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Figure 4.5: Process dynamics in MDPs.

In principle, few restrictions exist on the above elements of M in order to jointly
qualify as an MDP. The primary characteristic of an MDP is the Markov property :
the effects of actions are described by stochastic transitions on the system state that
depend on the last state and action choice only; the sequence of subsequent system
states within a given evolution of the decision process is therefore a Markov chain.
We restrict the discussion of MDPs to cases where the set T is discrete, and the sets
X and A are finite. As in the previous sections, by finiteness of X we mean that X
is a finite set of discrete variables with a finite domain, and therefore the set dom(X)
of system states is also finite. Below, we will first describe the process dynamics
in MDPs. We then turn to criteria to evaluate and compare decision processes,
and to the formulation of decision-making policies for FOMDPs. We conclude the
section with a brief discussion of solution methods, and some remarks on the FOMDP
representation.

Process dynamics

In an MDP model M = (T,A, Θ, R), the set T explicitly denotes the times at which
the decision maker is expected to choose an action; the explicitness in the representa-
tion of these decision moments contrasts with the earlier discussed decision-theoretic
representation formalisms where the notion of time was left implicit. As we take T
to be discrete, we can assume without loss of generality that T = {0, 1, 2, . . .} ⊆ N,
where the ordering < on the natural numbers represents temporal precedence; the
time point t = 0 is called the initial moment of the decision process. When there ex-
ists a finite maximum element N ∈ N in T , the model is said to have a finite horizon
of length N ; otherwise, it is said to have an infinite horizon. In the present discussion,
we will focus on finite-horizon models and make a few remarks on the generalisation
to infinite horizons. Note that in the finite case, the action choice at the final decision
moment t = N is meaningless with respect to evolution of the system state.

The dynamic system under (partial) control by the decision maker is described by a
set X of random variables, where each joint value S ∈ dom(X) represents a possible
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state of that system.1 Similar to the representation of time, state dynamics are made
explicit in MDPs: all the variables in X obtain a new value at each decision moment
(although it is possible that some values have not changed as compared to their
previous values). An expression of the form X = S states that the system occupies
state S ∈ dom(X); we regard the elements of the set X as attributes, each describing
a different aspect of the dynamic system. The number of possible system states equals
|dom(X)| = |ΩX |. The set A represents the actions, or equally, decision alternatives,
that are available to the decision maker at each decision moment. Note that there
are no restrictions on the action-selection procedure: actions may be chosen multiple
times, and it is even possible to repeat a single action all the time. Figure 4.5
schematically depicts the described process dynamics.

The effects of actions on system dynamics are described by the set Θ of time- and
action-dependent transition probability functions, where θt(S, a, S ′), θt ∈ Θ, denotes
the probability that state S ′ ∈ dom(X) results after performing action a ∈ A in state
S ∈ dom(X) at decision moment t ∈ T . In infinite-horizon MDPs, action effects are
usually assumed to be independent of time, i.e. θt = θt′ for all time points t, t′ ∈ T ;
the transition probabilities are then said to be stationary. A special case exists when
the action effects are deterministic, i.e. θt(S, a, S ′) ∈ {0, 1} for all t ∈ T , a ∈ A, and
S, S ′ ∈ dom(X). Then, a given initial system state and sequence of action choices
fixes the evolution of the system over time. Generally speaking, however, the effects
are stochastic and a multitude of evolutions is possible.

We will now introduce some notations to guide the remaining discussion. Let τ ∈ T
be a decision moment. A sequence

σ = S0, . . . , Sτ (4.11)

of subsequent system states (i.e. St ∈ dom(X), t = 0, . . . , τ) represents a potential
evolution of the system and is called a state sequence up to time point τ . If m = |ΩX |
is the cardinality of the state space, there exist mτ+1 different state sequences up to
that time point. A sequence

α = a0, . . . , aτ (4.12)

of subsequent action choices (i.e. at ∈ A, t = 0, . . . , τ) represents concrete decision-
making behaviour and is called an action sequence up to time point τ . If there are
k = |A| different actions to choose from, there exist kτ+1 different action sequences
up to that time point. The pair h = (σ,α) represents a potential realisation of the
decision process and is called a decision-making history. We will use Hτ to denote
the set of all possible histories up to time point τ . The set of full-length histories HN

now represents all potential outcomes of the decision process; the cardinality of HN

is (mk)N+1.

Given an action sequence α = a0, a1, . . . , aτ and an initial state S ∈ dom(X), a (con-

ditional) probability distribution P (S,α)
τ on state sequences up to time point τ ∈ T is

1Recall from Section 3.1 that dom(X) = dom(x1)× · · ·× dom(xn) if X = {x1, . . . , xn}.

Subsequent states
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induced as follows:

P (S,α)
τ (σ) =

τ−1∏

t=0

θt(St, at, St+1) (4.13)

for all state sequences σ = S0, . . . , Sτ having S0 = S, and P (S,α)
τ (σ) = 0 for all other

state sequences. In this probability distribution, the system state at time point t is
independent of the decision-making history given the action choice and system state
at time point t − 1; the sequence of subsequent system states is therefore a Markov
chain. Furthermore, the action aτ at time point τ does not appear in the equation
and is uninfluential. In the overall decision problem, the action choice at the last
decision moment t = N , is therefore irrelevant to the system’s evolution.

Example 4.17 An example MDP model for the VSD domain can be devised as fol-
lows. The set X represents the clinical state of the patient and is composed of the
attributes VSD, resis, shunt, pmhyp, pmart, hfail, and death. There are 6 deci-
sion moments, at respectively 3 months, 6 months, 12 months, 24 months, 4 years,
and 8 years after birth. The available actions, finally, are the modalities available to
the cardiologist to manage a VSD patient: A = {echo, med, cath, surg, biop}. Note
that in this MDP model, spontaneous closure of the VSD is represented implicitly by
diminishing values for the attribute VSD at subsequent decision moments. Similarly,
the Eisenmenger syndrome is represented by increasing values for pmhyp (pulmonary
hypertension) due to pulmonary arteriopathy (pmart=true).

Evaluation criteria

In an MDP model M = (T,A, P,R), the set R comprises reward functions rt,
t ∈ T , that describe time-dependent preferences of the decision maker with respect
to states and actions: rt(S, a), rt ∈ R, denotes the (numerical) reward received when
the decision maker chooses action a ∈ A at time point t ∈ T and the current state
is S ∈ dom(X). It is important to note that this reward value reflects relative
(un)desirability of that state and action at time point t only; states and actions
at other time points are disregarded within the reward functions. Furthermore, re-
ward values may be positive as well as negative; in the latter case one often speaks
of costs. Similar to transition probability functions, we speak of stationary reward
functions when they are independent of time, i.e. when rt = rt′ for all t, t′ ∈ T ; this
is customary for infinite-horizon models. We note that although the action choice
at the final decision moment t = N will not influence the system’s evolution, it does
affect the reward received at that time point.

To rank the potential outcomes h ∈ HN of a decision process, the rewards received at
subsequent time points have to be combined using an evaluation metric. Examples
of such metrics are total reward, average reward, and variations thereof. We focus
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here on the total discounted reward metric, which is defined as

u(h) =
N∑

t=0

λtrt(St, at), (4.14)

where h = (S0, . . . , SN , a0, . . . , aN ), and 0 < λ ≤ 1 is a real-valued discount factor.
The value u(h) is the total discounted reward associated with history h, and is also
referred to as its utility under this metric; when λ = 1, we simply speak of total
reward. From a utility-theoretic point of view, the function u provides a preference
ordering on the set HN of outcomes, where the states and actions at subsequent time
points are taken to be additive-independent attributes of utility. The discount factor
is generally justified economically (as a representation of interest, when the rewards
represent monetary gains), mechanically (as a representation of physical decay), or
psychologically (people tend to care more about near than about distant future).
The discount factor is also a prerequisite to infinite-horizon MDPs, as there would
otherwise be no upper bound on the function u.

Given an action sequence α = a0, . . . , aN , the expected utility ũα(S) of initial system
state S is now defined as

ũα(S) =
∑

h∈HN , h=(σ,α)

u(h) · P (S,α)
N (σ). (4.15)

The decision maker’s objective is to maximise expected utility by choosing an appro-
priate sequence of actions.

