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Quality assessment for
high-dimensional data:

e Dead pixels in CT scans for 3D printed objects

* Molecular biology in cancer treatment decisions

Dr Julia Brettschneider
Department of Statistics, University of Warwick

see AS & RU THE UNIVERSITY OF

Statistics March 27,2017 WARWICK
'R " BRREERE R R RERE RN




Application
of statistical
genomics:
Cancer
prognosis

verywell

Afirma Thyroid Analysis May Help Patients ...

Q  Search

Afirma Thyroid Analysis May
Help Patients Avoid Surgery

Nodules No Longer Classifed as
Inconclusive or Indeterminate
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The Afirma Thyroid Analysis may help patients
with an indeterminate nodule avoid unnecessary
thyroid surgery. istockphoto

By Mary Shomon - Reviewed by a board-
certified physician.
Updated July 16, 2016

Thyroid cancer is the fastest-
growing cancer in the United States.
There were an estimated 44,670 new
cases in 2010, according to the
American Cancer Society. Along with
the increased awareness of thyroid
cancer comes increased scrutiny of
thyroid nodules. Thanks to more
vigilant monitoring, ultrasounds,
and x-rays, more thyroid nodules are
being detected and evaluated.

When a thyroid nodule is considered
suspicious -- meaning that it has
characteristics that may suggest
thyroid cancer -- the key evaluation
is a fine needle aspiration (FNA)

biopsy.

The FNA biopsy helps determine
whether the nodule is malignant
(thyroid cancer) or benign.




Application of
spatial
statistics:
Dead pixels
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Nintendo Switch owners complain about
dead pixels

By Jane Wakefield
Technology reporter

® 7 March 2017 = Technology « Share

NINTENDO

Some users have reported "annoying" screen glitches

Thousands of owners of Nintendo's new console, Switch, have complained
about dead or stuck pixels creating distracting and annoying dark squares on
their screens.



Dead pixels in detectors
of computed tomography machines

Part of quality control for 3D printed objects

joint project with Warwick Manufacturing Group




Dead pixels

» Occur on detectors of
LCD screens, digital
cameras, CT scanners...

» Quantify damage

Dead pixel locator

Red

| 1 —
White

» Describe characteristics

» Reasons for damage

f

» Speed of decay



X-ray detectors and bad pixel maps

Perkin Elmer
XRD 1621

Readout groups

(

= “Underperforming”
(sensitivity, noise,
uniformity)

= Bad pixel map with
coordinates




Local defects: Dead lines

" Lines on bad pixel images
" From centre horizontal line outwards
m Clusters at the end

Top right area in A_O:
White image [R]




Local defects: Isolated dead pixels

Singles, doubles, small clusters

A O:

A_0: Grey image [R] bp_binary A_0: Black
N image [R] image [R]




L ocal defects: Corners

B 0:Binary bad pixel image [R]




Local defects: Patches

= Areas with high density area of
bad pixels




Point processes and spatial statistics

Mathematical model:
Interpret dead pixels a spatial point process

What is its distribution?
E.g. are there clusters!?




Point processes and spatial statistics

Mathematical model:
Interpret dead pixels a spatial point process

What is its distribution? Clusters? Repulsion?

K-function: for h>0, K(h) is the expected number of
extra points in circle of radius h, rescaled by density

K(h)==+E[N(C,—{s})| N(s)=1] (s location with point)
For stationary processes: Proportional to its area K(h) = Aa(C,)

Under CSR: K(h) = 7(/172'/12) = 7h’
e e



Higher level defect model (Step 1)

Conversion of point process to event process

Defect pixels Defect events




Density based thresholding (Step 2)

Remove areas with local density above threshold
(medial +1.5 IQR)

Density Events Density > threshold

5e-04

TRUE

1e-04 2e-04 3e-04 4e-04
FALSE




Point pattern and K-function modified

K function normed E_0 cropped K-function, Events, nsim=100

Point pattern E_0
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Dead pixels Pixel process K function Event process K function

Completely spatially at
random



Spatial statistics for detector QA

¢ |dentify special causes of poor quality

® Remaining area CSR means general cause of
poor quality

e Density in remaining area gives global quality
score for the detector




Data quality for cancer prognosis

and treatment decision
e

Collaboration with Terry Speed’s group in

University of Berkeley, California

Results used by Bay Area Biotech companies




Decisions about invasive
medical treatments
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Personal

preferences

» Uncertainty, complex information (clinical tests e.g. OncotypeDX)

