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• Dead pixels in CT scans for 3D printed objects

• Molecular biology in cancer treatment decisions 



Application 
of statistical 
genomics:
Cancer 
prognosis



Application of 
spatial 
statistics:
Dead pixels



Dead pixels in detectors 
of computed tomography machines

Part of quality control for 3D printed objects

joint project with Warwick Manufacturing Group

Application of spatial statistics:



Dead pixels 

‣ Occur	on	detectors	of	
LCD	screens,	digital	
cameras,	CT	scanners…	

‣ Quan9fy	damage		

‣ Describe	characteris9cs		
‣ Reasons	for	damage	

‣ Speed	of	decay



X-ray detectors and bad pixel maps

Perkin Elmer 
XRD 1621
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4.4 Detector�Overview�
�

�

Figure�3� Detector�Overview�

�
1� Potential�Equalization�

2� Ground�Connector�

3� Trigger�Input�(page�14)�

4� Power�Input�(page�14)�

5� XRD�Fibre�Optical�Interface�Bus��

Detector�Mode�and�Frame�Rate�(page�16)�

Green� Free�Running�

6�

Yellow� Trigger�Mode�

Power�On�and�Detector�Status��

Green� Power�ON�

7�

Orange� Self�Inspection�

6�+�7� All�Lights�On�during�Self�Inspection�(PowerǦON)�

8� PROM�Holder�

9� Electronics�(This�Area�needs�to�be�shielded)�

10� Active�Area�

Table�3� Detector�Overview�
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�
4.2 Electronic�control�and�readout�
Charge�amplifiers�for�readout�of�the�sensor,�and�row�drivers�for�addressing�the�rows�are�placed�on�
chip�on�board�(COB)�modules�contacting�the�pads�at�the�edges�of�the�sensor.�The�COBs�for�
control�and�readout�are�connected�to�A/D�conversion�PCB�boards.�The�analogue�part�of�the�
electronics�is�placed�beside�the�sensor�and�includes�sophisticated�FPGA�control�of�the�detector.�
Numerous�features�are�realized�to�minimize�noise,�as�well�as�shaping�and�timing�of�the�control�
pulses�and�isolation�of�digital�and�analogue�sections.�The�digital�control�is�reprogrammable�
through�a�PROM�to�enable�future�upgrades�or�modifications.�
�
�
4.3 Structure�of�the�XRD�1621��
�
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Figure�2� Structure�of�the�XRD�1621��
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5.5.3 Sorting�schemes�overview�
The�XISL�sorts�the�data�in�an�internal�buffer�with�highly�optimized�routines�written�in�machine�
code.�Figure�10�shows�the�read�out�scheme�of�the�XRD�1621�sensor.��
�

�

Figure�10� Sorting�scheme�of�the�XRD�1621�

The�sensor�is�divided�into�an�upper�and�a�lower�part.�Both�sections�are�electrically�separated.�The�
data�of�each�section�is�transferred�by�32�“read�out�groups”�(ROG).�Each�ROG�has�128�channels�for�
the�detector.�The�upper�groups�scan�the�sensor�columns�from�left�to�right.�The�lower�groups�scan�
from�right�to�left.�The�upper�groups�are�transferred�first,�followed�by�the�lower�groups.�The�upper�
groups�start�read�out�from�the�upper�row.�The�lower�groups�start�read�out�from�the�last�row.�
The�following�Table�20�displays�the�data�stream�for�XRD�1621:�
�
data�stream�no.� sensor�pixel�(row,�column)� ROG�no.�

1� (1,1)� 1�

2� (1,129)� 2�

3� (1,257)� 3�

4� (1,385)� 4�

5� (1,513)� 5�

6� …� �

15� (1,1793)� 15�

16� (1,1921)� 16�

17� (2048,�128)� 18�

18� (2048,�256)� 17�

19� (2048,�384)� 20�

20� (2048,�512)� 19�

…� …� …�

Table�20� Sorting�scheme�of�the�XRD�1621�

�

Readout	groups

“Underperforming” 
(sensitivity, noise, 
uniformity)

Bad pixel map with 
coordinates



Local defects: Dead lines

Lines on bad pixel images
From centre horizontal line outwards
Clusters at the end

Top right area in A_0: 
White image [R]



Local defects: Isolated dead pixels

A_0: Black 
image [R]

A_0: Grey image [R]

Singles, doubles, small clusters

A_0:
bp binary 
image [R]



Local defects: Corners

B_0: Binary bad pixel image [R]



Local defects: Patches

Areas with high density area of 
bad pixels   

F_0 Binary bad pixel imageE_0 Binary bad pixel image



Point processes and spatial statistics

Mathematical model:  
Interpret dead pixels a spatial point process

What is its distribution? 
E.g. are there clusters?