Formulation of solutions

As the evolution of the system cannot be predicted with certainty, the decision maker
will have to respond to observations in due course when choosing his actions; other-
wise, expected-utility maximisation is not guaranteed. Under the assumption of full
observability, solving the decision problem formulated by an MDP model therefore
amounts to finding a policy π = {δt | t ∈ T}, where

δt : dom(X)→ A (4.16)

is a decision function prescribing the action choice at time point t ∈ T given the
actual system state. Potentially, there are km different decision functions to choose
from at each time point, where again k = |A| and m = |ΩX |. The number of different
policies is therefore km(N+1)

. If the functions are identical for all time points, i.e.
when δt = δt′ for all t, t′ ∈ T , then the policy is said to be stationary ; the number
of different policies than reduces to km. Stationarity of the policy can be assumed
when both the transition probability and the reward functions are stationary; in that
case, investigating non-stationary policies would not help to increase expected utility.
Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.

Decision node
Operated by Decision Maker 
(DM)

Chance node
Operated by prob. distr. 
(in Economics: “nature”)
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Figure 4.5: Process dynamics in MDPs.
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state of that system.1 Similar to the representation of time, state dynamics are made
explicit in MDPs: all the variables in X obtain a new value at each decision moment
(although it is possible that some values have not changed as compared to their
previous values). An expression of the form X = S states that the system occupies
state S ∈ dom(X); we regard the elements of the set X as attributes, each describing
a different aspect of the dynamic system. The number of possible system states equals
|dom(X)| = |ΩX |. The set A represents the actions, or equally, decision alternatives,
that are available to the decision maker at each decision moment. Note that there
are no restrictions on the action-selection procedure: actions may be chosen multiple
times, and it is even possible to repeat a single action all the time. Figure 4.5
schematically depicts the described process dynamics.

The effects of actions on system dynamics are described by the set Θ of time- and
action-dependent transition probability functions, where θt(S, a, S ′), θt ∈ Θ, denotes
the probability that state S ′ ∈ dom(X) results after performing action a ∈ A in state
S ∈ dom(X) at decision moment t ∈ T . In infinite-horizon MDPs, action effects are
usually assumed to be independent of time, i.e. θt = θt′ for all time points t, t′ ∈ T ;
the transition probabilities are then said to be stationary. A special case exists when
the action effects are deterministic, i.e. θt(S, a, S ′) ∈ {0, 1} for all t ∈ T , a ∈ A, and
S, S ′ ∈ dom(X). Then, a given initial system state and sequence of action choices
fixes the evolution of the system over time. Generally speaking, however, the effects
are stochastic and a multitude of evolutions is possible.

We will now introduce some notations to guide the remaining discussion. Let τ ∈ T
be a decision moment. A sequence

σ = S0, . . . , Sτ (4.11)

of subsequent system states (i.e. St ∈ dom(X), t = 0, . . . , τ) represents a potential
evolution of the system and is called a state sequence up to time point τ . If m = |ΩX |
is the cardinality of the state space, there exist mτ+1 different state sequences up to
that time point. A sequence

α = a0, . . . , aτ (4.12)

of subsequent action choices (i.e. at ∈ A, t = 0, . . . , τ) represents concrete decision-
making behaviour and is called an action sequence up to time point τ . If there are
k = |A| different actions to choose from, there exist kτ+1 different action sequences
up to that time point. The pair h = (σ,α) represents a potential realisation of the
decision process and is called a decision-making history. We will use Hτ to denote
the set of all possible histories up to time point τ . The set of full-length histories HN

now represents all potential outcomes of the decision process; the cardinality of HN

is (mk)N+1.

Given an action sequence α = a0, a1, . . . , aτ and an initial state S ∈ dom(X), a (con-

ditional) probability distribution P (S,α)
τ on state sequences up to time point τ ∈ T is

1Recall from Section 3.1 that dom(X) = dom(x1)× · · ·× dom(xn) if X = {x1, . . . , xn}.
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induced as follows:

P (S,α)
τ (σ) =

τ−1∏

t=0

θt(St, at, St+1) (4.13)

for all state sequences σ = S0, . . . , Sτ having S0 = S, and P (S,α)
τ (σ) = 0 for all other

state sequences. In this probability distribution, the system state at time point t is
independent of the decision-making history given the action choice and system state
at time point t − 1; the sequence of subsequent system states is therefore a Markov
chain. Furthermore, the action aτ at time point τ does not appear in the equation
and is uninfluential. In the overall decision problem, the action choice at the last
decision moment t = N , is therefore irrelevant to the system’s evolution.

Example 4.17 An example MDP model for the VSD domain can be devised as fol-
lows. The set X represents the clinical state of the patient and is composed of the
attributes VSD, resis, shunt, pmhyp, pmart, hfail, and death. There are 6 deci-
sion moments, at respectively 3 months, 6 months, 12 months, 24 months, 4 years,
and 8 years after birth. The available actions, finally, are the modalities available to
the cardiologist to manage a VSD patient: A = {echo, med, cath, surg, biop}. Note
that in this MDP model, spontaneous closure of the VSD is represented implicitly by
diminishing values for the attribute VSD at subsequent decision moments. Similarly,
the Eisenmenger syndrome is represented by increasing values for pmhyp (pulmonary
hypertension) due to pulmonary arteriopathy (pmart=true).

Evaluation criteria

In an MDP model M = (T,A, P,R), the set R comprises reward functions rt,
t ∈ T , that describe time-dependent preferences of the decision maker with respect
to states and actions: rt(S, a), rt ∈ R, denotes the (numerical) reward received when
the decision maker chooses action a ∈ A at time point t ∈ T and the current state
is S ∈ dom(X). It is important to note that this reward value reflects relative
(un)desirability of that state and action at time point t only; states and actions
at other time points are disregarded within the reward functions. Furthermore, re-
ward values may be positive as well as negative; in the latter case one often speaks
of costs. Similar to transition probability functions, we speak of stationary reward
functions when they are independent of time, i.e. when rt = rt′ for all t, t′ ∈ T ; this
is customary for infinite-horizon models. We note that although the action choice
at the final decision moment t = N will not influence the system’s evolution, it does
affect the reward received at that time point.

To rank the potential outcomes h ∈ HN of a decision process, the rewards received at
subsequent time points have to be combined using an evaluation metric. Examples
of such metrics are total reward, average reward, and variations thereof. We focus
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here on the total discounted reward metric, which is defined as

u(h) =
N∑

t=0

λtrt(St, at), (4.14)

where h = (S0, . . . , SN , a0, . . . , aN ), and 0 < λ ≤ 1 is a real-valued discount factor.
The value u(h) is the total discounted reward associated with history h, and is also
referred to as its utility under this metric; when λ = 1, we simply speak of total
reward. From a utility-theoretic point of view, the function u provides a preference
ordering on the set HN of outcomes, where the states and actions at subsequent time
points are taken to be additive-independent attributes of utility. The discount factor
is generally justified economically (as a representation of interest, when the rewards
represent monetary gains), mechanically (as a representation of physical decay), or
psychologically (people tend to care more about near than about distant future).
The discount factor is also a prerequisite to infinite-horizon MDPs, as there would
otherwise be no upper bound on the function u.

Given an action sequence α = a0, . . . , aN , the expected utility ũα(S) of initial system
state S is now defined as

ũα(S) =
∑

h∈HN , h=(σ,α)

u(h) · P (S,α)
N (σ). (4.15)

The decision maker’s objective is to maximise expected utility by choosing an appro-
priate sequence of actions.

