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Abstract

Markov chain Monte Carlo (MCMC) methods have become a ubiquitous tool in Bayesian analysis.

This paper implements MCMC methods for Bayesian analysis of stochastic frontier models using the

WinBUGS package, a freely available software. General code for cross-sectional and panel data are

presented and various ways of summarizing posterior inference are discussed. Several examples illustrate

that analyses with models of genuine practical interest can be performed straightforwardly and model

changes are easily implemented. Although WinBUGS may not be that efficient for more complicated

models, it does make Bayesian inference with stochastic frontier models easily accessible for applied

researchers and its generic structure allows for a lot of flexibility in model specification.
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1 Introduction

The use of stochastic frontiers in the analysis of productivity and firm efficiency has become widespread

since the seminal papers by Meeusen and van den Broeck (1977) and Aigner, Lovell and Schmidt (1977).

More recently, a large amount of interest has been devoted to the use of Bayesian methods for making

inference in stochastic frontier models. The latter was introduced by van den Broecket al. (1994), who

commented on its particular advantages in this context: exact (small-sample) inference on efficiencies,

easy incorporation of prior ideas and restrictions such as regularity conditions and formal treatment

of parameter and model uncertainty. Bayesian methods are now commonplace in this literature, as

evidenced by Kim and Schmidt (2000) and recent applications bye.g.Kurkalova and Carriquiry (2002)

and Ennsfellner, Lewis and Anderson (2004). In addition, five of the 12 papers in a recent special issue

of theJournal of Econometricson “Current developments in productivity and efficiency measurement”

(Dorfman and Koop, 2005) adopt a Bayesian approach. The complexity of stochastic frontier models
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makes numerical integration methods inevitable. The most appropriate method in this context is clearly

Markov chain Monte Carlo (MCMC), as introduced by Koop, Steel and Osiewalski (1995) and used in

virtually all recent Bayesian papers in this literature, seee.g.Kurkalova and Carriquiry (2002), Tsionas

(2002), Huang (2004) and Kumbhakar and Tsionas (2005).

A problem that occurs, especially for applied users that have not yet implemented Bayesian methods

in this field, is the availability of reliable and user-friendly software. To our knowledge, there is only one

publicly available software, which is described in Arickxet al. (1997). However, the latter is based on

importance sampling, rather than MCMC, and lacks flexibility in model specification (it basically only

implements the simple cross-sectional stochastic frontier model with a restricted choice of efficiency

distributions and priors).1

Thus, this paper describes the use of a freely available software for the analysis of complex statistical

models using MCMC techniques, called WinBUGS, in the context of stochastic frontiers. It turns out

that WinBUGS can become quite a powerful and flexible tool for Bayesian stochastic frontier analysis,

and only requires a relatively small investment on the part of the user. Once the (applied) user under-

stands the logic of model building with WinBUGS, Bayesian analysis is conducted quite easily and many

built-in features can be accessed to produce an in-depth and interactive analysis of these models. In ad-

dition, execution is reasonably fast2, even of complicated models with large amounts of data and model

extensions can easily be accommodated in a modular fashion. The modeller can really concentrate on

building and refining an appropriate model3, without having to invest large amounts of time in coding

up the MCMC analysis and the associated processing of the results. Despite the relative ease of use, we

do wish to reiterate the health warning that comes with WinBUGS: “The programs are reasonably easy

to use and come with a wide range of examples. There is, however, a need for caution. A knowledge of

Bayesian statistics is assumed, including recognition of the potential importance of prior distributions,

and MCMC is inherently less robust than analytic statistical methods. There is no in-built protection

against misuse.”

WinBUGS is a generic tool which can be used in a wide variety of situations. Thus, it can not be

expected to be quite as efficient as tailor-made MCMC implementations designed specifically for certain

models. However, given the continuing introduction of new stochastic frontier models, the availability of

a flexible computational environment that can easily be adapted to new settings is of great practical value,

especially in an exploratory stage, where we may not want to invest heavily in coding up a particular

model in the most efficient manner.

1Other Bayesian software can perhaps be adapted to deal with stochastic frontier models. For example, Koop (1999) sug-

gests that BACC (Bayesian Analysis, Computation and Communication) software might be extended to cover stochastic frontier

models, but does not provide any details on such an implementation.
2The basic model takes about 100 seconds for 100,000 draws on a Xeon 3.06 GHz PC with the cross-sectional electricity data

used in Section 3, whereas one of the most time-consuming models, the truncated normal with the inefficiencies depending on

covariates requires avout 7.5 hours for 100,000 draws using the large hospital panel data set in Section 4. In the second case, these

draws need to be thinned (we use every 100th draw), making a large run relatively time-consuming with this standard WinBUGS

code. A specifically tailored add-on to WinBUGS could improve the efficiency dramatically for these more challenging models.
3This can include models which have not previously appeared in the literature.
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We illustrate the use and flexibility of WinBUGS for Bayesian stochastic frontier modelling of the

cross-sectional data on electric utility companies used and listed in Greene (1990) and of the panel data

on hospitals used in Koop, Osiewalski and Steel (1997).

The WinBUGS software (together with a user manual) can be downloaded (the current fee is zero)

from the website

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

We have used Version 1.4 in this paper. All WinBUGS code used in this paper, as well as the data on the

electricity firms and hospitals is freely available at

http://www.warwick.ac.uk/go/msteel/steel homepage/software/.

2 Stochastic Frontier Model

The basic model relates producers’s costs (or outputs) to a minimum cost (or maximum output) frontier.

