noise Cox processesgdvances in Applied Probabilit5, 614 - 640

Mduller, P., Quintana, F. and Rosner, G. (2004): “A method for combining inference across related
nonparametric Bayesian models,"Jaurnal of the Royal Statistical Socie§er. B, 66, 735-749.

27



Mdller, P. and Rosner, G. (1998): “Semiparametric PK/PD modelsractical Nonparametric and
Semiparametric Bayesian Statistiesl. D. Dey, P. Niller and D. Sinha, New York: Springer,
pp. 323-337.

O’Hagan, A. and Stevens, J. W. (2003): “Assessing and comparing costs: how robust are the bootstrap
and methods based on asymptotic normalitydealth Economicsl2, 33-49.

Papaspiliopoulos, O., Roberts, G, andsk M. (2003): “Non-centred parameterisations for hierarchi-
cal models and data augmentation (with discussi@gyesian Statistics.7

Papaspiliopoulos, O. and Roberts, G. (2004): “Retrospective MCMC for Dirichlet process hierarchical
models,” technical report, University of Lancaster.

Sethuraman, J. (1994): “A constructive definition of Dirichlet prio&tAtistica Sinica4, 639-50.

Shephard, N. (1996), “Statistical aspects of ARCH and stochastic volatilityiinmte Series Models
in Econometrics, Finance and Other FieJdsds. D.R. Cox, D.V. Hinkley and O.E. Barndorff-
Nielsen, London: Chapman and Hall, pp. 1-67.

Stoyan D., W. S. Kendall and J. Mecke (1995): “Stochastic geometry and its applications,” Wiley :
Chichester.

van der Merwe, A. J. and Pretorius, A. L. (2003): “Bayesian estimation in animal breeding using the
Dirichlet process prior for correlated random effecGénetics Selection Evolutip85, 137-158.

28