Point processes and spatial statistics
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to the edge, thus inflating ˆ ( )K h  to correct the bias. [An explicit derivation of Ripley’s 
correction in given in Section 6 of the Appendix to Part I.] 
 
It should be emphasized that while Ripley’s correction is very useful for estimating the 
true K-function for a given stationary processes, this is usually not the question of most 
interest. As we have seen above, the key questions relate to whether this process exhibits 
structure other than what would be expected under CSR, and how this structure may vary 
as the spatial scale of analysis is increased. Here it turns out that in most cases, Ripley’s 
correction is not actually needed. Hence this correction will not be used in the analysis to 
follow.11 
 
4.4 Testing the CSR Hypothesis 
 
To apply K-functions in testing the CSR Hypothesis, it is convenient to begin by ignoring 
edge effects, and considering the nature of K-functions under this hypothesis for points, 
s R�  and distances, h , that are not influenced by edge effects. Hence, in contrast to 
Figure 4.3a above, we now assume that the set of locations, hC , within distance h  of s  is 
entirely contained in R , i.e., that 
 
(4.4.1)  { : ( , ) }hC v R d s v h R � d �  
 
Next recall from the basic independence assumption about individual point locations in 
CSR processes (Section 2.2 above) that for such processes, the expected number of points 
in { }hC s�  does not dependent on whether or not there is a point event at s , so that 
 
(4.4.2)  [ ( { }) | ( ) 1] [ ( { })]h hE N C s N s E N C s�   �  
 
Hence from expression (4.2.3), together with the area formula for circles [and the fact 
that ( { }) ( )h ha C s a C�  ], it follows that  
 
(4.4.3)  2[ ( { }) | ( ) 1] ( { }) ( )h h hE N C s N s a C s a C hO O OS�   �                                                         
 
which together with expression (4.2.4) yields the following simple K-function values:  
 
(4.4.4)  2 21( ) ( )K h h hO OS S   
 
Thus by standardizing with respect to density, O , and ignoring edge effects as in (4.4.1), 
we see that the K-function reduces simply to area under the CSR Hypothesis. Note also 
that when 2( )K h hS! , this implies a mean point count higher than would be expected 
under CSR, and hence indicates some degree of clustering at scale h (as illustrated in 

                                                 
11 Readers interested in estimating the true K-function for a given process are referred to Section 8.4.3 in 
Cressie (1993), and to the additional references found therein. 

  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                Part I. Spatial Point Pattern Analysis 
______________________________________________________________________________________ 

________________________________________________________________________ 
 ESE 502                                                     I.4-4                                                  Tony E. Smith 

events occur in specific environments (such as the patterns of Philadelphia housing 
abandonments in Figures 1.4 and 1.5), then the relevant distances might be determined by 
these environments (such as travel distance on the Philadelphia street system).8  
 
Finally, it is important to emphasize that the expected value in (4.2.1) is a conditional 
expected value. In particular, given that there is a point event, s , at the center of the 
circle in Figure 4.2 above, this value gives the expected number of additional points in 
this circle. This can be clarified by rewriting ( )K h  in terms of conditional expectations. 
In particular if [as in Section 3.2.1 above] we now denote the circle in Figure 4.2 minus 
its center by  
 
(4.2.3)  { } { : 0 ( , ) }hC s v R d v s h�  � � d  
 
then ( )K h  can be written more precisely as follows:  
 
(4.2.4)  1( ) [ ( { }) | ( ) 1]hK h E N C s N sO �   
 
To see the importance of this conditioning, recall from expression (2.3.4) that for any 
stationary process (not just CSR processes) it must be true that the expected number of 
points in { }hC s�  is simply proportional to its area, i.e., that 
 
(4.2.5)  ( { }) ( { })h hE C s a C sO�  �  
 
But this is not true of the conditional expectation above. Recall from the wolf-pack case, 
for example, that for small circles around any given wolf, the expected number of 
additional wolves is much larger than what would be expected based on area alone [i.e.,is 
larger than ( { })ha C sO � ]. These ideas will be developed in more detail in Section 4.4, 
where it is shown that such deviations from simple area proportionality form the basis for 
all K-function tests of the CSR Hypothesis. 
 