If a panel of costs has been observed, a simple model regresses the logarithm of cost,yit, associated with

firm i observed at timet and producing a certain quantityQit, on a set of regressors inxit, which will be

functions of the logarithm of input prices andQit (i = 1, . . . , N, t = 1, . . . , T ):

yit
ind∼ N(α + x′itβ + uit, σ

2), (1)

where N(µ, σ2) denotes a normal distribution with meanµ and varianceσ2. Inefficienciesuit model the

difference between best-practice and actual cost, and these are assumed to have a one-sided distribution,

such as the exponential (ase.g.in Meeusen and van den Broeck, 1977). Often we will exploit the panel

context by assuming that inefficiencies remain constant over time,i.e. uit = ui, t = 1, . . . , T , leading

to4

ui
i.i.d.∼ Exp(λ), (2)

which denotes an exponential distribution with mean1/λ. The parameters introduced in this model are

assigned priors, for example a multivariate normal:

β ∼ N(0,Σ),

possibly truncated to reflect regularity conditions (see Subsection 3.3),

σ−2 ∼ Ga(a0, a1),

a gamma distribution with shape parametera0 and meana0/a1, and

λ ∼ Exp(− log r?),

where the latter prior implies that prior median efficiency is equal tor?. Minor changes are required

for production frontiers.5 Firm-specific efficiencies are introduced as functions of the inefficiency terms;

4For largeT that assumption might be weakened, as we will discuss in Subsection 4.2.
5If we wish to model production frontiers,yit will be the output produced with a certain quantity of inputs, which will

determine the regressors inxit and the inefficiency termuit will appear with a negative sign in the mean ofyit.
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in particular, the efficiency of firmi is defined asri = exp(−ui). These are clearly key quantities of

interest in practice.

In WinBUGS, models are expressed in code through the distributions of the observations and pa-

rameters together with their independence structure. A stochastic cost frontier model is formulated in

Display 1 for a potentially unbalanced panel of observations with time-invariant inefficiencies. Firstly,

the distribution of the log cost in equation (1) is coded. The vectory holds theK observed log costs,

and the matrixdata is a K × (p + 2) matrix. Each row holds the observed values for each firm of

thep regressors, thep+1 -th column holds an index for each firm running from1 to N and thep+2 -th

column holds the time of the observation, which has a maximum value ofT (the latter variable is used in

Section 4, where we have a time trend in the frontier and allow for efficiencies to vary over time). The

distribution ofyit is encoded using the commanddnorm for thestochastic nodey[k] which has two

arguments representing the mean and the precision (the inverse of the variance). WinBUGS restricts the

parameters of the command to be variables and so the mean must be defined as alogical nodemu[k]

which can be formed in a standard way. The expressioninprod(beta[],data[k,1:p] represents

x′itβ.

The inefficiencyui is specified to have an exponential distribution with mean1/λ using the com-

manddexp(lambda) . A useful feature of WinBUGS is the use of logical nodes to define interesting

functions of the parameters in the model. Thei-th firm’s efficiency is represented byeff[i] . Finally,

the prior distributions of each unknown parameter is specified as above.

model

{

for ( k in 1:K ) {

firm[k] <- data[k, p + 1]

mu[k] <- alpha + u[firm[k]] + inprod(beta[],data[k,1:p])

y[k] ˜ dnorm(mu[k], prec)

}

for (i in 1:N) {

u[i] ˜ dexp(lambda)

eff[i] <- exp(- u[i])

}

lambda0 <- -log(rstar)

lambda ˜ dexp(lambda0)

alpha ˜ dnorm(0.0, 1.0E-6)

for (i in 1:p) {

beta[i] ˜ dnorm(0.0, 1.0E-6)

}
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prec ˜ dgamma(0.001, 0.001)

sigmasq <- 1 / prec

}

Display 1: WinBUGS model specification code for the basic cost frontier with panel data

It is very easy to change some of the model assumptions above. For example, we may want to use a

different distribution for the inefficiencies, such as the half-normal used in Aigner, Lovell and Schmidt

(1977) or the truncated normal of Stevenson (1980)6. For the half-normal

ui ∼ N+
(
0, λ−1

)

we simply replace the distribution ofu[i] by

u[i] ˜ djl.dnorm.trunc(0,lambda,0,1000),

while the truncated normal distribution

ui ∼ N+
(
ζ, λ−1

)

also allows the mean of the underlying normal distribution to be estimated and is implemented by

u[i] ˜ djl.dnorm.trunc(zeta,lambda,0,1000)

A general gamma Ga(φ, λ) distribution as in Greene (1990) would correspond to

u[i] ˜ dgamma(phi,lambda).

Appropriate prior specifications for the parameters need to be included. Various suggestions for prior

choices have been made in the literature (e.g.in Tsionas, 2000 and Griffin and Steel, 2004b).

Once the model code has been loaded, the data must be specified in a special format, which is taken

from the statistical package, S-plus. More details are available from the WinBUGS manual. Code for

converting data from some other popular packages can be found on the page

http://www.mrc-bsu.cam.ac.uk/bugs/weblinks/webresource.shtml

Finally, initial values for the variables being estimated need to be specified. The speed of convergence

of the chain is affected by these values. Values with larger posterior density will generally lead to faster

convergence. However, in our experience convergence of chains is relatively fast from most plausible

choices. Once the model, data and initial values have been entered, WinBUGS creates compiled code

to perform an MCMC algorithm for sampling from the posterior distribution. There are several sam-

pling options including multiple chains to aid convergence diagnosis and thinning of the chain to reduce

dependence between successive simulated values.

6The truncated normal and half-normal need a “shared component” which can be downloaded from the WinBUGS develop-

ment site, currently athttp://www.winbugs-development.org.uk/shared.html .
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The following sections illustrate the power of WinBUGS to produce useful summary statistics and

graphical representations of the posterior distribution with several example datasets. We also show how

changes to the model specification can be implemented quite easily, and how to deal with economic

regularity conditions and model uncertainty. In addition, we discuss how to implement dependence of

the efficiencies on covariates that can vary over firms and time.

3 An Old Chestnut: The Electricity Data

The first example analysesN = 123 cross-sectional data from the U.S. electric utility industry in 1970.

