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1 Introduction

As J.W. Tukey famously praised our profession, “the best thing about being a statis-
tician is that you get to play in everyone’s backyard.” Indeed, starting a collaboration
with a scientist has a lot in common with a playdate at a new friend’s house. It leads
the statistician into an unfamiliar world of knowledge with unusual types of chal-
lenges. Unfamiliar rules. New toys. The goals and priorities, however important, are
vaguely defined, and have to be determined and realised in collaboration with the
new friend. New games and tricks arise and spread from the neighbour’s backyard
to their neighbours’ backyards, eventually becoming widely practiced in the com-
munity. As statisticians, our control over the development, the dissemination and the
ownership of methods is limited. Just at the best part of the game, getting the data
into shape and generalising the methods, lab superiors may announce that priorities
have shifted and there is no time for fine tuning the quantitative methodology. Later,
not all members of the community will remember in which backyard the original
idea was established and some believe it happened in their own.

A typical situation to call in a statistician is to find answers in data with un-
familiar characteristics generated by new technologies. In the last two decades,
novel high- throughput gene expression measurement technologies such as microar-
rays and RNA Sequencing have created a strong connection between functional
genomics and statistics. When the first microarray platforms were introduced, the
most intriguing fact about them was the sheer number of genes that could be as-
sayed simultaneously, enabling biologists to adopt new strategies in their quest for
understanding which genes play which roles in a given biological process. Instead
of verifying the role of a specific gene, they could explore which genes are involved
and how they interact. Biologists enthusiastically set up experiments studying ev-
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erything on the genomic level: comparing mutants and wild types, unrevealing cell
division, circadian clock, embryonic development, ageing and many more. Biomed-
ical research looked into the molecular aetiology of complex diseases such as cancer,
Alzheimer’s, schizophrenia and cardio vascular diseases.

In the early days of the new technology, lab practice was dominated by mantras
like microarray pioneer D. Botstein’s: “If I had to replicate my experiments, I could
only do half as much.” Major manufacturers of the new technology would back
up this attitude by conveying the impression that the technology produces high
quality data with occasional outliers, perhaps, but so obviously no effort for sta-
tistical quality monitoring was even needed. Sadly, many microarray based studies
turned out to be inconclusive or irreproducible. Concerns grew, especially in view
of clinical use in diagnosis for treatment individualisation. D. Allison [2] reviews
the epistemological issues in microarray based research. Nature and related jour-
nals published a series of articles about reproducibility and editorial steps to ensure
transparency and robustness in published work were taken nature.com/nature/

focus/reproducibility. Bayer, one of the worlds largest chemical companies,
halted nearly two-thirds of its target-validation projects because in-house experi-
mental findings failed to match published literature claims [3].

The biggest impact statisticians had on the field was a change of attitude in the
users of the new technologies. Better experimental design, improved data prepro-
cessing, systematic data quality control and awareness of the pitfalls of multiple
testing are becoming more frequent in the genomics community at all levels, in-
cluding academic labs, research institutes and industry.

2 Genomics and massively parallel measurement technology

DNA, the chemical structure of genes, is the blueprint of a biological organism. It
is passed on from mother cell to daughter cells by replication. But why are your
brain cells different from your liver cells despite having the same DNA? The molec-
ular explanation is that through biochemical processes the information encoded in
DNA contained in each cell’s nucleus is transcribed into RNA and further translated
into proteins (Fig. 1), the main building block of biological organisms. The amount
of RNA and protein produced by a gene is variable. Depending on circumstances
such as organism, tissue type, time point, developmental stage, disease state and
environmental conditions. The abundance of RNA produced by a gene is called its
expression and can be measured through blotting technologies. Massive parallelisa-
tion of the measurement process came with the introduction of microarrays, glass
surfaces with large numbers of distinct fragments of DNA called probes attached
to it at fixed positions. A fluorescently labelled sample containing a mixture of un-
known quantities of DNA molecules is applied to the microarray. Under the right
chemical conditions, single-stranded fragments of target DNA will base pair with
the probes which are their complements, with great specificity, a reaction is called
hybridisation. The informal industrial standard for microarrays are short oligonu-
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Fig. 1 Central Dogma of
Molecular biology. Genetic
information governs the or-
ganisms through biochemical
processes including tran-
scription, translation and
replication (cell division).