4.3 Estimation of K-Functions 
 
Given this general definition of K-functions as (conditional) expected values, we now 
consider the important practical question of estimating these values. To do so, we 
introduce the following notation for analyzing point counts. For any given realized point 
pattern, ( : 1,.., )n iS s i n  , and pair of points ,i j ns s S�  we now denote the Euclidean 
distance between them by 
 
(4.3.1)  ( , )ij i jd d s s  
 
and for any distance, h , define the indicator function, hI , for point pairs in nS  by 
                                                 
8 Here it should be noted that tools are available in the spatial analyst extension of ARCMAP for 
constructing cost-weighted and shortest-paths distances. However, we shall not do so in this NOTEBOOK. 

K-function: for h>0, K(h) is the expected number of 
extra points in circle of radius h, rescaled by density

Under CSR:

For stationary processes:  Proportional to its area
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to the edge, thus inflating ˆ ( )K h  to correct the bias. [An explicit derivation of Ripley’s 
correction in given in Section 6 of the Appendix to Part I.] 
 
It should be emphasized that while Ripley’s correction is very useful for estimating the 
true K-function for a given stationary processes, this is usually not the question of most 
interest. As we have seen above, the key questions relate to whether this process exhibits 
structure other than what would be expected under CSR, and how this structure may vary 
as the spatial scale of analysis is increased. Here it turns out that in most cases, Ripley’s 
correction is not actually needed. Hence this correction will not be used in the analysis to 
follow.11 
 
4.4 Testing the CSR Hypothesis 
 
To apply K-functions in testing the CSR Hypothesis, it is convenient to begin by ignoring 
edge effects, and considering the nature of K-functions under this hypothesis for points, 
s R�  and distances, h , that are not influenced by edge effects. Hence, in contrast to 
Figure 4.3a above, we now assume that the set of locations, hC , within distance h  of s  is 
entirely contained in R , i.e., that 
 
(4.4.1)  { : ( , ) }hC v R d s v h R � d �  
 
Next recall from the basic independence assumption about individual point locations in 
CSR processes (Section 2.2 above) that for such processes, the expected number of points 
in { }hC s�  does not dependent on whether or not there is a point event at s , so that 
 
(4.4.2)  [ ( { }) | ( ) 1] [ ( { })]h hE N C s N s E N C s�   �  
 
Hence from expression (4.2.3), together with the area formula for circles [and the fact 
that ( { }) ( )h ha C s a C�  ], it follows that  
 
(4.4.3)  2[ ( { }) | ( ) 1] ( { }) ( )h h hE N C s N s a C s a C hO O OS�   �                                                         
 
which together with expression (4.2.4) yields the following simple K-function values:  
 
(4.4.4)  2 21( ) ( )K h h hO OS S   
 
Thus by standardizing with respect to density, O , and ignoring edge effects as in (4.4.1), 
we see that the K-function reduces simply to area under the CSR Hypothesis. Note also 
that when 2( )K h hS! , this implies a mean point count higher than would be expected 
under CSR, and hence indicates some degree of clustering at scale h (as illustrated in 

                                                 
11 Readers interested in estimating the true K-function for a given process are referred to Section 8.4.3 in 
Cressie (1993), and to the additional references found therein. 
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Thus by standardizing with respect to density, O , and ignoring edge effects as in (4.4.1), 
we see that the K-function reduces simply to area under the CSR Hypothesis. Note also 
that when 2( )K h hS! , this implies a mean point count higher than would be expected 
under CSR, and hence indicates some degree of clustering at scale h (as illustrated in 

                                                 
11 Readers interested in estimating the true K-function for a given process are referred to Section 8.4.3 in 
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(s location with point)

Mathematical model:  
Interpret dead pixels a spatial point process

What is its distribution? Clusters? Repulsion?