The data was originally analysed by Christensen and Greene (1976) and subsequently by Greene (1990).

Following that analysis, we specify the frontier for log(Cost/Pf ) as

α + β1logQ + β2log(Pl/Pf ) + β3log(Pk/Pf ) + β4log2Q (3)

where Output (Q) is produced with three factors: labour, capital, and fuel and the respective factor prices

arePl, Pk andPf .

3.1 The standard exponential model

Here we use the model in Section 2, where now we haveT = 1, with exponentially distributed inef-

ficiencies. The chain was run with a burn-in of 20 000 iterations with 200 000 retained draws and a

thinning to every 5th draw. WinBUGS has a number of tools for reporting the posterior distribution.

A simple summary (Table 1) can be generated showing posterior mean, median and standard deviation

with a 95% posterior credible interval. Parameter names are related in an obvious way to the model in

Section 2. A fuller picture of the posterior distribution can be provided using thedensity option in the

Sample Monitor Tool which draws a kernel density estimate of the posterior distribution of any

chosen parameter, as in Figure 1.

node mean sd MC error 2.5% median 97.5% start sample

alpha -7.47 0.3407 0.001049 -8.133 -7.472 -6.793 20001 200000

beta[1] 0.4252 0.04301 1.544E-4 0.34 0.4255 0.5088 20001 200000

beta[2] 0.2501 0.06495 1.513E-4 0.1226 0.2499 0.3776 20001 200000

beta[3] 0.0473 0.06193 1.823E-4 -0.07302 0.04679 0.17 20001 200000

beta[4] 0.02962 0.002843 8.653E-6 0.02407 0.02961 0.03524 20001 200000

lambda 12.23 5.207 0.03901 7.072 10.79 26.75 20001 200000

sigmasq 0.01332 0.003836 2.381E-5 0.007233 0.01281 0.02188 20001 200000

Table 1:WinBUGS output for the electricity data: posterior statistics

Often, the quantities of primary interest in stochastic frontier analysis are the efficiencies. Firm-

specific efficiencies are immediately generated by the sampler for each firm and their full posterior dis-

tributions are readily available, and can be plotted in the same way as in Figure 1. There are various other
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alpha sample: 200000

   -9.0    -8.0    -7.0    -6.0

    0.0

    0.5

    1.0

    1.5

beta[1] sample: 200000

    0.2     0.4     0.6

    0.0
    2.5
    5.0
    7.5

   10.0

beta[2] sample: 200000

   -0.2     0.0     0.2     0.4

    0.0
    2.0
    4.0
    6.0
    8.0

beta[3] sample: 200000

   -0.4    -0.2     0.0     0.2

    0.0
    2.0
    4.0
    6.0
    8.0

beta[4] sample: 200000

   0.01    0.02    0.03    0.04

    0.0

   50.0

  100.0

  150.0

lambda sample: 200000

    0.0    10.0    20.0    30.0

    0.0
   0.05
    0.1

   0.15
    0.2

sigmasq sample: 200000

    0.0    0.01    0.02    0.03

    0.0

   50.0

  100.0

  150.0

Figure 1:WinBUGS output for the electricity data: posterior densities for parameters

[1]
[2] [3] [4] [5] [6] [7]

[8] [9]
[10]

box plot: eff[1:10]

    0.4

    0.6

    0.8

    1.0

Figure 2:WinBUGS output for the electricity data: boxplot of posterior efficiency distributions for the first ten firms

in the sample

options for displaying the posterior distribution. For example theCompare... menu item brings up

theComparison Tool that draws a boxplot (Figure 2) or caterpillar plot of the sampled efficiencies

for some chosen firms (in this case, the first ten firms in the sample). A practically interesting func-

tion of the firm-specific efficiency measurements is given by their ranks. WinBUGS can automatically

compute a sample from their posterior distribution using theRank... option from theInference

menu. Table 2 shows a summary of the posterior distribution for the first seven electricity producers in

the sample (high rank corresponds to high efficiencies). The posterior distribution clearly demonstrates

a large spread of the rankings.
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node 2.5% median 97.5%

eff[1] 1 4 90

eff[2] 34 99 123

eff[3] 13 74 121

eff[4] 9 58 120

eff[5] 25 91 122

eff[6] 23 89 122

eff[7] 21 84 122

Table 2:WinBUGS output for the electricity data: rank statistics for the first seven firms in the sample

A simple check of the mixing of the posterior distribution arises from a graphical summary of the

values taken by the chain. For example, a trace plot of all drawn values is available through thehistory

button or through thetrace button for the previous batch of, say, 1000 drawings.

alpha

lag

0 10 20 30

    0.0

    0.5

    1.0

beta[1]

lag

0 20 40

    0.0

    0.5

    1.0

beta[2]

lag

0 20 40

    0.0

    0.5

    1.0

beta[3]

lag

0 20 40

    0.0

    0.5

    1.0

beta[4]

lag

0 20 40

    0.0

    0.5

    1.0

lambda

lag

0 20 40

    0.0

    0.5

    1.0

sigmasq

lag

0 20 40

    0.0

    0.5

    1.0

Figure 3:WinBUGS output for the electricity data: autocorrelation functions of the chain

The autocorrelation function for the chain of each parameter (as shown in Figure 3) can also indicate

dimensions of the posterior distribution that are mixing slowly. Slow mixing is often associated with high

posterior correlations between parameters. The plots indicate that all parameters are mixing well with

autocorrelation vanishing before 20 lags in each case. Thecorrelation tool (thecorrelation

8



option in theinference menu) can produce scatterplots of every parameter against every other pa-

rameter to indicate correlation or a correlation coefficient can be estimated from the current output.