Gene1 AGTGTACGGCTGTCGTGGGCGCGCGTACAGTGGGTAGCCATAGGCTCTCGTAGGGGATGCAGGTCCCGCCGCAAGAGGAGAACAGCGCGATGCTTTTGAAGCTGCAGAATGTCGTGACTGTTTACCCCTTGTTACTAGC
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Fig. 2 Short oligonucleotide gene expression arrays. Each gene is represented by 11-20 probes
scattered across the microarray. The probes are synthesised on the array and can provide expression
measurements for tens of thousands of genes in one biochemical assay.

cleotide microarrays shown in Fig. 2. The intensities measured on the array will
be statistically combined into an expression value estimate for the gene. Another
decade later, the parallelisation of sequencing further progressed gene expression
measurement. RNA sequencing technology is now a more precise (and more costly)
alternative to microarray platforms. In terms of biomedical research, these high-
throughput approaches have opened up entirely new avenues. Rather than experi-
mentally confirming the hypothesised role of a certain candidate gene in a certain
cellular process, they can use genome-wide comparisons to screen for all genes
which might be involved in that process.

3 A quality assessment framework and toolbox

From a statistical point of view, high-throughput gene expression measurement tech-
nologies have created data with a particular profile of challenges: The measurement
is a multi-step biochemical procedure with each step contributing to technical vari-
ation. There also is biological variation between RNA, which can be difficult to
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distinguish from the variation between different species (or different parts of an or-
ganism, or different states). Huge numbers of measurements of molecular species
are being taken in parallel, no gold-standards for a representative number of these
species are available, their correlation structure is unknown and they are affected
non-uniformly by the numerous sources of variation.

In a seminal paper, Brettschneider et al. [1] provide a conceptual framework
for quality assessment (QA) for data obtained by these technologies and offer a
toolbox with a number of concrete methods. The explicit QA goals are manifold,
depending on resources, time and kind of user. Typical phenomena to look for are
outliers, trends or patterns over time, effects of experimental conditions or sample
characteristics, changes between batches, sample cohorts or lab sites, because all of
these sources of variation may potentially interfere with the reproducibility of the
study.

The QA toolbox relies on analysing the collective behaviour of the data after
statistical preprocessing. It provides both numerical and spatial quality assessment.
Some of the measures are tailored to short oligonucleotide microarrays, others can
also be used for data from platforms or RNA sequencing. An extensive discussion of
the application of the QA toolbox to experimental data sets can be found in [1]. Here
we illustrate the main ideas using raw data from a fruit fly experiment by our collab-
orator T. Magelhaes (at the time at Corey Lab, UC Berkeley). The data set includes
89 short oligonucleotide arrays of 19 mutants and wild type with 4 to 5 replicates
each and is available at the National Center for Biotechnology Informations Gene
Expression Omnibus (GSE6515 at ncbi.nlm.nih.gov/geo).

Raw intensities. The most primitive assessment is to consider the distributions
of the raw intensities. We do not consider this a full QA measure, but use them
to study brightness, dimness or saturation, or in combination with more complex
quality measures. For short oligonucleotide arrays raw intensities refer to the PM
values (i.e. intensities obtained by perfect sequence matches on the array), while for
printed microarrays spot intensities could be used.

Relative Log Expression (RLE). This assessment captures the amount of simi-
larity between the overall distribution of the gene expression values of one sample
and the corresponding distributions of other samples in the same data set. It can be
computed from data obtained with any microarray platform as well as with RNA
sequencing technology. First, the data of all samples from an experiment (or batch)
is preprocessed by a suitable algorithm providing one expression value estimate for
each gene in each sample. Then, a median array1 is constructed by calculating,
gene by gene, the median expression value over all samples measured in the experi-
ment. Finally, again gene by gene, the RLE is defined as the difference of the gene’s
log expression in the sample in question to its log expression in the median array.
The result is an RLE distribution for each sample. Their interpretation makes use of
two assumptions that are justified in many experiments. Compared across biological
conditions, about the same amount of genes are unregulated as down regulated, and

1 This terminology stems from microarray technology. If another technology is used this collection
of reference values can be computed the same way, though technically is not an array.
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most genes are not differentially expressed. So, in a good quality array the median of
the RLE (Med(RLE)) is close to 0 and its interquartile range (IQR(RLE)) is small.