Higher level defect model (Step 1)

Conversion of point process to event process 

  Defect events  Defect pixels



Density based thresholding (Step 2)

Remove areas with local density above threshold 
(medial +1.5 IQR) 
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Point pattern and K-function modified 
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Spatial statistics for detector QA 

• Identify special causes of poor quality 

• Remaining area CSR means general cause of 
poor quality

• Density in remaining area gives global quality 
score for the detector



Collaboration with Terry Speed’s group in 

University of Berkeley, California

Results used by Bay Area Biotech companies

Data quality for cancer prognosis 
and treatment decision

Application of statistical genomics:



Decisions about invasive 
medical treatments

!

Figure Error! No text of specified style in document..1: Decision tree showing all 

possible outcomes of the decision process. 

!

Figure Error! No text of specified style in document..1: Decision tree showing all 

possible outcomes of the decision process. 

!

Figure Error! No text of specified style in document..1: Decision tree showing all 

possible outcomes of the decision process. 

!

Figure Error! No text of specified style in document..1: Decision tree showing all 

possible outcomes of the decision process. 

Cancer treatment decision-making involving 
genomic recurrence risk

Genomic 
test

Personal 
preferences

recurrence 
score (0-100)

Traditional 
lab work

Overall 
health

No 
chemo

Chemo
beliefs, 

quality of live...

Traditional 
lab work

eligibilities for 
treatment choices 

traditional markers

?

‣ Uncertainty,	complex	informa9on	(clinical	tests	e.g.	OncotypeDX)		

‣ Emo9ons	interfering	with	judgement,	mul9ple	decision	makers

Treatment

No 
treatment



• Traditional diagnosis in thyroid cancer 30% inconclusive and lead 
to surgery (plus life long treatment), but 80% turn out to be 
benign tutors

• Afirma avoid half of these surgeries (plus morbidity)

• Potential economics impact for US: $122 million savings

Afirma (Veracyte) in practice:



• Traditional diagnosis in thyroid cancer 30% inconclusive and lead 
to surgery (plus life long treatment), but 80% turn out to be 
benign tutors

• Afirma avoid half of these surgeries (plus morbidity)

• Potential economics impact for US: $122 million savings

Afirma (Veracyte) in practice:

• Crucial step for commercial success: 
control error rates of test

• Essential: Data quality assessment for 
custom made measurement instruments

Statistical requirements:



Genomics 101: 
From DNA to cells



..., stone walls, roof, divided 
into room, glass windows, 
wooden frames, hardwood 

doors,... 

Plan

Textual 
description

Metaphor:  Architecture

Product

Design team

Construction

Casa Loma, Toronto



Plan
(different)

Textual 
description

(same)

Process and product are not deterministic

Product
(different)

Design team

Construction

Hackesche Höfe Berlin (built1906/07)

..., stone walls, roof, divided 
into room, glass windows, 
wooden frames, hardwood 

doors,... 
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Gene expression

• Type of the cell  
• State of cell  
• Developmental stage 

Depends on factors such as:

Gene expression =  
         the gene’s degree of biochemical activity  
         (here: amount of RNA produced by the gene)  

Use to gene expression to detect genes involved 
in cellular processes, diseases, development etc.



Workflow

http://www.nature.com/leu/journal/v17/n7/images/2402974f1.jpg

High throughput 
gene expression 

measurement with 
microarrays

• Assesses expression levels of 
tens of thousands of genes 

• Simultaneously in one 
experiment

http://www.nature.com/leu/journal/v17/n7/images/2402974f1.jpg


- How do we measure gene 
  expression data quality?
- How do we make judgements?
- Why is this relevant?