Graphical representations of the posterior distribution can indicate problems with the performance

of the MCMC algorithm. More sophisticated methods for convergence detection are implemented in

the Convergence Diagnostic and Output Analysis (CODA) software which is available for the statistical

packages S-plus and R. WinBUGS produces output that is formatted for direct use with these programs

and allows the behaviour of the chain to be investigated using some popular statistical tests.

Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes
Dbar Dhat pD DIC

y -187.486 -233.447 45.961 -141.525

total -187.486 -233.447 45.961 -141.525

Table 3:WinBUGS output for the electricity data: DIC with normal errors

WinBUGS automatically implements the DIC (Spiegelhalteret al., 2002) model comparison crite-

rion. This is a portable information criterion quantity that trades off goodness-of-fit against a model

complexity penalty. In hierarchical models, deciding the model complexity may be difficult and the

method estimates the “effective number of parameter”, denoted here bypD. D̄ is the posterior mean

of the deviance (-2× log likelihood) andD̂ is a plug-in estimate of the latter based on the posterior

mean of the parameters. The DIC is computed as DIC=D̄ + pD = D̂ + 2pD.7 Lower values of the

criterion indicate better fitting models. Table 3 records the values computed, in the format given by

WinBUGS. For our purposes here, we will focus only on the DIC value. The method was designed to

be easy to implement using a sample from the posterior distribution and the interested reader is directed

to Spiegelhalteret al. (2002) for a lively discussion of its merits and its relation to the more usual Bayes

factor8.

3.2 Alternative distributional assumptions

Once this model has been fitted successfully, we may want to consider further modelling options. As

already indicated in Section 2, there are alternative choices of the inefficiency distribution. Another

popular choice is the half-normal, which can be implemented in WinBUGS by

u[i] ˜ djl.dnorm.trunc(0,lambda,0,1000).

The prior distribution

lambda ˜ dgamma(1,1/37.5)

7Thus,pD is computed as̄D − D̂.
8Model comparison using DIC can, in some cases, lead to different conclusions that those obtained through Bayes factors.

The calculation of Bayes factors from MCMC output is non-trivial and is not easily implemented in WinBUGS. A variety of

methods is available for the computation of Bayes factors, and these could be implemented in problem-specific coding in a

standard computer language, or in an add-on that could be written for WinBUGS.
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leads to a prior median efficiency of approximately 0.875 with a reasonable spread (see van den Broeck

et al., 1994, takingν0 = 2 in their (29) anda = 0 corresponding to the half-normal). Yet another

possible inefficiency distribution is the gamma distribution, implemented by

u[i] ˜ dgamma(phi,lambda).

A suitable prior distribution, which extends the informative prior for an exponential inefficiency distri-

bution, is discussed in Griffin and Steel (2004b) in a more general setting. They define

d1 <- 3

d2 <- d1 + 1

lambda0 <- -log(rstar)

phi <- 1 / invphi

invphi ˜ dgamma(d1, d2)

lambda ˜ dgamma(phi, lambda0)

The prior onphi has mode at one (corresponding to the exponential), so this centres the gamma distri-

bution over the exponential distribution and the parameterd1 controls the variability ofphi (a value of

3 is their suggested setting).

inefficiency distribution exponential half-normal gamma

α -7.5 (-8.1, -6.8) -7.4 (-8.0, -6.7) -7.5 (-8.1, -6.8)

β1 0.43 (0.34, 0.51) 0.41 (0.33, 0.48) 0.42 (0.33, 0.50)

β2 0.25 (0.12, 0.38) 0.24 (0.11, 0.37) 0.25 (0.12, 0.38)

β3 0.05 (-0.07, 0.17) 0.06 (-0.06, 0.19) 0.05 (-0.07, 0.18)

β4 0.030 (0.024, 0.035) 0.031 (0.025, 0.036) 0.030 (0.024, 0.036)

φ 1.65 (0.58, 6.15)

λ 10.8 (7.1, 26.8) 44.5 (20.8, 140.6) 14.5 (6.9, 52.1)

σ2 0.013 (0.007, 0.022) 0.013 (0.006, 0.021) 0.013 (0.006, 0.013)

Table 4: Parameter results (posterior medians and 95% credible intervals) for various efficiency distributions with

normal errors for the electricity data

Table 4 contrasts some results on the parameters for exponential, half-normal9 and gamma assump-

tions. Differences on common parameters are fairly small10, and the credible interval forφ, the shape

parameter of the gamma, includes1, which corresponds to the exponential model.

In addition, a heavier tailed error distribution could be considered for the measurement error. Simply

specifying

y[k] ˜ dt(mu[k], prec, degfree)

9The more general truncated normal will be used in the context of the hospital panel data in the next application.
10Note thatλ does not share a common interpretation across models.
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changes the form of the error distribution in (1) to at-distribution withdegfree degrees of freedom.

The prior distribution for the degrees of freedom was chosen to be exponential with mean and standard

deviation equal to3:

degfree ˜ dexp(0.333),

which puts a considerable amount of prior mass on distributions with much heavier tails than the normal

distribution.

inefficiency distribution exponential half-normal gamma

α -7.8 (-8.4, -7.1) -7.7 (-8.4, -7.0) -7.8 (-8.4,-7.1)

β1 0.45 (0.36, 0.52) 0.44 (0.35, 0.52) 0.44 (0.35, 0.52)

β2 0.29 (0.16, 0.42) 0.28 (0.16, 0.41) 0.29 (0.16, 0.42)

β3 0.04 (-0.07, 0.16) 0.05 (-0.06, 0.17) 0.04 (-0.07, 0.16)

β4 0.028 (0.023, 0.034) 0.029 (0.023, 0.034) 0.023 (0.028, 0.034)

ν 4.4 (2.0, 11.8) 3.5 (1.6, 10.3) 4.0 (1.7, 11.1)

φ 1.9 (0.7, 6.9)

λ 11.3 (7.1, 29.4) 43.8 (20.8, 141.1) 16.0 (7.5, 56.1)