Formulation of solutions

As the evolution of the system cannot be predicted with certainty, the decision maker
will have to respond to observations in due course when choosing his actions; other-
wise, expected-utility maximisation is not guaranteed. Under the assumption of full
observability, solving the decision problem formulated by an MDP model therefore
amounts to finding a policy π = {δt | t ∈ T}, where

δt : dom(X)→ A (4.16)

is a decision function prescribing the action choice at time point t ∈ T given the
actual system state. Potentially, there are km different decision functions to choose
from at each time point, where again k = |A| and m = |ΩX |. The number of different
policies is therefore km(N+1)

. If the functions are identical for all time points, i.e.
when δt = δt′ for all t, t′ ∈ T , then the policy is said to be stationary ; the number
of different policies than reduces to km. Stationarity of the policy can be assumed
when both the transition probability and the reward functions are stationary; in that
case, investigating non-stationary policies would not help to increase expected utility.
Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.
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when δt = δt′ for all t, t′ ∈ T , then the policy is said to be stationary ; the number
of different policies than reduces to km. Stationarity of the policy can be assumed
when both the transition probability and the reward functions are stationary; in that
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Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.
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we have P (S,π)
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policy π now equals

ũπ(S) = E
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=
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u(h) · P (S,π)
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The task of computing ũπ(S) for a given policy π and initial state S is called pol-
icy evaluation. We say that a policy is optimal when it maximises ũπ(S) for all
S ∈ dom(X); the task of finding such a policy is called solving the FOMDP. Note
that the utility function must have an upper bound in order to compare policies; this
condition is satisfied when all the reward functions are bounded, and, in the case of
infinite-horizon models, the discount rate λ is smaller than 1.

Solution methods

The standard approach to solving FOMDPs is based on decomposing the decision
process using the Markov property. Define the maximum expected partial utility
ν̃∗t (St) of state St ∈ dom(X) at time point t ∈ T as follows:

ν̃∗t (St) = max
at∈A




rt(St, at) + λ ·
∑

St+1∈dom(X)

θt(St, at, St+1) · ν̃∗t+1(St+1)




 ,(4.19)

if t < N , and ν̃∗N (SN) = maxaN∈A{rN(SN , aN )}, otherwise. The value ν̃∗t (St) is the
maximum expected total reward that is to be received during the future steps of the
decision process. If π∗ is an optimal policy, we have that

ũπ∗(S) = ν̃∗0(S) (4.20)

for all initial system states S ∈ dom(X). The recursion described by Equation 4.19 is
usually named a Bellman equation, after Richard Bellman, the researcher who intro-
duced this method. It reflects the fact in the FOMDP representation, a multi-stage
decision problem can be reduced to a series of inductively-defined single-stage deci-
sion problems. Computational methods based on Bellman equations are generally
referred to as stochastic dynamic programming; as they solve decision problems in re-
verse order are considered to be an efficient form of backward induction. An example
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Figure 4.5: Process dynamics in MDPs.

In principle, few restrictions exist on the above elements of M in order to jointly
qualify as an MDP. The primary characteristic of an MDP is the Markov property :
the effects of actions are described by stochastic transitions on the system state that
depend on the last state and action choice only; the sequence of subsequent system
states within a given evolution of the decision process is therefore a Markov chain.
We restrict the discussion of MDPs to cases where the set T is discrete, and the sets
X and A are finite. As in the previous sections, by finiteness of X we mean that X
is a finite set of discrete variables with a finite domain, and therefore the set dom(X)
of system states is also finite. Below, we will first describe the process dynamics
in MDPs. We then turn to criteria to evaluate and compare decision processes,
and to the formulation of decision-making policies for FOMDPs. We conclude the
section with a brief discussion of solution methods, and some remarks on the FOMDP
representation.

Process dynamics

In an MDP model M = (T,A, Θ, R), the set T explicitly denotes the times at which
the decision maker is expected to choose an action; the explicitness in the representa-
tion of these decision moments contrasts with the earlier discussed decision-theoretic
representation formalisms where the notion of time was left implicit. As we take T
to be discrete, we can assume without loss of generality that T = {0, 1, 2, . . .} ⊆ N,
where the ordering < on the natural numbers represents temporal precedence; the
time point t = 0 is called the initial moment of the decision process. When there ex-
ists a finite maximum element N ∈ N in T , the model is said to have a finite horizon
of length N ; otherwise, it is said to have an infinite horizon. In the present discussion,
we will focus on finite-horizon models and make a few remarks on the generalisation
to infinite horizons. Note that in the finite case, the action choice at the final decision
moment t = N is meaningless with respect to evolution of the system state.

The dynamic system under (partial) control by the decision maker is described by a
set X of random variables, where each joint value S ∈ dom(X) represents a possible

Dynamic system under partial control of DM 
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state of that system.1 Similar to the representation of time, state dynamics are made
explicit in MDPs: all the variables in X obtain a new value at each decision moment
(although it is possible that some values have not changed as compared to their
previous values). An expression of the form X = S states that the system occupies
state S ∈ dom(X); we regard the elements of the set X as attributes, each describing
a different aspect of the dynamic system. The number of possible system states equals
|dom(X)| = |ΩX |. The set A represents the actions, or equally, decision alternatives,
that are available to the decision maker at each decision moment. Note that there
are no restrictions on the action-selection procedure: actions may be chosen multiple
times, and it is even possible to repeat a single action all the time. Figure 4.5
schematically depicts the described process dynamics.

The effects of actions on system dynamics are described by the set Θ of time- and
action-dependent transition probability functions, where θt(S, a, S ′), θt ∈ Θ, denotes
the probability that state S ′ ∈ dom(X) results after performing action a ∈ A in state
S ∈ dom(X) at decision moment t ∈ T . In infinite-horizon MDPs, action effects are
usually assumed to be independent of time, i.e. θt = θt′ for all time points t, t′ ∈ T ;
the transition probabilities are then said to be stationary. A special case exists when
the action effects are deterministic, i.e. θt(S, a, S ′) ∈ {0, 1} for all t ∈ T , a ∈ A, and
S, S ′ ∈ dom(X). Then, a given initial system state and sequence of action choices
fixes the evolution of the system over time. Generally speaking, however, the effects
are stochastic and a multitude of evolutions is possible.

We will now introduce some notations to guide the remaining discussion. Let τ ∈ T
be a decision moment. A sequence

σ = S0, . . . , Sτ (4.11)

of subsequent system states (i.e. St ∈ dom(X), t = 0, . . . , τ) represents a potential
evolution of the system and is called a state sequence up to time point τ . If m = |ΩX |
is the cardinality of the state space, there exist mτ+1 different state sequences up to
that time point. A sequence

α = a0, . . . , aτ (4.12)

of subsequent action choices (i.e. at ∈ A, t = 0, . . . , τ) represents concrete decision-
making behaviour and is called an action sequence up to time point τ . If there are
k = |A| different actions to choose from, there exist kτ+1 different action sequences
up to that time point. The pair h = (σ,α) represents a potential realisation of the
decision process and is called a decision-making history. We will use Hτ to denote
the set of all possible histories up to time point τ . The set of full-length histories HN

now represents all potential outcomes of the decision process; the cardinality of HN

is (mk)N+1.

Given an action sequence α = a0, a1, . . . , aτ and an initial state S ∈ dom(X), a (con-

ditional) probability distribution P (S,α)
τ on state sequences up to time point τ ∈ T is

1Recall from Section 3.1 that dom(X) = dom(x1)× · · ·× dom(xn) if X = {x1, . . . , xn}.

Subsequent states
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induced as follows:

P (S,α)
τ (σ) =

τ−1∏

t=0

θt(St, at, St+1) (4.13)

for all state sequences σ = S0, . . . , Sτ having S0 = S, and P (S,α)
τ (σ) = 0 for all other

state sequences. In this probability distribution, the system state at time point t is
independent of the decision-making history given the action choice and system state
at time point t − 1; the sequence of subsequent system states is therefore a Markov
chain. Furthermore, the action aτ at time point τ does not appear in the equation
and is uninfluential. In the overall decision problem, the action choice at the last
decision moment t = N , is therefore irrelevant to the system’s evolution.

Example 4.17 An example MDP model for the VSD domain can be devised as fol-
lows. The set X represents the clinical state of the patient and is composed of the
attributes VSD, resis, shunt, pmhyp, pmart, hfail, and death. There are 6 deci-
sion moments, at respectively 3 months, 6 months, 12 months, 24 months, 4 years,
and 8 years after birth. The available actions, finally, are the modalities available to
the cardiologist to manage a VSD patient: A = {echo, med, cath, surg, biop}. Note
that in this MDP model, spontaneous closure of the VSD is represented implicitly by
diminishing values for the attribute VSD at subsequent decision moments. Similarly,
the Eisenmenger syndrome is represented by increasing values for pmhyp (pulmonary
hypertension) due to pulmonary arteriopathy (pmart=true).