» Emotions interfering with judgement, multiple decision makers
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Afirma. Percep’m

Enwsm

BRONCHIAL CENOMIC CL CENOMIC CLASSIFI

Reducing unnecessary surgeries in Improving lung cancer screening and
thyroid cancer diagnosis diagnosis

Clarifying the diagnosis of idiopathic
pulmonary fibrosis

LEARN MORE > LEARN MORE > LEARN MORE >

Afirma (Veracyte) in practice:

® Traditional diagnosis in thyroid cancer 30% inconclusive and lead

to surgery (plus life long treatment), but 80% turn out to be
benign tutors

® Afirma avoid half of these surgeries (plus morbidity)

® Potential economics impact for US: $122 million savings



Statistical requirements:

Afirmca.

® Crucial step for commercial success:
control error rates of test

S 4 B ® Essential: Data quality assessment for
educing unnecessary surgeries in

thyroid cancer diagnosis custom made measurement instruments
LEARN MORE >

Afirma (Veracyte) in practice:

® Traditional diagnosis in thyroid cancer 30% inconclusive and lead

to surgery (plus life long treatment), but 80% turn out to be
benign tutors

® Afirma avoid half of these surgeries (plus morbidity)

® Potential economics impact for US: $122 million savings




Genomics 101:
From DNA to cells




Metaphor: Architecture

..., stone walls, roof, divided
Textual into room, glass windows,
« L. wooden frames, hardwood
description

Design team

' |
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Plan

Product



Process and product are not deterministic

..., stone walls, roof, divided .

Textual into room, glass windows, Design team

« e wooden frames, hardwood HeEp ity
description

(same)

Plan
(different)

Product
(different)

Hackesche Hofe Berlin (built1 906/07)



Central Dogma of Molecular Biology

Textual
description

DNA

Plan
RNA

Product
Caell




Gene expression

Gene expression =
the gene’s degree of biochemical activity
(here: amount of RNA produced by the gene)

Depends on factors such as:

e Type of the cell
o State of cell
e Developmental stage

Use to gene expression to detect genes involved
in cellular processes, diseases, development etc.




Workflow

Affymetrix Gene Chip ®

High throughput
gene expression

RNA extraction — i

i

measurement with o

purification and e CTP-biotin
I Iabe"ng by v w biotin-labeled
microarrays HRE
fragmentation — l

(heat + Mg*)
{gﬁf- L e

hybridization —

® Assesses expression levels of
tens of thousands of genes

. Affymetrix array

» (multiple short

" oligonucleotides
per gene)

washing —

+ staining with
streptavidin-PE

® Simultaneously in one L
experiment

laser scanning ——

“absolute”™ gene

computer expression levels

analyses

!

’ BIOINFORMATICS ‘

http://www.nature.com/leu/journal/vl7/n7/images/2402974f| .jpg



http://www.nature.com/leu/journal/v17/n7/images/2402974f1.jpg
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High throughput gene
expression measurement
quality assessment toolbox




High dim genomic data QA/QC challenges

® Simultaneous measurements of huge numbers of genes
® Missing or partial ‘gold-standards’

® Unknown correlation structure

® No agreement on models for microarray data

® Measurement taken in a multi-step procedure

® Divorcing technical variation and biological variation

® Systematic errors more relevant than random errors
® Platform specific

® Data collections (risk of being swamped with poor quality



log probe

log probe

InNtensities Intensities
array | array 2

6.0097 5.2322

7.8997 6.2234

47292 5.3233

6.0237 4.5443

G 5.0233 2.8389
5.5657 7.8223

ene | 7.6687 8.2548
7.341 | 8.9967

47232 7.6755

59112 6.7445

6.2232 6.7899

45557 7.8556

7.8661 7.7675

3.4554 5.6652

7.6998 45565

7.8556 45578

Gene 2 9.344 | 6.1823
8.7552 6.4154

6.8887 5.6231

6.7233 45557

5.6677 3.6569

4.5446 9.1329

Tens of thousands of
genes

10-1000 arrays

Various biological
conditions (e.g. disease/
control, time points)

With technical
replicates

Note: heterogeneity
among probes within
the same probe set




log probe

log probe

InNtensities Intensities
array | array 2

6.0097 5.2322

7.8997 6.2234

47292 5.3233

6.0237 4.5443

G 5.0233 2.8389
5.5657 7.8223

ene | 7.6687 8.2548
7.341 | 8.9967

47232 7.6755

59112 6.7445

6.2232 6.7899

45557 7.8556

7.8661 7.7675

3.4554 5.6652

7.6998 45565

7.8556 45578

Gene 2 9.344 | 6.1823
8.7552 6.4154

6.8887 5.6231

6.7233 45557

5.6677 3.6569

4.5446 9.1329

Data
analysis

Background
adjustment

Normalization

Expression
estimation




RMA Model

("Robust Multi Array” (RMA) by Irizarry et al. 2002)

Fix gene (probe set).