σ2 0.008 (0.003, 0.016) 0.006 (0.001, 0.014) 0.002 (0.0004, 0.0073)

Table 5:Parameter results (posterior medians and 95% credible intervals) for the two alternative efficiency distribu-

tions witht errors for the electricity data

Table 5 records some results and illustrates that the prior assumption about the degrees of freedom,

indicated byν, is quite important since the data provide little information about its value. We can use

the DIC criterion to compare the different models. Table 6 compares the DIC scores for the possible

error distribution inefficiency distribution D̄ D̂ pD DIC

normal exponential -187.5 -233.4 46.0 -141.5

half-normal -189.3 -239.5 50.2 -139.1

gamma -187.7 -234.0 46.4 -141.3

t exponential -190.7 -238.8 48.1 -142.6

half-normal -209.7 -263.3 53.6 -156.1

gamma -198.7 -247.7 49.0 -149.7

Table 6:Comparison of models with different distributional assumptions using the DIC criterion

combinations of error distribution and inefficiency distribution. Smaller values of the DIC suggest better

models and so the Student-t errors tend to fit the data better than the normal measurement errors. Overall,

the results favour the half-normal distribution witht-distributed errors. The posterior distribution of the

mean of the predictive (i.e. out-of-sample) efficiency is a useful measure for comparing our inference

about the parameters of the inefficiency distributionsλ andφ (presented in Table 5). Ift-distributed errors
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eff[124] sample: 200000

    0.2     0.4     0.6     0.8     1.0

    0.0

    2.0

    4.0

    6.0

Figure 4: WinBUGS output for the electricity data: kernel density estimate of the posterior predictive efficiency

distribution for the Student-t model with half-normal efficiencies

are assumed, the posterior mean of predictive efficiency has a 95% credibility interval of (0.88,0.97) for

the exponential distribution, (0.80,0.96) for the gamma and (0.85,0.94) for the half-normal distribution.

In other words, for this data, the half-normal and gamma distributions are associated with slightly lower

estimates of efficiency than the exponential distribution.

Finally, we estimate the posterior predictive distribution of efficiency for our preferred model with

t-distributed measurement errors and a half-normal inefficiency distribution. This corresponds to the

efficiency of an unobserved firm in this sector. An extra inefficiency node (u[N+1] ) and efficiency

node (eff[N+1] ) are added to the model by simply changing the range of thefor loop, i.e.defining

for (i in 1:(N+1)) {

u[i] ˜ djl.dnorm.trunc(0,lambda,0,1000)

eff[i] <- exp(- u[i])

}

A kernel density estimate of the predictive efficiency distribution,i.e. of eff[N+1] , is shown in Fig-

ure 4. Posterior predictive median efficiency is 0.91 and the 95% credible interval is (0.69,0.996).

3.3 Imposing regularity conditions

The fitted frontier should obey certain economic constraints (seee.g.Kumbhakar and Lovell 2000). For

example, a cost frontier should imply positive elasticities of cost with respect to output and prices. In

other word, we need to check
d log C

d log Xi
> 0.

If a Cobb-Douglas frontier is fitted the condition reduces to positive coefficients in the frontier. This

change can be easily implemented in the prior distribution ofβi by replacing the normal prior

beta[i] ˜ dnorm(0.0, 1.0E-06)

with its truncated counterpart

beta[i] ˜ djl.dnorm.trunc(0.0, 1.0E-0.6,0,1000).
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However, a more complicated frontier such as a translog will lead to more complicated expressions for

d log C/d log Xi. In this example, a quadratic output term is included in the frontier and the elasticity

of cost with respect to output has the form

d log C

d log Q
= β1 + 2β4 log Q.

Ideally, we would want this relationship to be true for all values oflog Q. However, since this is only

a local approximation to the frontier, it is usual to check the condition for a plausible set of values of

log Q. A pragmatic approach restricts attention to the value of the elasticity for the observed output. This

approach will be used in this case. Imposing these properties in alternative sets of values as in Terrell

(1996) can easily be implemented. The restrictions are imposed onp(y|X, β) leading to a non-standard

likelihood function, which is implemented using the “ones-trick” described in the WinBUGS manual.

This introduces a new variablecheck , which will be zero for all cases where regularity conditions are

violated and one elsewhere. The data is now a set of ones assumed to be the result of Bernoulli sampling

with probabilities proportional to the likelihood values of those observations for which regularity holds

and zero for which it is violated. As soon as a violation occurs for one of the observations, the likelihood

value associated with that draw will, thus, be zero.C is a constant such that all values inprob are

smaller than one. In particular, we replace (note that the definition ofmu[k] now differs from that in

Display 1 due to the squared log output term in (3))

for ( k in 1:K ) {

firm[k] <- data[k, p + 1]

mu[k] <- alpha + u[firm[k]] + inprod(beta[],data[k,1:p])\

+ beta[p + 1] * data[k, 1] * data[k, 1]

y[k] ˜ dnorm(mu[k], prec)

}

by

C<- 10000

for ( k in 1:K ) {

ones[k] <- 1

firm[k] <- data[k, p + 1]

mu[k] <- alpha + u[firm[k]] + inprod(beta[1:p], data[k, 1:p])\

+ beta[p + 1] * data[k, 1] * data[k, 1]

check[k] <- step(beta[1] + 2 * beta[4] * data[k, 1])\

* step(beta[2]) * step(beta[3])

prob[k] <- check[k] * sqrt(prec) * exp(- 0.5 * prec * (y[k] - \

mu[k]) * (y[k] - mu[k]))/C

ones[k] ˜ dbern(prob[k])

}
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inefficiency distribution exponential half-normal

α -7.7 (-8.2, -7.0) -7.7 (-8.3, -7.0)

β1 0.44 (0.35, 0.52) 0.44 (0.35, 0.52)

β2 0.27 (0.16, 0.37) 0.27 (0.15, 0.39)

β3 0.06 (0.00, 0.16) 0.06 (0.00, 0.17)

β4 0.028 (0.023, 0.034) 0.028 (0.023, 0.034)

ν 4.4 (2.1, 11.8) 3.6 (1.6, 10.4)

λ 11.3 (7.1, 29.4) 43.6 (20.6, 140.9)

σ2 0.008 (0.003, 0.016) 0.006 (0.001, 0.014)

Table 7: Parameter results (posterior medians and 95% credible intervals) for two inefficiency distributions witht

errors for the electricity data with economic restrictions

where the functionstep(a) equals one ifa is nonnegative and zero otherwise, and\ indicates that the

following line is the continuation of the current line and both should be entered as a single line.