Evaluation criteria

In an MDP model M = (T,A, P,R), the set R comprises reward functions rt,
t ∈ T , that describe time-dependent preferences of the decision maker with respect
to states and actions: rt(S, a), rt ∈ R, denotes the (numerical) reward received when
the decision maker chooses action a ∈ A at time point t ∈ T and the current state
is S ∈ dom(X). It is important to note that this reward value reflects relative
(un)desirability of that state and action at time point t only; states and actions
at other time points are disregarded within the reward functions. Furthermore, re-
ward values may be positive as well as negative; in the latter case one often speaks
of costs. Similar to transition probability functions, we speak of stationary reward
functions when they are independent of time, i.e. when rt = rt′ for all t, t′ ∈ T ; this
is customary for infinite-horizon models. We note that although the action choice
at the final decision moment t = N will not influence the system’s evolution, it does
affect the reward received at that time point.

To rank the potential outcomes h ∈ HN of a decision process, the rewards received at
subsequent time points have to be combined using an evaluation metric. Examples
of such metrics are total reward, average reward, and variations thereof. We focus
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here on the total discounted reward metric, which is defined as

u(h) =
N∑

t=0

λtrt(St, at), (4.14)

where h = (S0, . . . , SN , a0, . . . , aN ), and 0 < λ ≤ 1 is a real-valued discount factor.
The value u(h) is the total discounted reward associated with history h, and is also
referred to as its utility under this metric; when λ = 1, we simply speak of total
reward. From a utility-theoretic point of view, the function u provides a preference
ordering on the set HN of outcomes, where the states and actions at subsequent time
points are taken to be additive-independent attributes of utility. The discount factor
is generally justified economically (as a representation of interest, when the rewards
represent monetary gains), mechanically (as a representation of physical decay), or
psychologically (people tend to care more about near than about distant future).
The discount factor is also a prerequisite to infinite-horizon MDPs, as there would
otherwise be no upper bound on the function u.

Given an action sequence α = a0, . . . , aN , the expected utility ũα(S) of initial system
state S is now defined as

ũα(S) =
∑

h∈HN , h=(σ,α)

u(h) · P (S,α)
N (σ). (4.15)

The decision maker’s objective is to maximise expected utility by choosing an appro-
priate sequence of actions.

Formulation of solutions

As the evolution of the system cannot be predicted with certainty, the decision maker
will have to respond to observations in due course when choosing his actions; other-
wise, expected-utility maximisation is not guaranteed. Under the assumption of full
observability, solving the decision problem formulated by an MDP model therefore
amounts to finding a policy π = {δt | t ∈ T}, where

δt : dom(X)→ A (4.16)

is a decision function prescribing the action choice at time point t ∈ T given the
actual system state. Potentially, there are km different decision functions to choose
from at each time point, where again k = |A| and m = |ΩX |. The number of different
policies is therefore km(N+1)

. If the functions are identical for all time points, i.e.
when δt = δt′ for all t, t′ ∈ T , then the policy is said to be stationary ; the number
of different policies than reduces to km. Stationarity of the policy can be assumed
when both the transition probability and the reward functions are stationary; in that
case, investigating non-stationary policies would not help to increase expected utility.
Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.
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Given a policy π = {δt | t ∈ T} and an initial system state S ∈ dom(X), a (condi-

tional) probability distribution P (S,π)
τ on histories up to time point τ is induced as

follows:

P (S,π)
τ (h) =

τ−1∏

t=0

θt(St, at, St+1) (4.17)

for all h = (S0, . . . , Sτ , a0, . . . , aτ ) having S0 = S and δt(St) = at; for all other h ∈ Hτ ,

we have P (S,π)
τ (h) = 0. The expected utility ũπ(S) of initial system state S under

policy π now equals

ũπ(S) = E
P

(S,π)
N

(u)

=
∑

h∈HN

u(h) · P (S,π)
N (h). (4.18)

The task of computing ũπ(S) for a given policy π and initial state S is called pol-
icy evaluation. We say that a policy is optimal when it maximises ũπ(S) for all
S ∈ dom(X); the task of finding such a policy is called solving the FOMDP. Note
that the utility function must have an upper bound in order to compare policies; this
condition is satisfied when all the reward functions are bounded, and, in the case of
infinite-horizon models, the discount rate λ is smaller than 1.

Solution methods

The standard approach to solving FOMDPs is based on decomposing the decision
process using the Markov property. Define the maximum expected partial utility
ν̃∗t (St) of state St ∈ dom(X) at time point t ∈ T as follows:

ν̃∗t (St) = max
at∈A




rt(St, at) + λ ·
∑

St+1∈dom(X)

θt(St, at, St+1) · ν̃∗t+1(St+1)




 ,(4.19)

if t < N , and ν̃∗N (SN) = maxaN∈A{rN(SN , aN )}, otherwise. The value ν̃∗t (St) is the
maximum expected total reward that is to be received during the future steps of the
decision process. If π∗ is an optimal policy, we have that

ũπ∗(S) = ν̃∗0(S) (4.20)

for all initial system states S ∈ dom(X). The recursion described by Equation 4.19 is
usually named a Bellman equation, after Richard Bellman, the researcher who intro-
duced this method. It reflects the fact in the FOMDP representation, a multi-stage
decision problem can be reduced to a series of inductively-defined single-stage deci-
sion problems. Computational methods based on Bellman equations are generally
referred to as stochastic dynamic programming; as they solve decision problems in re-
verse order are considered to be an efficient form of backward induction. An example
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Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.
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induced as follows:

P (S,α)
τ (σ) =

τ−1∏

t=0

θt(St, at, St+1) (4.13)

for all state sequences σ = S0, . . . , Sτ having S0 = S, and P (S,α)
τ (σ) = 0 for all other

state sequences. In this probability distribution, the system state at time point t is
independent of the decision-making history given the action choice and system state
at time point t − 1; the sequence of subsequent system states is therefore a Markov
chain. Furthermore, the action aτ at time point τ does not appear in the equation
and is uninfluential. In the overall decision problem, the action choice at the last
decision moment t = N , is therefore irrelevant to the system’s evolution.

Example 4.17 An example MDP model for the VSD domain can be devised as fol-
lows. The set X represents the clinical state of the patient and is composed of the
attributes VSD, resis, shunt, pmhyp, pmart, hfail, and death. There are 6 deci-
sion moments, at respectively 3 months, 6 months, 12 months, 24 months, 4 years,
and 8 years after birth. The available actions, finally, are the modalities available to
the cardiologist to manage a VSD patient: A = {echo, med, cath, surg, biop}. Note
that in this MDP model, spontaneous closure of the VSD is represented implicitly by
diminishing values for the attribute VSD at subsequent decision moments. Similarly,
the Eisenmenger syndrome is represented by increasing values for pmhyp (pulmonary
hypertension) due to pulmonary arteriopathy (pmart=true).

Evaluation criteria

In an MDP model M = (T,A, P,R), the set R comprises reward functions rt,
t ∈ T , that describe time-dependent preferences of the decision maker with respect
to states and actions: rt(S, a), rt ∈ R, denotes the (numerical) reward received when
the decision maker chooses action a ∈ A at time point t ∈ T and the current state
is S ∈ dom(X). It is important to note that this reward value reflects relative
(un)desirability of that state and action at time point t only; states and actions
at other time points are disregarded within the reward functions. Furthermore, re-
ward values may be positive as well as negative; in the latter case one often speaks
of costs. Similar to transition probability functions, we speak of stationary reward
functions when they are independent of time, i.e. when rt = rt′ for all t, t′ ∈ T ; this
is customary for infinite-horizon models. We note that although the action choice
at the final decision moment t = N will not influence the system’s evolution, it does
affect the reward received at that time point.

To rank the potential outcomes h ∈ HN of a decision process, the rewards received at
subsequent time points have to be combined using an evaluation metric. Examples
of such metrics are total reward, average reward, and variations thereof. We focus



Example: Genomic Testing

Hiiiiiih! How are you today?