The remaining assessment tools are specific to short oligonucleotide arrays and
use probe-level quantities obtained as by-products of the robust multichip analysis
(RMA) algorithm [4]. For a fixed probeset, RMA models the background corrected
normalised intensity yi j of probe j on array i as logyi j = µi +α j + εi j, with α j a
probe affinity effect, µi the log scale expression level for array i, and εi j an i.i.d.
centered error with standard deviation σ , with a zero-sum constraint on the α ′js.
The model can be fitted robustly by iteratively weighted least squares delivering
a probeset expression index µ̂i for each array i and residuals ri j and weights wi j
attached to probe j. Discordant probe intensities get downweighted.

Normalized Unscaled Standard Error (NUSE): This assessment is calcu-
lated for each probeset resulting in the NUSE distribution. Let σ̂ be the esti-
mated residual standard deviation in the RMA model and Wi = ∑ j wi j the total
probe weight (of the fixed probeset) in array i. Its expression value estimate is
µ̂i = ∑ j yi j · wi j

/
Wi with SE(µ̂i) = σ̂

√
∑ j w2

i j

/
Wi. The residual standard devia-

tions vary across the probesets within an array providing an assessment of over-
all goodness of fit, but no information on relative precision of estimated expres-
sions across arrays, so we replace σ̂ by 1. Other sources of heterogeneity are the
probeset-dependent number of “effective” probes (in the sense of being given sub-
stantial weight by RMA) and dysfunctional probes (i.e. having high variabiliy, low
affinity, or a tendency to cross hybridise). To compensate, we divide by its me-
dian over all arrays obtaining the Normalised Unscaled Standard Error (NUSE):

NUSE(µ̂i) =
√

∑ j w2
i j

/
Wi

/
Medianι

{√
∑ j w2

ι j

/
Wι

}
. It can be thought of as the

square root of the sum of the squares of the normalised relative effectiveness of the
probes contributing to the probeset summary (see [1]). Deviations of Med(NUSE)
from 1 or high IQR(NUSE) indicate low quality.

Quality landscapes: Shading the positions in a rectangular grid according to
the magnitude of probe-level quantities (i.e. raw probe intensities, weights or resid-
uals) creates images of the array (e.g. Fig. 3). The collective spatial behaviour of
these quantities can reveal local damage caused e.g. by dust particles, handling, air
bubbles, and spatial inhomogeneity due to insufficient mixing or drying out. The
weights are in a sense the reciprocals of the absolute residuals. The two centre im-
ages show that the sign of the residuals can give additional insight.

Figure 4 shows the QA results for 14 arrays of the jointly analysed full set of
arrays using a series of coloured boxplots. The most obvious fact in this selection
of arrays is that array 1 of the second mutant (violet) has very low PM values.
However, RLE and NUSE testify this array is of average quality. We later found
out that this particular array was hybridised on a differently calibrated machine.
What looked like an outlier according to PM was fixed turned into normal quality
through preprocessing. This is confirmed by the weight landscapes in Fig. 3 showing
only local defects near the edges for array 1, but overall low quality for array 2. In
contrast, arrays 2 and 3 of the same series do not look suspicious in terms of PM, but
RLE and NUSE rate them as lowest quality arrays of the data set of 89 arrays (not
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Fig. 3 Quality landscapes. The small weight landscapes on the left correspond to array 1 and
array 2 of the second mutant (violet in Fig. 4) in the fruit fly dataset. The remaining images are
from preliminary experiments conducted in the same lab. The weight and residual landscapes in
the centre are from the same array. The distribution of the signs of the residuals (visualised as
red versus blue) reveals spatial inhomogeneity. The magnified details (right) of weight landscapes
show typical local defects.

all pictured). The other arrays are of comparable data quality, though noticeably the
last replicate array in both the first (green) and the third (turquoise) mutant seem of
lower quality than the others, again not obvious from just studying the PM boxplots.

PM RLE NUSE

1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 5

Fig. 4 Boxplots of quantities used in QA. Distribution of PM, RLE and NUSE of three different
fruit fly mutants (coloured green, violet and turquoise) in 4 to 5 replicates each.