It should be noted that the non-standard likelihood function can lead to a severe deterioration in the

performance of the Gibbs sampler that WinBUGS implements, which can lead to slow convergence and

mixing. In this example, we used a thinning of 100 which resulted in good autocorrelation properties in

the chain. Table 7 presents results for two possible choices of inefficiency distribution. Comparison with

Table 5 shows that the economic constraints are rarely violated for these data and the implementation

of economic constraints in this example has little effect on the analysis. Only the inference onβ3 is

moderately affected, as could be expected from the unrestricted output in Table 5.

4 A Panel of US Hospital data

Our second example reanalyses data on costs of US hospitals initially conducted in Koop, Osiewalski

and Steel (1997), and we refer to the latter paper for further details and background of hospital cost

estimation, the data and the particular frontier used. The data correspond toN = 382 nonteaching

U.S. hospitals over the years 1987-1991 (T = 5), selected so as to constitute a relatively homogeneous

sample. The frontier describing cost involves five different outputsY1, . . . , Y5: number of cases, number

of inpatient days, number of beds, number of outpatient visits and a case mix index. We also include

a measure of capital stock,C, an aggregate wage index,P , and a time trendt to capture any missing

dynamics. We choose a flexible translog specification and impose linear homogeneity in prices, which

allows us to normalize with respect to the price of materials. Thus, in the notation of (1) and dropping
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observational subscripts for ease of notation,y = log(cost) andx′β becomes:

x′β =
5∑

i=1

βi log Yi + β6 log P + β7(log P )2 +
5∑

i=1

β7+i log Yi log P + β13 log C

+
5∑

i=1

β13+i log Yi log C + β19 log P log C + β20(log C)2 + β21t + β22t
2

+
5∑

i=1

5∑

j=i

β22+5(i−1)+j log Yi log Yj .

In this section, we will use the normal sampling in (1) combined with an exponential inefficiency distri-

bution, except for Subsection 4.3, where we assume truncated normal inefficiencies.

4.1 Including covariates in the inefficiency distribution

Koop, Osiewalski and Steel (1997) consider a method for extending the stochastic frontier to allow

exponentially distributed inefficiencies to depend upon covariates. Their model assumes that each firm

has a vector of binary covariates,wi for thei-th firm. That firm’s inefficiency is modelled as

ui ∼ Exp(exp{w′iγ}). (4)

whereγ is a vector of coefficients. In the current example, there are 3 possible ownership categories

for each firm andw contains dummy variables to represent category membership. Actually, since Win-

BUGS does not rely on known forms for the conditionals, the covariateswi can also include non-binary

variables. It seems reasonable to assumea priori that our belief about the efficiency distribution for each

category should be the same,i.e.

exp{γj} ∼ Exp(− log r?).

This model can be coded by defininglambda[i] , the inverse of mean inefficiency for thei-th firm and

data2 a matrix containing each firm’s characteristicsw.

for (i in 1:N) {

lambda[i] <- exp(inprod(gamma[], data2[i, 1:p2]))

u[i] ˜ dexp(lambda[i])

eff[i] <- exp(- u[i])

}

It is easier to define a prior distribution forexp{γj} and WinBUGS allows us to define the relationship

gamma[j] <- log(expgamma[j]) using a logical node. The WinBUGS code for this prior is:

lambda0 <- -log(rstar)

for ( j in 1:p2 ) {

gamma[j] <- log(expgamma[j])

expgamma[j] ˜ dexp(lambda0)

}
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Using ownership dummies (indicating non-profit, for-profit or government-run hospitals correspond-

ing to coefficientsγ1, γ2 andγ3, respectively) as covariates for the inefficiency distribution, Table 9

compares the DIC values for the basic model with that of the model including these covariates. There

seems to be little support for this model extension. Nevertheless, Table 8 does indicate some evidence

for lower efficiencies in the for-profit sector. The latter is in line with the results in Koop, Osiewalski

and Steel (1997).

basic model covariates parametric time-varying eff.

λ 5.75 (5.07, 6.51) 6.00 (5.22, 6.87)

exp{γ1} 6.25 (5.38, 7.29)

exp{γ2} 4.04 (3.12, 5.16)

exp{γ3} 6.89 (5.11, 9.16)

η -0.026 (-0.047, -0.0041)

σ2 0.0042 (0.0039, 0.0045)0.0042 (0.0039, 0.0045) 0.0042 (0.0039, 0.0045)