Good? Well, I’ve got some GREAT news for 
you.  You’ve got a gene variant that means 
you’ve only got a 10% chance for Parkinson’s 
disease before you turn 40 and even after 
that it only increases by 20% annually.  

Sorry for the inconvenience caused, but we 
thought you’d appreciate to know that 
beforehand….. See YAH



Lead time and survival time: 
Genomic testing under three scenarios

• Test result may cause anxiety and apathy during lead time (could be 50 years!)

• Test result may be wrong (e.g. immature research, multiple testing)

• If correct and if treatment is available testing may increase survival time. 

Test result 
(genetic)

Treatment

Death

Death

Death

No treatment available

No testing performed      No treatment available

Diagnosis 
(clinical)

 Time gained

Genomic Testing: Scenarios

Time lost?



Lead time and survival time: 
Genomic testing under three scenarios

• Test result may cause anxiety and apathy during lead time (could be 50 years!)

• Test result may be wrong (e.g. immature research, multiple testing)

• If correct and if treatment is available testing may increase survival time. 

Test result 
(genetic)

Treatment

Death

Death

Death

No treatment available

No testing performed      No treatment available

Diagnosis 
(clinical)

 Time gained

Decision to take a test
• How do we compare outcomes? Cost of lost years?

• What is the loss for living with bad prospects?

• Consider probability weighting (Tversky/Kaneman’s 
Prospect theory)

• Consider cost for others (relatives) who may not have 
asked for the information



Example: Breast Cancer prognosis

Oncotype DX®: 
multigene diagnostic test that determines 
the individual risk of cancer recurrence in 
early-stage invasive breast cancer

Reveals the underlying
tumour biology on the 
molecular level to help 
guide treatment decisions
(adjuvant chemotherapy 
or not)



Medical Treatment DecisionCancer treatment decision-making involving 
genomic recurrence risk

Genomic 
test

Personal 
preferences

recurrence 
score (0-100)

Traditional 
lab work

Overall 
health

No 
chemo

Chemo
beliefs, 

quality of live...

Traditional 
lab work

eligibilities for 
treatment choices 

traditional markers

?

‣ Complex	informa.on	with	uncertainty	(Oncotype	DX)		

‣ Emo.ons	interfering	with	judgement	

‣ Mul.ple	decision	makers	interac.ng	(physicians,	pa.ents,	family/friends)



UG Admissions (unique to UK!)

Students receive offers conditional on their A-level results. 
Decision who gets a conditional offer is based on predicted A-level 
results, previous marks, recommendation letters, etc.



Perspectives in UG Admissions

Student 
Perspective

University 
perspective

Complemen-
tary 

ownership

External force?
But student also 
has control!

Refined 
estimates based 
on predicted 
grades?



Generalised decision trees

• Multiple decision maker who act together/coordinate choice

• Flexible order of nodes 

• Flexible and path-dependent utility 

• Non-numerical outcomes, rank-based utilities

• Path dependencies (not Markov)

• Not all information about probabilities (states) available

• Multiple perspectives

• Multiple times scales for evaluation (decision rules)

Joint decision models?



Game tree

• Moves (choices) of each players at each stage, part of strategy

• Outcomes, pay-offs

• Simultaneous or sequential moves

Simultaneous move 
pay-off matrix



Tree notation
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Section 6 puts this all together in one decision model and builds

decision rules on it. We distinguish di↵erent degrees of locality up

to final decision rules selecting final outcomes. Inspired by Smith’s

notion of introduces the notion of currently judgement optimal [5]

we look at consistency between local and global decision roles. An

important concept is adaptation, which refers to the use of whatever

is available in the awareness range of a decision point.

2. Trees

Trees have long played a central role in probability theory as well

as decision theory; a good review of their usefulness can be found in

[4].

Mathematically, a tree is a finite connected graph without cycles and

with a distinguished vertex ⇢ also called its root. Let T denote the

set of all trees. The root describes generation 0, its neighbours form

generation 1, their other neighbours form generation 2, and so on.

Let T 2 T . Any two vertices x, y 2 T are connected by exactly one

path ⌫T (x, y) and their distance dT (x, y) is defined as the number of

its edges. Let g(x) be the generation of the vertex x. For any n 2 N0,

let gn(T ) = {x 2 T | g(x) = n} be the nth generation of the tree.

The height of the tree is defined as the maximal possible generation

and its diameter is the maximal possible distance between vertices

ht(T ) = max
x2T

g(x) diam(T ) = max
x,y2T

dT (x, y)

By definition, ght(T )(T ) 6= ⇢, but not all paths starting from the root

and heading directly to a leaf need to be of length ht(T ). The set of

all possible individuals of such trees is given by

T = ⇢ [
[

n2N
Nn.

For a vertex y 2 gn(T) with n 2 N, there exists exactly one vertex

x 2 gn�1(T) that is connected to y. The vertex y is called a child of

the mother x and m(y) = x defines the mother map m : gn(T) 7�!
gn�1(T). C(x) = {y 2 T |m(y) = x} is the set of children of x.

Iterating this returns the set of grand children C2, the set of great

grand children

A vertex x 2 T is called leaf if |C(x)| = 0, and the set of leafs

is called L(T ). Note that not all paths starting from the root and

 ,Mathematical notation for the set
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heading directly to a leaf need to be of length ht(T ), but some can

be shorter. Let T 0 = T \ L(T ) = {x 2 T | |C(x)| > 0} be the tree

without its leaves. The mother map can be iterated to identify x’s

grandmother m2(x), great-grandmother m3(x) and so on.

The mother map defines a relation on T by

x � y , mn(y) = x for some n 2 N0

Since � is reflexive, antisymmetric and transitive, (T,�) is a par-

tially ordered set. ⇢ is the least element. The individuals of any

particular tree T 2 T form a finite subset of T, more specifically,

T ✓ ⇢ [
[

n2N
nht(T )

Nn = ⇢ [ g1(T) [ g2(T) [ · · · [ ght(T )(T).

Since the mother map can be restricted on any T 2 T , x � y is

inherited and defines a partial order on T. This coincides with a

traditional definition of a partial order on a tree that is defined by a

circuit free path from ⇢ to y going through x. For each fixed y 2 T,

the set {x 2 T |x � y} is totally ordered by � and we define

dy(x) = |{x 2 T |x � y}|.(1)

For n 2 N, the projection map

⇡n : T �!
[

k2N0
jn

gj(T) with ⇡n(x) =

8
<

:
mg(x)�n(x) if 2 g(x)� n � 0,

x otherwise.

(2)

assigns vertices belonging to generations later than n their ancestor

in generation n. This can be applied to whole tree T 2 T , resulting

in a tree ⇡n(T ) of height n. In the opposite direction, we define the

subtree tree with root x and continuing all the way to the leaves,

i.e., the tree containing x and all its descendants

⇡̂(T )(x) = {y 2 T | y ⌫ x}.(3)

We also define smaller subtrees through restricting it to only n post-x

generations

⇡̂n(T )(x) = {y 2 ⇡̂(T )(x) | dy(x)  n} = {y 2 ⇡̂(T )(x) | g(y)  g(x) + n}.
(4)

The maximal generation of the descendants of x is given by

max{g(y) | y 2 ⇡̂(T )(x)}.(5)
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 i.e. the connected rooted graphs w/o cycles (aka trees): 
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A tree is T 0 2 T called subtree of T if T 0 ✓ T and supertree of T if

T 0 ◆ T.

We need systematic notation to refer to the individual vertices. The

classical Ulam-Harris framework (see e.g. Jagers) identifies vertices

with sequences of natural numbers so that x = (x1, x2, . . . , xn) 2 Nn

denotes the xnth child of the xn�1th child of the . . . and so on up to

the x2th child of the x1th child of the root ⇢.

A tree can be used to describe a structure of events, also called event

tree. Equipping the branches with probabilities is referred to as

probabilising the tree, making it a probability tree (see e.g. Edwards

83).

Trees can be used to describe (sequential) games and decision pro-

cesses, with the tree’s generations representing steps of the process.

The leaves L(T ) correspond to final outcomes. T 0 contains all other

vertices which double function as decision points and intermediate

outcomes. Traditionally, the latter are also called situations. For

each decision point x 2 T 0, the choices are given by the set C(x) of

its children. A function r : T �! R assigns the outcome of each

decision point a raw value from a set R.