4 How impact happens

The methodology was disseminated through the journal article [1], preliminary
works quoted there and conference presentations. Its use in practice was acceler-
ated by several factors. Firstly, the methods were fleshed out by many explicit case
studies of typical lab experiments. The journal publication itself discusses 5 data col-
lections covering different designs, lab sizes and biological organisms, and related
publications offer numerous other experimental data examples. In particularly, there
is B. Bolstad’s extraordinary initiative plmimagegallery.bmbolstad.com, a col-

plmimagegallery.bmbolstad.com
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lection of case studies featuring each array’s numerical and spatial QA as well as dis-
cussions about specific technical causes of poor quality. Secondly, the methods were
implemented in freely available software, mostly the open source R-packages affy-
PLM and arrayQualityMetrics from bioconductor.org, but also Chipster, RobiNA
and other genomic data analysis software. Thirdly, the authors built strong links to
users of the technology in academia, research institutes and industry through col-
laboration and advice and through their presence in online forums. We now discuss
the roles the QA toolbox provided by [1] took on for different layers of the scientific
community. Further details, references and more quotes can be found in [7].

Small labs: Academic labs and smaller research institutes run high-throughput
gene expression microarray based studies of up to 100 arrays, sometimes even a
few hundred arrays. Their main purpose of using the QA toolbox is the identifica-
tion of outliers, of technical artefacts and of systematic quality differences between
experimental conditions. This can lead to excluding part of a data set or replication
of poor quality hybridisation. In the worst case, it means replication of the whole
experiment with improved technology or different experimental design. The easily
interpretable quality landscape are particularly popular in small labs, because they
give very concrete feedback about the hybridisations.

Core facilities: Larger genomics facilities in research institutes, hospitals or
companies run industrial style high-throughput measurement operations. In addi-
tion to the QA goals sketched above for small labs, they are interested in process
optimisation and control. In W. Shewhart’s terms, they use the QA toolbox to de-
tect special causes of poor quality through the identification of artefacts and biases
and modify their facility and experimental designs accordingly. The scores based
on raw intensities, RLE and NUSE can be used within established multivariate sta-
tistical process control frameworks. A. Scherer (CEO of Spheromics, formerly at
Novartis and the Australian Genome Research Facility) emphasises the importance
of NUSE distributions to detect batch effects.

Quality benchmarking: The most prominent initiative for benchmarking high-
throughput gene expression measurement quality is the Microarray Quality Control
(MAQC) project led by the US Food and Drug Administration (FDA). It aims at
establishing standards to ensure successful and reliable use in clinical practice and
regulatory decision-making. The QA toolbox has contributed to Phase II of the de-
velopment of MAQC, which aimed to assess and establish best practices for devel-
opment and validation of predictive models for personalised medicine.

Medical diagnosis and treatment decision: Biotech companies have been de-
veloping test based on multivariate gene expression profiles obtained in individ-
ual patients. For example, a test returning a patient’s individual recurrence estimate
helps decide whether or not for this patient the protection provided by adjuvant
chemotherapy outweighs its risks. The QA toolbox has been used by data analysts
involved in the development of such tests. For example, the test Afirma, developed
and validated by the molecular diagnostics company Veracyte, is expected to reduce
the number of surgeries with their attendant morbidity (life-long follow-up treat-
ments) in initially suspected thyroid cancer [5]. The traditional diagnosis produces
up to 30%, inconclusive cases typically resulting in surgery, of which 70%-80% of

bioconductor.org


8 Julia Brettschneider

patients turn out to have benign tumours. Afirma succeeds in avoiding the need for
half of these surgery cases, resulting in expected health care cost savings of $3000
per patient as well as improving patient health outcomes. An economic impact study
concluded that routine use of Afirma in the USA would result in 74%, fewer surg-
eries in patients with benign tumours, corresponding to about $122 million medical
savings [6]. Crucial steps for commercial success were FDA software validation and
convincing clinicians by achieving a negative predictive rate above 94%. According
to Veracyte, a key step was data QA based on RLE distributions from [1]. They shed
light on the sources of variation in their custom-made gene expression microarrays,
detected outliers and guided the removal of artefacts and batch effects arising from
inconsistencies in operator, protocol or sample conditions.

The nature of impact of mathematical and statistical research is typically indi-
rect and unforeseeable. We rephrase questions arising in interdisciplinary collabora-
tions to construct methods applicable to general classes of similar problems, thereby
planting seeds for fundamental long-lasting changes to industrial processes or clin-
ical practice. Whether, when and how one particular seed will come to fruition and
how enthusiastically its fruits will be picked by the scientific community during a
particular time period is a process we can only partially influence. While requiring
our effort at all stages, success of this sort is largely subject to external factors and
chance. This section told the story of a lucky seed, one that grew into a QA toolbox
widely used in the genomics community.
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