Table 8: Selected parameter results (posterior medians and 95% credible intervals) for the hospital data.γ1 is the

coefficient of the non-profit ownership dummy, whileγ2 andγ3 correspond to, respectively, for-profit and government-

run hospitals. Inefficiency distributions are exponential

D̄ D̂ pD DIC

basic model -5033 -5413 380 -4654

exogenous variables-5025 -5403 378 -4647

par. time-varying -5041 -5423 382 -4660

Table 9:DIC results for the hospital data with various model specifications and exponential inefficiencies for the first

three and truncated normal for the last two models

4.2 Time-varying efficiency

The assumption made in equation (2) that firm-specific technical efficiency is constant over time may not

always be tenable. An alternative model that allows time-varying efficiencies usesuit to represent the

inefficiency of firmi at timet. A simplifying assumption proposed in Lee and Schmidt (1993) defines

uit = β(t)ui.This specification is parsimonious but makes a strong assumption about the form of time-

dependence. Several functions have been considered forβ(t), in particular Battese and Coelli (1992)

propose

β(t) = exp{η(t− T )}
where positiveη indicates increasing efficiency over time. We shall denote this case as that of “paramet-

ric time-varying” efficiencies. We choose the prior distribution ofη to be a zero-mean normal distribution

with variance 0.25 which represents our prior indifference between increasing and decreasing efficiency
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and, forT = 5, supports reasonable predictive distributions of efficiency at each time point. This new

model can be implemented in WinBUGS by changing the mean of the log costs to

t <- data[k, p+2]

mu[k] <- alpha + exp(eta*(t-T)) * u[firm[k]] + inprod(beta[],data[k,1:p])

and the prior is represented by the statement

eta ˜ dnorm(0.0,4).

Table 9 indicates some support for this parametric time-varying model over the basic model. From

the posterior results onη in Table 8, we conclude that efficiencies tend to decrease somewhat over time.

4.3 Truncated normal inefficiencies

An alternative distribution for the inefficiencies is the truncated normal, as used in Stevenson (1980) and

Battese and Coelli (1992). Battese and Coelli (1995) propose to use covariates to model the underlying

mean of a truncated normal inefficiency distribution. Whereas they consider independent inefficiency

terms,11 we will focus on the assumptions used earlier in this paper and first consider the case where

inefficiencies are constant over time and distributed as

ui ∼ N+
(
w′iθ, λ

−1
)
,

wherewi can group firm characteristics andθ is the associatedp3-dimensional parameter vector. The first

element ofwi is unity, so that the special casep3 = 1 corresponds to i.i.d. truncated normal inefficiencies.

The implementation in WinBUGS is as follows:

for (i in 1:N) {

zeta[i] <- inprod(theta[], data3[k, 1:p3])

u[i] ˜ djl.dnorm.trunc(zeta[i], lambda, 0, 1000)

eff[i] <- exp(- u[i])

}

wheredata3 groups thewi vectors into aN × p3 matrix.

The prior specification is based on Section 6 of van den Broecket al. (1994), which covers the case

whenp3 = 1 (no covariates) and proposes the use of a particular right-skewed skew-normal prior (see

Azzalini, 1985) for the standardized underlying meanψ1 = θ1

√
λ and an independent gamma prior for

λ.12 In particular, we take

p(ψ1, λ) = 2Φ(ψ1)φ(ψ1)fG(λ|5, 5 log2 r?),

11Such a case is perfectly feasible within WinBUGS, and its implementation is described in the Appendix.
12As explained in van den Broecket al.(1994), this leads to a half-Student distribution foruit with 10 degrees of freedom and

a prior median efficiency quite close tor?.
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whereΦ(·) andφ(·) denote the cdf and pdf of a standard normal, andfG(·|a, b) denotes the pdf of a

Ga(a, b) distribution. In the more general case with covariates (p3 > 1) we extend this specification by

adopting vague priors centred over zero for the other elements of the vectorψ = θ
√

λ:

ψi ∼ N(0, 10), i = 2, . . . , p3,

after normalising any continuous covariates to have zero mean and unitary standard deviation.

Table 10 displays some results for the basic model (p3 = 1), and the model where we include the

three ownership dummies as covariates in the inefficiency distribution. Again, we find that for-profit

hospitals tend to be somewhat less efficient. The table also contains results for the model with time-

varying efficiency, defined as in the previous subsection. Again, there is some evidence that efficiencies

tend to go down over time, although not as quickly as in the model with exponential inefficiencies.

basic model covariates parametric time-varying eff.

λ 63.4 (53.0 , 74.7) 64.0 (53.4, 75.6) 62.1 (51.5, 74.4)

θ1 0.36 (0.29,0.46) 0.13 (-0.05, 0.32) 0.35 (0.28, 0.45)

θ2 0.30 (0.08 , 0.60)

θ3 0.37 (0.14, 0.67)

θ4 0.28 (0.05, 0.58)

η -0.0018 (-0.0036, 0.0000)

σ2 0.0038 (0.0035, 0.0041)0.0038 (0.0036, 0.0041) 0.0038 (0.0035, 0.0041)

Table 10:Selected parameter results (posterior medians and 95% credible intervals) for the truncated normal inef-

ficiency distribution using the hospital data. For the model with covariates in the inefficiency distribution,θ1 is the

intercept,θ2 the coefficient of the non-profit ownership dummy, whileθ3 andθ4 correspond to, respectively, for-profit

and government-run hospitals.

The DIC results for the truncated normal models, reported in Table 11, indicate a strong support for

the truncated normal inefficiencies over the exponential ones in Subsections 4.1 and 4.2. There is no

real support for the inclusion of covariates in the inefficiency distribution, and, as before, the parametric

time-varying efficiency model seems the most preferred. In fact, the predictive efficiency distributions

generated by the truncated normal models will have relatively little mass close to full efficiency, and a

mode around 0.7 or so, very much in line with the results obtained on the same data with a nonparametric

inefficiency distribution in Griffin and Steel (2004a) and with a flexible parametric inefficiency distribu-

tion in Griffin and Steel (2004b). This is in contrast with the exponential and half-normal models, which

are constrained to put a mode at full efficiency (see Figure 4).