3. Ownership

Decision processes are controlled decision makers. We will define

mathematical concepts for di↵erent levels of controls. In this section

we consider cases where each decision point is owned by exactly one

decision maker.

Let B be a set of decision makers. This is normally finite, but it may

be countable in some applications. A decision maker would typically

be a person, but the role could also be taken on by an institution,

a robot or an external force (of which little may be known). The

latter is often referred to as nature in the economics literature.

Definition 1. Decision owner and control tree. Let T 2 T
be a decision tree and � : T 0 �! B a map assigning each decision

point x a decision owner b(x). �T := �(T 0) is called ownership tree

generated by �.

Note that it is justified to refer to �T as a tree because it inherits

the structure of T 0.Traditional examples
• full control
• MDPs
• sequential games

More general examples
• DM may depend on path, not only on step
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T 0 ◆ T.
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classical Ulam-Harris framework (see e.g. Jagers) identifies vertices

with sequences of natural numbers so that x = (x1, x2, . . . , xn) 2 Nn

denotes the xnth child of the xn�1th child of the . . . and so on up to

the x2th child of the x1th child of the root ⇢.

A tree can be used to describe a structure of events, also called event

tree. Equipping the branches with probabilities is referred to as

probabilising the tree, making it a probability tree (see e.g. Edwards

83).

Trees can be used to describe (sequential) games and decision pro-

cesses, with the tree’s generations representing steps of the process.

The leaves L(T ) correspond to final outcomes. T 0 contains all other

vertices which double function as decision points and intermediate

outcomes. Traditionally, the latter are also called situations. For

each decision point x 2 T 0, the choices are given by the set C(x) of

its children. A function r : T �! R assigns the outcome of each

decision point a raw value from a set R.

3. Ownership

Decision processes are controlled decision makers. We will define

mathematical concepts for di↵erent levels of controls. In this section

we consider cases where each decision point is owned by exactly one

decision maker.

Let B be a set of decision makers. This is normally finite, but it may

be countable in some applications. A decision maker would typically

be a person, but the role could also be taken on by an institution,

a robot or an external force (of which little may be known). The

latter is often referred to as nature in the economics literature.

Definition 1. Decision owner and control tree. Let T 2 T
be a decision tree and � : T 0 �! B a map assigning each decision

point x a decision owner b(x). �T := �(T 0) is called ownership tree

generated by �.

Note that it is justified to refer to �T as a tree because it inherits

the structure of T 0.
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In the simplest case one decision maker owns every decision, which

has the side e↵ect of eliminating uncertainty from the decision pro-

cess.

Example 2. Full control. If there is a decision maker b 2 B such

that �(x) = b for all x 2 T 0 then b fully owns or has full control over

the decision process.

The emphasis of this paper are decision processes that involve more

than one decision owner, including non-human ones, and that allow

them to take turns or share ownership of decisions. This includes

classical set ups such as a sole decision owner making decisions in

the presence of uncertainty, or games with several players.

An important subclass is when control over entire steps of the process

is assined to fixed decision makers. Note that this is not generally

the case, because who controls the next step could depend on the

outcomes of previous steps. For example, someone who made a deci-

sion leading to a positive outcome one or more steps later, may gain

influence (see Example ???).

Definition 3. Control of a step. Let n 2 N0. If there is a b 2 B

such that �(x) = b for all x 2 gn(T 0), than b controls the nth step

of the decision process.

Definition 4. Sequential control. If for any n = 0, . . . , ht(T 0)

there is a decision maker b 2 B such that b controls the nth step

then the decision process is sequentially controlled.

Example 5. Traditional 2-person sequential game. N1 are be

odd numbers and N2 are the even numbers and Let B = {b1, b2} and

for x 2 T 0 let

�(x) =

8
<

:
b1 if x is odd,

b2 if x is even.

For example, a sequential game of with two rounds under each play-

ers control is represented by a suitable tree T of height 4 with N1 =

{1, 3} and N1 = {0, 1}.

A more general form of sequential games is when there are finitely

many players, one of them owning the decision in each step, though

not necessarily following a fixed repeated pattern. This corresponds

to the definition of a sequential decision process 4.
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Example 6. Generalised sequential game. Let Nj ⇢ N0, j 2
{1, . . . , J}, be a partition of N0, B = {b1, . . . , bJ} and for x 2 T 0 let

�(x) = bj if x 2 gNj .

A property we want to highlight specifically is if two decision owners

complement each other. This can be aligned with steps, as is the

case in a sequential game examples, but it can also defined for more

general situations, where decision ownership is more dependent on

outcomes, as the example following the definition.

Definition 7. Complementary ownership. Let B be a set of

decision makers and b1, b2 2 B. Two decision makers b1, b2 own

complementary parts of a decision process if

�(x) = b1 () �(x) 6= b2 for all x 2 T 0.

Example 8. Decision sharing. This is a 3-step decision process

where two people b1 and b2 share decision ownership (e.g. two co-

workers dividing up tasks by competence), while a third one (e.g. an

external force) b3 also controls some of the decisions.

�(⇢) = b1,

�(1) = b2,�(2) = b3,

�(11) = b3,�(12) = b1,�(21) = b2,�(22) = b1.

In some models, one or more of the decision makers are distinguished

as representing a form of external control. For example, games

against nature in economic game theory fall into this category. This

and more general layouts are covered by the above formalism, with

one of more coordinates of � representing one or more of such forces.

For illustration, here is a concrete example of a 3-step sequential

decision process that provides a template that involves two decision

makers and one external force.

Example 9. Let T 2 T with ht(T ) = 3. Let b1 and b2 be human

decision makers and b3 be an external force. In the first step of this

decision process, �2 decides whether or not to make a conditional

o↵er to �1. In the second step of the decision process, �1 decides

whether or not to accept it. In the third step, an external force

decides whether or not the condition of the o↵er is fulfilled. The
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as representing a form of external control. For example, games
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one of more coordinates of � representing one or more of such forces.

For illustration, here is a concrete example of a 3-step sequential

decision process that provides a template that involves two decision

makers and one external force.

Example 9. Let T 2 T with ht(T ) = 3. Let b1 and b2 be human

decision makers and b3 be an external force. In the first step of this

decision process, �2 decides whether or not to make a conditional

o↵er to �1. In the second step of the decision process, �1 decides

whether or not to accept it. In the third step, an external force

decides whether or not the condition of the o↵er is fulfilled. The

Ownership does not have to be tied to the step of the decision process. 

Example: Most stages in UG admissions in the UK
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control tree is given by

�(x) =

8
>><

>>:

b1 for all x 2 ⇢,

b2 for all x 2 g1(T 0),

b3 for all x 2 g2(T 0).

All pairs of decision makers in this example are complementary to

each other.

Example 10. Examples for non-sequential process, ideally some-

thing relevant for applications later. For example, a class of exam-

ples representing investigations of some sort. Pick up again in last

section, e.g. criminal case analysis (maybe use concrete example

from Sherlock Holmes in last section), medical diagnostics, environ-

mental pollution, loss of water in a distribution system, repairing

broken machine. Could later have decision maker dependent on ex-

ternal force (under bad conditions) or in one of the decision markers

control, could also depend on covariates (e.g. A-level results based

on private vs state).

So far we have described a crude way of assigning control over deci-

sions in absolute terms, full or none. For many situations, this is too

rigid and the next section is devoted to introducing a softer notion

of decision ownership that we will call decision influence.

4. Influence

To start with, we define influence of decision makers on a decision

at point x 2 T 0. Without further structural properties on the set of

outcomes r(C(x)) ✓ R it is not straight forward how to do that. In

cases where R is ordered or equipped with a metric (e.g.R), influ-
ence could be expressed through combinations of di↵erent decision

makers’ preferences. Such quantitative influence notions will be dis-

cussed further below. For a general spaces R, the key idea is to

add an additional layer to the decision process. The latter will gov-

ern the selection of a decision maker in decision point x 2 T 0 via a

probability distribution who will control that decision.