Yj L — ZOQQ normalized background corrected PMs

Probe effect ﬁjand Array effect (v,

and error
Yirk = 0 + ap + €k
(and sum zero constraint on probe effects)

Fit with iterative reweighed least square algorithm returning weights



1. Relative Log Expression (RLE):

Median Chip: median expression over all arrays (gene by gene)

RLE (gene A) in array k =
log ratio gene A’s expression in array k and gene A’s median expression

Idea: use RLE distribution for quality assessment (QA)

Interpretation on distribution level,
based on two biologic assumptions:

(A) majority of genes similar between different samples
(B) # upregulated genes = # downregulated genes

Then, good quality is indicated by:

i b
pi b

Med(RLE)=0 small IQR(RLE)



2. Normalized unscaled standard error (NUSE):

1/\/@ Note:

NUSE = Normalization because of
— heterogeneity in # effective
medy 1/ Wi probes

Interpretation based on biologic assumptions

(A) majority of genes similar between different samples
(B) # upregulated genes = # downregulated genes

Then, good quality is indicated by:

Med(NUSE)=0 small IQR(NUSE)



3. Quality landscapes

Weight images:

Colour a rectangle by probe weights g e
according to their spatial location on array.

dark green = low weights (poor quality)

Residual images:

Same, but with residuals. .»
red = positive residuals |
blue = negative residuals

Very helpful for revealing causes for poor quality...



Residual images illustrating poor quality
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Fig. 2: Fig.)3: “Sunset”

erdip-50-2M#2.CEL

Fig. ]I

Hypodip-2M#3.CEL

TEL-AML1-#6.CEL
e

Fig.J5: “Letter S” Fig.J6: “Compartments” Fig.]7: “Triangle” Fig.)8: “Fingerprint”

www.stat.berkeley.edu/ bolstad/PLMImageGallery/index.html
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Example for data quality variation between

biological conditions
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Figure F1. Series of boxplots of log-scaled PM intensities (a), RLE (b), and NUSE (c) for a comparison of nine
to four technical replicates eac

h. The patterns below the plot indicate mutants, and the gray levels of the boxes

fruit fly mutants with three
indicate hybridization dates.

Med(RLE), IQR(RLE), Med(NUSE), and IQR(NUSE) all indicate substantially lower quality on the day colored white.



Example for a lab bias in data quality
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Figure H1. Series of boxplots of log-scaled PM intensities (a), RLE (b), and NUSE (c) for Pritzker gender study brain samples hybridized
in two labs (some replicates missing). Gray level indicates lab site (dark for Lab M, light for Lab I). The log-scaled PM intensity distributions
are all located around 6 for Lab M, and around 10 for Lab I. These systematic lab site differences are reflected by IQR(RLE), Med(NUSE), and
IQR(NUSE), which consistently show substantially lower quality for Lab I hybridizations than for Lab M hybridizations.



Practical uses of our QA toolbox

® Small labs: concrete feedback on design and
conduction of experiments

e Core facilities: biases, efficiency, process control

e Controlling error rates in genomic diagnostic tools
(Afirma, OncotypeDX etc.)

® Quality benchmarking



Context dependency of quality

Ask: What would be the consequences of poor quality?

Shewhart (1927), Pioneer of industrial QC:

“The applied scientists knows that if he were to act upon the
meagre evidence sometimes available to the pure scientist, he
would make the same mistakes as the pure scientist makes in
estimates of accuracy and precisions. He also knows that
through his mistakes someone may lose a lot of money or
suffer physical injury or both. |[...]

He does not consider his job simply that of
doing the best he can with the available data;

it is his job to get enough data before making
this estimate."
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Thanks to

Gene expression group at UC Berkeley
Biologists (for really bad microarray data)

R and Bioconductor communities (for packages)
Inside out group at University of Warwick

Perkin Elmer (for lots of dead pixels)