High throughput gene 
expression measurement
quality assessment toolbox



High dim genomic data QA/QC challenges

• Simultaneous measurements of huge numbers of genes

• Missing or partial ‘gold-standards’

• Unknown correlation structure

• No agreement on models for microarray data

• Measurement taken in a multi-step procedure

• Divorcing technical variation and biological variation

• Systematic errors more relevant than random errors                                                                       

• Platform specific

• Data collections (risk of being swamped with poor quality 
9
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• Tens of thousands of 
genes

• 10-1000 arrays

• Various biological 
conditions (e.g. disease/
control, time points)

• With technical 
replicates

• Note: heterogeneity 
among probes within 
the same probe set
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7.7675
5.6652
4.5565
4.5578
6.1823
6.4154
5.6231
4.5557
3.6569
9.1329

.   .   .

.   .   .

.   .   .

.   
           .

                     .

Background
adjustment

Normalization

Expression 
estimation

Data 
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 RMA Model

    (”Robust Multi Array” (RMA) by Irizarry et al. 2002) 

    Fix gene (probe set).  
                                normalized background corrected PMs
    
    Probe effect           and  Array effect        ,

    and error  
  
      
                              

Yjk = log2

Yjk = βj + αk + εjk

αkβj

 (and sum zero constraint on probe effects)  

Fit with iterative reweighed least square algorithm returning weights



1. Relative Log Expression (RLE):

Median Chip:  median expression over all arrays (gene by gene)

RLE (gene A) in array k = 
     log ratio gene A’s expression in array k and gene A’s median expression

Idea: use RLE distribution for quality assessment (QA)

Interpretation on distribution level, 
based on two biologic assumptions:

(A)  majority of genes similar between different samples 
(B) # upregulated genes = # downregulated genes

Then, good quality is indicated by:

                 Med(RLE)=0            small IQR(RLE)



2. Normalized unscaled standard error (NUSE): 

NUSE  =
Note:
Normalization because of 
heterogeneity in # effective 
probes

1
/√

Wk

medk′1
/√

Wk′

Interpretation based on biologic assumptions

(A)  majority of genes similar between different samples 
(B) # upregulated genes = # downregulated genes

Then, good quality is indicated by:

                 Med(NUSE)=0            small IQR(NUSE)



Weight images: 

3. Quality landscapes

Colour a rectangle by probe weights 
according to their spatial location on array.
   
dark green = low weights (poor quality)

Residual images: 
Same, but with residuals.  
red = positive residuals  
blue = negative residuals

Very helpful for revealing causes for poor quality…



Residual images illustrating poor quality 

www.stat.berkeley.edu/~bolstad/PLMImageGallery/index.html

Fig. J1:  �Bubbles� Fig. J2:  �Circle and Stick� Fig. J3:  �Sunset� Fig. J4:  �Pond� 

Fig. J5:  �Letter S� Fig. J6:  �Compartments� Fig. J7:  �Triangle� Fig. J8:  �Fingerprint� 



MLL - weightsNUSE

Weights



Example for data quality variation between 
biological conditions
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Figure E1. Boxplots of the estimated residual scales for diagnos-
tic subgroups in the St. Jude’s data set, demonstrating notable quality
differences.

bellum) and the dorsolateral prefrontal cortex. With some ex-
ceptions, each sample was hybridized in both Lab M and Lab I.
The NUSE and RLE boxplots (Fig. H1) for the cerebellum data
set display an eye-catching pattern: They show systematically
much better quality in Lab M than in Lab I. This might be
caused by overexposure or saturation effects in Lab I. The me-
dians of the raw intensities (PM) in Lab I are, on a log2-scale,
between about 9 and 10.5, whereas they are very consistently
about 2 to 4 points lower in Lab M. The dorsolateral prefrontal
cortex hybridizations show for the most part a laboratory effect

Figure F2. “Waves.” Weight image for a typical chip in the fruit fly
mutant data set.

similar to the one we saw in the cerebellum chips (plots not
shown here).

(I) Laboratory Differences in Pritzker’s Mood
Disorder Study

After the experiences with laboratory differences in the gen-
der study, the consortium extended their efforts to minimize
these problems. In particular, the machines were calibrated by
Affymetrix specialists. Figure I1 summarizes the quality as-
sessments of three of the Pritzker mood disorder data sets. We
are looking at HU95 chips from two sample cohorts (a total
of about 40 subjects) in each of three brain regions: the anterior
cingulate cortex, cerebellum, and dorsolateral prefrontal cortex.