Definition 11. Influence distribution and influence tree. Let

T 2 T be a decision tree and P = (px)x2T 0 be a family of probability

distributions on a set of decision makers B. For each x 2 T 0 let �px

All DMs are complementary to each other.



Shafer’s Decision Trees

Decision situations

Chance situations

Intermediate situations:
partial control of a 
decision by DM

Intermediate situations



Influence

Intermediate situations decision task: 
Combine choices from more than one decision maker at one decision node.

9

control tree is given by

�(x) =

8
>><

>>:

b1 for all x 2 ⇢,

b2 for all x 2 g1(T 0),

b3 for all x 2 g2(T 0).

All pairs of decision makers in this example are complementary to

each other.

Example 10. Examples for non-sequential process, ideally some-

thing relevant for applications later. For example, a class of exam-

ples representing investigations of some sort. Pick up again in last

section, e.g. criminal case analysis (maybe use concrete example

from Sherlock Holmes in last section), medical diagnostics, environ-

mental pollution, loss of water in a distribution system, repairing

broken machine. Could later have decision maker dependent on ex-

ternal force (under bad conditions) or in one of the decision markers

control, could also depend on covariates (e.g. A-level results based

on private vs state).
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outcomes r(C(x)) ✓ R it is not straight forward how to do that. In

cases where R is ordered or equipped with a metric (e.g.R), influ-
ence could be expressed through combinations of di↵erent decision

makers’ preferences. Such quantitative influence notions will be dis-

cussed further below. For a general spaces R, the key idea is to

add an additional layer to the decision process. The latter will gov-

ern the selection of a decision maker in decision point x 2 T 0 via a

probability distribution who will control that decision.

Definition 11. Influence distribution and influence tree. Let

T 2 T be a decision tree and P = (px)x2T 0 be a family of probability

distributions on a set of decision makers B. For each x 2 T 0 let �px
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be a random variable with distribution px. Then P is called influ-

ence distribution and �P defined by �P (x) = �px (x 2 T 0) is called

influence tree generated by P.

Note that in this set up, the influence decision makers have in a par-

ticular decision point is independent of their influence on other deci-

sion points, but that could be generalised by replacing the pointwise

construction of �P through marginals by a construction that allows

dependencies.

The definition of influence as a quantitative concept is justified by

an interpretation as average. Any given realisation of the random

variable �P defines an ownership tree as in Section 3 with only one

decision maker per decision point. Let (�(i))i2N be a sequence of

independent realisations of the same influence tree �P generated by

P. Then, by Borel’s law of large numbers, with probability 1,

1

n

���
�
i 2 N

�� 1  i  n,�(i)(x) = b
 ��� �! px(b) for n ! 1

for all b 2 B and for each x 2 T 0. That means, the probability that

the decision in x is taken by decision maker b is px(b), which justifies

the interpretation that b has an influence of px(b) on decision point

x.

The concepts ownership and influence can formally be linked by rep-

resenting ownership as a special case of influence using point mea-

sures.

Example 12. [ Given an ownership tree � define the px = ��(x) (x 2
T 0). Then the corresponding influence tree reduces to the original

ownership tree:

�P (x) = ���(x) = �(x) (x 2 T 0).

Some of the theory and examples below will just be spelled out for

influence as the case of ownership can be derived from this.

In analogy to Definition 4 consider the special class of sequential

decision processes. Probability distributions governing the selection

of the decision makers simply need to be applied to entire steps of

the process rather than to the individual vertices.

Definition 13. Sequential influence. Let T 2 T be a decision tree

and P = (pn)n=0,...,ht(T 0) be a family of probability distribution on B.

For n = 0, . . . , ht(T 0) let �n be a random variable with distribution

• Average of preferred choices (assumes algebraic structure)

• Voting models (algorithm to select group preference from individual 
decision makers’ preferences)

• Probability distributions to share ownership in each knot
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Utility and knowledge trees
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pn. Then P is called sequential influence distribution and �P defined

by

�P (x) = �n for all x 2 gn(T
0) (n = 0, . . . , ht(T 0))

is called sequential influence function generated by P.

5. Perspectives

Di↵erent decision makers see the process from di↵erent perspectives

and have di↵erent windows of attention. This is being formalised by

including multiple realisations of traditional decision theory concepts

such as utility and knowledge in the same decision model and by

introducing awareness to allow for more flexible modelling of the

individual’s selected attention.

5.1. Utility. It is common to replace the raw value of a decision

outcome by an interpretation involving a utility function u. One

important modification is to ensure that the appropriate subjective

interpretation is used, that is, the utility used by the owner of the

decision point, either in the deterministic sense (i.e., based on an

ownership tree) or in a probabilistic sense (i.e.,based on an influence

tree). Traditionally, the utility only depends on the final outcome,

but we define utility also for intermediate outcomes of the decision

process, which can be achieved by defining a utility u : T �! R for

the whole tree. In a prospect theory paradigm, the utility function

is replaced by the value function. The concepts developed here can

be applied to this situation as well.

In empirical examples, all ingredients discussed here may be esti-

mated from data. This can include covariates that may depend on

the situation and the decision maker.

Definition 14. Utility tree. Let T 2 T be a decision tree equipped

with an influence tree �P generated by P. For each b 2 B let ub :

R �! R be a the utility of decision maker b. Then the utility tree U

is defined as

U(x) = u�px
(r(x)) (x 2 T ).

It is justified to refer to U as a tree, because the structure is inherited.

The utility in x = ⇢ can also be thought of as a reference or initial

state of the utility. In all decision points the utility can depend on

the decision maker. This allows to consider decision makers with

di↵erent types of utilities a parts of the same decision model.
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P. For each b 2 B let u?b : T ⇥R �! R be the situation dependent

utility of decision maker b. Then the situation dependent utility tree

U⇤ is defined as

U?(x) = u?�px
(x, r(x))) (x 2 T ).

Definition 14 is a special case of Definition 18 using u?b(x, ·) = ub for

all x 2 T.

Apart from allowing preferences depending on decision makers and

situation, rather than raw values only, utility also opens up more

options to define compromises between di↵erent decision makers si-

multaneously influencing the same decision situation. As discussed

at the beginning of Section 4, without making additional assump-

tions on R, such combinations would be done via a probabilistic

combination of their individual decision. Having carried over their

individual preferences to R via utility functions, the can not be com-

bined by rules involving arithmetic operations. For example, a rule

for decision in point x could be to choose the child of x that max-

imises the utility over all children or x and over all decision makers.

(This assumes sensibly normalised utility across decision makers.)

More examples will be discussed in detail in the next section.

5.2. Knowledge. The second aspect that distinguishes decision mak-

ers from each other is the knowledge available to them. We assume

knowledge is described by values from a set S and can be discovered

while moving through the decision process. We present knowledge

using the same tree based notation as for the utility, allowing depen-

dency on the decision situation and the decision maker. In practical

applications, knowledge can e.g. be used to include covariates of an

observed process. Per definition, knowledge would naturally include

the path taken in the decision process so far, though one could choose

to ignore this. We use the knowledge rather than information, be-

cause the latter is often used in decision theory something particular

gained through a specific experiment and quantified through the im-

pact it has on decision making in the sense of deGroot rather than in

Lindsey’s interpretation of a general added value (see e.g. [3]). The

knowledge concept allows both interpretations.

Definition 19. Knowledge tree. Let T 2 T be a decision tree

equipped with an influence tree �P generated by P. For each b 2 B

let b : T �! S be a function that assigns each x 2 T the knowl-

edge available to decision maker b in that decision point. Then the
14

knowledge tree K is defined as

K(x) = �px
(x) (x 2 T ).

5.3. Awareness. The last ingredient distinguishing di↵erent deci-

sion makers’ perspectives is their awareness of the tree and prop-

erties attached to it. For reasons including both cognitive capacity

and emotional constraints they may not use the full tree for their

decision making. We model the awareness separately rather than

hardwiring it into the tree itself to have the flexibility to study the

e↵ects of knowledge selection on the decision outcomes.

This includes their degree of foresight as well as their depth of mem-

ory. Both can be path dependent rather than of a fixed level for each

decision point.

Definition 20. Memory. A function  � : T �! P(T ) on a deci-

sion tree T 2 T is called memory function if for any x 2 T,  �(x)

is connected and x 2  �(x).