However, due to the more flexible nature of the inefficiency distribution, the models with truncated

normal inefficiency distributions take considerably longer to run in WinBUGS, as the sampler does not

mix very well and, thus, we need to thin the chain considerably. A more efficient implementation would

require a tailored MCMC scheme that takes into account the difficulty of distinguishing between the
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D̄ D̂ pD DIC

basic model -5215 -5611 395 -4820

exogenous variables-5214 -5611 396 -4818

par. time-varying -5232 -5630 398 -4834

Table 11:DIC results for the hospital data with various model specifications and truncated normal inefficiencies.

intercept and the inefficiency mean. Thus, we can only recommend the standard WinBUGS code13

provided here with the warning that long chains may be required as convergence can be fairly slow

for truncated normal models. The same type of problem may also affect other flexible inefficiency

distributions, such as the gamma.

4.4 Model comparison of the form of the frontier

The stochastic frontier represents an approximation to the best-practice output for a set of inputs or

lowest cost for producing a set of outputs. The common forms of the function have usually been log-

linear but there may be uncertainty in the frontier specification. For example, a Cobb-Douglas functional

form is fairly restricted. A translog is much more flexible, using a second order approximation to the

unknown function, but at the expense of introducing many parameters which can lead to a poor fit.

An improvement in fit may arise through careful selection of the higher order terms and interactions

or of various other covariates. In the example above, we might wish to allow for the possibility of no

time trend, a linear time trend or a quadratic time trend. In the Bayesian approach these questions of

model choice can be answered through model comparison tools such as the DIC. We restrict attention to

deciding on the type of time trend to include in the model. Table 12 shows the results of running three

separate chains incorporating no time trend, a linear trend and a quadratic time trend in the basic model

with a common exponential inefficiency distribution for all hospital types and constant efficiencies over

time. The models with a time trend far outperform the model without time trend. The results indicate a

preference for the model with a quadratic time effect, as used in the previous subsections.

5 Conclusions

This paper demonstrates that WinBUGS provides a useful framework for the Bayesian analysis of

stochastic frontier models. We provide code to implement a standard model for cross-sectional, bal-

anced and unbalanced panel data with a time-invariant exponential inefficiency distribution. Many other,

13This could be much improved by a specialized add-on to WinBUGS for stochastic frontier models with flexible inefficiency

distributions. In particular, the parameterisation can be an important issue and we have found it to be a key factor in the mixing

properties of the MCMC chain in problems where the inefficiency distribution is hard to distinguish from the measurement error

distribution, such as general gamma distributions (Griffin and Steel, 2004b) or even nonparametric distributions (Griffin and

Steel, 2004a). In both papers, we used the device of centring, which is explained in this context in Griffin and Steel (2004a).

However, the implementation of centring is not trivial in WinBUGS and would require writing a specific add-on.
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D̄ D̂ pD DIC

quadratic time trend -5033 -5413 380 -4654

linear time trend -5026 -5405 379 -4647

no time trend -2581 -2914 333 -2248

Table 12:DIC results for the hospital data with the basic model and exponential inefficiencies

more complicated, models can be analysed using simple extensions of this code, for example to include

covariates in the efficiency distribution and time-varying efficiencies. We also illustrate ways to impose

economic regularity conditions and deal with model uncertainty. We emphasize that we have merely

shown a few possible model specifications and extensions14 and it should also be fairly straightforward

to implement many other Bayesian models such as random coefficient frontiers (see Tsionas, 2002 and

Huang, 2004) or models developed in the literature for dealing with multiple-output analysis or the mod-

elling of undesirable outputs (see Fernández, Koop and Steel, 2002). We also stress that priors can be

specified in line with genuine prior beliefs, as WinBUGS does not require priors to be conjugate in any

sense. Modelling, both of the sampling model and the prior assumptions, can be conducted creatively

and in accordance with the particular problem at hand, without worrying about having to develop and

modify complicated computer code.

WinBUGS immediately leads to full posterior distributions of the model parameters and interesting

functions of these parameters, such as firm-specific efficiencies and the rankings of firm-specific efficien-

cies. Many graphical and other summaries of the posterior distributions and the behaviour of the MCMC

sampler are built-in. The availability of CODA-compatible output allows a range of convergence diag-

nostics to be produced very easily. WinBUGS can be called from within other programs and interfaces

with a variety of other popular environments (R, Stata, SAS, Matlab) are possible, as explained on the

WinBUGS website. In order to improve the efficiency of inference under regularity conditions or using

the more flexible inefficiency distributions, an add-on to WinBUGS specifically written to take advan-

tage of the structure of the problem should constitute a big improvement. However, the user-friendly and

generic structure of WinBUGS could, in our view, make a substantial contribution to opening up the area

of stochastic frontiers to applied practitioners. In particular, it allows researchers to conduct Bayesian in-

ference with these models with a relatively small initial investment and stimulates easy experimentation

with the structure of the basic model.

We would certainly recommend the applied user of stochastic frontier models to experiment with

WinBUGS and we hope that the availability of WinBUGS code (freely available on the web) will allow

these users to add Bayesian methods to their modelling and inference toolbox.

Appendix: Implementing the Battese and Coelli (1995) model
A model with more flexible time dependence of the efficiencies (and less panel structure), which

14Although our paper covers perhaps the most popular models for typical applications.
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also incorporates covariate information in the efficiency distribution is that of Battese and Coelli (1995).

In particular, Battese and Coelli (1995) propose the use of covariates, possibly depending on firms and

time, to model the underlying mean of a truncated Normal inefficiency distribution. In WinBUGS this is

easily implemented by changing the specification ofmuto

mu[k] <- alpha + u[k] + inprod(beta[],data[k,1:p])

while the inefficiency term corresponds touit ∼ N+
(
w′itθ, λ

−1
)
, wherewit can group firm charac-

teristics, which may be time dependent, and time-related variables, and inefficiency is now modelled

as

for (k in 1:K) {

zeta[k] <- inprod(theta[], data3[k, 1:p3])

u[k] ˜ djl.dnorm.trunc(zeta[k], lambda, 0, 1000)

eff[k] <- exp(- u[k])

}

wheredata3 groups thewit vectors into aK × p3 matrix.
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