Figure F1. Series of boxplots of log-scaled PM intensities (a), RLE (b), and NUSE (c) for a comparison of nine fruit fly mutants with three
to four technical replicates each. The patterns below the plot indicate mutants, and the gray levels of the boxes indicate hybridization dates.
Med(RLE), IQR(RLE), Med(NUSE), and IQR(NUSE) all indicate substantially lower quality on the day colored white.
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Figure H1. Series of boxplots of log-scaled PM intensities (a), RLE (b), and NUSE (c) for Pritzker gender study brain samples hybridized
in two labs (some replicates missing). Gray level indicates lab site (dark for Lab M, light for Lab I). The log-scaled PM intensity distributions
are all located around 6 for Lab M, and around 10 for Lab I. These systematic lab site differences are reflected by IQR(RLE), Med(NUSE), and
IQR(NUSE), which consistently show substantially lower quality for Lab I hybridizations than for Lab M hybridizations.

that got onto the chip and inhibited the liquid from spreading
equally over the entire chip.

Figure J7, “Triangle,” is the residual landscape of TEL–
AML1-06. The triangle might be caused by a long foreign ob-
ject stuck to the center of the slide on one end and free, and thus
manipulated by the rotation, on the other end.

Figure J8, “Fingerprint,” is the residual landscape of Hyperdip-
50-C10. What looks like a fingerprint on the picture actually
might be one. With the slide measuring 1 cm × 1 cm, the pat-
tern is about the size of a human fingerprint.

7. DISCUSSION

Quality Landscapes

The residual landscape contains the maximum information.
In the weight pictures, the magnitude of the derivation is pre-
served, but the sign is lost. Therefore, unrelated local defects
can appear indistinguishable in weight landscapes. The land-
scapes provide a first impression of the overall quality of the
array; a square filled with low-level noise typically comes from
a good quality chip, whereas one filled with high-level noise
comes from a chip with uniformly bad probes. If the landscape
reveals any spatial patterns, then the quality may or may not be

compromised, depending on the size of the problematic area.
Even a couple of strong local defects may not lower the chip
quality, as indicated by our measures. The reason for this lies in
both the chip design and the RMA model (1). The probes be-
longing to one probeset are scattered around the chip, ensuring
that a bubble or small scratch would affect only a small number
of the probes in a probeset; even a larger underexposed or over-
exposed area of the chip may affect only a minority of probes in
each probeset. Because the model is fitted robustly, its expres-
sion summaries are shielded against this kind of disturbance.

We found the quality landscape to be most useful in assigning
special causes of poor chip quality. A quality landscape com-
posed of smooth mountains and valleys is most likely caused
by insufficient mixing during the hybridization. Smaller and
sharper cut-out areas of elevated residuals are typically related
to foreign objects (e.g., dust, hair) or air bubbles. Symmetries
can indicate that scratching was caused by rotation of particles
during hybridization. Patterns involving horizontal lines may be
caused by scanner miscalibration. It must be noted that the fore-
going assignments of causes are educated guesses rather than
facts. They are the result of extensive discussions with experi-
mentalists, but there remains a speculative component to them.
Even more hypothetical are some ideas that we have regarding
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Example for a lab bias in data quality



Practical uses of our QA toolbox

• Small labs: concrete feedback on design and 
conduction of experiments

• Core facilities: biases, efficiency, process control

• Controlling error rates in genomic diagnostic tools 
(Afirma, OncotypeDX etc.)

• Quality benchmarking



‘'The applied scientists knows that if he were to act upon the 
meagre evidence sometimes available to the pure scientist, he 
would make the same mistakes as the pure scientist makes in 
estimates of accuracy and precisions.  He also knows that 
through his mistakes someone may lose a lot of money or 
suffer physical injury or both.  [...] 
He does not consider his job simply that of 
doing the best he can with the available data;  
it is his job to get enough data before making 
this estimate.''

Shewhart (1927), Pioneer of industrial QC:

Context dependency of quality
Ask:  What would be the consequences of poor quality?



Thanks to

Gene expression group at UC Berkeley

Biologists (for really bad microarray data)

R and Bioconductor communities (for packages)

Inside out group at University of  Warwick

Perkin Elmer (for lots of dead pixels)