Definition 21. Foresight A function  + : T �! T on a decision

tree T 2 T is called foresight function if for any x 2 T, x is the root

of  +(x) and  +(x) ✓ T.

This can be combined to for all decision points and decision makers

involved.

Definition 22. Awareness. Let T 2 T be a decision tree equipped

with an influence tree �P generated by P. For each b 2 B let  �
b

the memory function of band  +
b the memory and foresight trees are

defined as

 �(x) =  �
�px

(x) and  +(x) =  �
�px

(x) for (x 2 T ).

The combination  = ( �, +) is called awareness range.

To look at some examples, we start with decision makers who con-

sider all of the past or all of the available future options.

Example 23. Maximal memory. A memory function  � with

| �(x)| = g(x) for all x 2 T

describes maximal memory, that is, a decision maker who remembers

everything from the beginning of the decision process.
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The definition is formulated for the general case of an influence tree.

For the case of an ownership tree the above construction simplifies

as follows.

Example 15. Utility tree in the ownership case. Let T 2 T
be a decision tree equipped with an ownership tree � on B. For each

b 2 B let ub : R �! R be a the utility of decision maker b. Using the

correspondence in Example 12 the Utility tree U reduces to

U(x) = u�(x)(r(x)) (x 2 T ).

In many traditional examples of decision processes, only the final

outcomes matter. The next example capture this case. We keep

it specific to decision makers, which allows to have both decision

makers consider intermediate outcomes utilities and those who only

consider final outcomes as part of the same model.

Example 16. Final outcomes utility. A decision maker b who

only takes into account the utility of the final outcome is modelled by

a utility function of the form

ub : T ⇥ R 7�! R with u(x, r) = 0 for all x 2 T \ L(T ).

The following class of examples captures the opposite situation.

Example 17. Elephant utility. Assume the utility tree U has the

property

U(x) =
X

⇢�y�x

U(y) for all y 2 T.

This describes a utility that is build up by summing up all utility

accumulated along the way. Concrete examples for this can easily be

constructed iteratively.

Real world situation may be somewhere between these two extremes.

Decision rules can be restricted to considering a certain number of

past steps only.

In Definition 14 utility trees were based only on the raw values using

utility functions that live there, but that way we can not track which

decision situation is being considered. The concept of a utility tree

can also be generalised further to allow dependency on the decision

situation itself.

Definition 18. Situation dependent utility tree. Let T 2 T
be a decision tree equipped with an influence tree �P generated by
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knowledge tree K is defined as
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involved.

Definition 22. Awareness. Let T 2 T be a decision tree equipped

with an influence tree �P generated by P. For each b 2 B let  �
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the memory function of band  +
b the memory and foresight trees are

defined as

 �(x) =  �
�px

(x) and  +(x) =  �
�px

(x) for (x 2 T ).

The combination  = ( �, +) is called awareness range.

To look at some examples, we start with decision makers who con-
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Example 23. Maximal memory. A memory function  � with
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everything from the beginning of the decision process.

Not all available knowledge and utility may be taken into account.

Examples:
• Forgetful (1-step past)
• Amnesia (0-step past)
• Elephant (full past)

• Myopic (1-step future)
• No future (0-step)
• Farsighted (full future)



Awareness
These concepts can be specific to DM (subjective).

Hence need to be applied accordingly using influence distribution.
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Econometrics perspective

Classical
econometrics 
perspective



Ecometrics

Metrika, December 1969, Volume 14, Issue 1, pp 293–301

https://link.springer.com/journal/184
https://link.springer.com/journal/184/14/1/page/1


Agri-environmental-societal 
perspective

Time scale
Short term (e.g. harvest)
Long term (e.g. soil, air, climate)

More decision makers
Environment (e.g. pollinators)
Citizens (e.g. wellbeing, tourism)

Joint decisions (influence) 



Wild pollinators in apple orchardsStephen Brownsey

Plot 2: A scatter plot of honeybee abundance (defined as the log of honeybee abundance
+ 1) vs temperature, the blue line is a loess regression line with a 95% confidence interval
shaded. The red line denotes a simple linear regression line. It demonstrates a non-linear
association between honeybee abundance and temperature.

Plot 3: A density plot of the IUI Post Bloom.

Plot 4: A histogram plot of the IUI During Bloom coloured by region (denoted in the legend).

Correlation between variables was also evaluated to try and see how variables were related to
one another. For example, below is the correlation table associated with all the bee variables,
where the variables are as defined in Section 3.2. In the variable column, Solitary is referred
to as Sol and Social referred to as Soc.
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Stephen Brownsey

Year and Day Total Orchard Visits
Year 1, Day 1 15
Year 1, Day 2 7
Year 2, Day 1 19
Year 2, Day 2 19

From the research carried out, it is known that blooming percentage of the orchard plays
a large factor in the number of bees visiting the flowers and therefore the number caught
during walks of the transect. It is therefore important to understand how these varied from
Day 1 to Day 2 visits, and by different regions:

This Violin Plot of Bloom Index demonstrates how the distributions of the blooming values
vary greatly in each region and on each visit day. In order to reduce misleading artifacts
in the data, it would have been more ideal to have all Day 1 visits at a time with <50%
blooms and all Day 2 visits at a time with >50% blooms (see Section 2.2). There seems to
be little evidence of the Day 1 and Day 2 visits taking place in relation to the bloom values
as would have been hoped.

The distributions of all variables were investigated in order to understand the data and the
effects the variables played on one another. The GGpairs function in R was utilised to
summarise the interactions and distributions of the data as a whole. Violin plots, scatter
plots and distribution plots amongst others were used to visualise the data. In these cases,
a specialised function was written using ggplot2 in R and then all the combinations of plot
sought were passed in as inputs with the use of the lapply function. This ensured the code
was reusable and clean. Some examples of a few of these can be seen below, with plots being
referred to from 1 - 4 as they go from left to right:

Plot 1: Scatter plot of honeybee and wild bees abundance rating vs temperature. It demon-
strates a large variance in both honey and wild bee abundance in relation to temperature.

6

M. G. Park et al., Proceedings of the Royal Society B: Biological Sciences 282, 20150299 (2015) 

Study in New York state

16 orchards over 2 years, data before/after bloom on bloom index, pesticides, 
pollinators etc
Minimise impact of insecticides and herbicides (indirect) on pollinators!



Wild pollinators in apple orchards

• Orchard management is individualised 

• Covariate dependency (e.g. temperature)

• Missing data (mostly 1st year)

• No dates, only phases (“before/during/after bloom”) and bloom 
index varies largely within assessment days

Modelling challenges



Case study: farm scale experiment

J. N. Perry et al., Journal of Applied Ecology 40, 17–31 (2003).
Study in the UK

• Maize, Beet, Spring Oilseed Rape, and Winter Oilseed Rape 

• Records of the impact of growing practices on biodiversity and crop yield: 
herbicide application timings, percentage cover of weeds, crop height, 
biodiversity counts, pollinator counts during the growing season, Met Office 
weather station data, yields

• 65 fields per crop on average 

• Application of herbicides on weeds impacts pollinators



Case study: Farm scale experiment 

• Individual management schemes

• Data in form of complex time courses

• Chemical quantities of pesticides given rather than environmental 
impact measures

• Decision rules

Modelling challenges



Current & future work

• Building trees: normative using expert judgement

• Building trees: data driven using machine learning; goes 
back to random forests (Leo Breiman) actually!

• Time and state dependent covariates

• Decision rules:  What is optimal and for whom?

• Data quality benchmarking and correction: missing data & 
imputation, sampling biases & adjustments

• Local vs global view

• Deviations from rationality
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resource page and resource page for this module

• ST301 https://warwick.ac.uk/fac/sci/statistics/currentstudents/modules/st3/st301and 
resource page for this module

• Parmigiani, Lourdes,  “Decision theory, Principles and Approaches”, Wiley & Sons, 
2009.

• Koerner, "Naive Decision Making: Mathematics Applied to the Social 
World" (Cambridge University Press)

• Petersen, "An Introduction to Decision Theory" (Cambridge Introductions to 
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University Press.
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Education.
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