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Introduction Probability Elicitation Conditions Decisions Preferences Games

Aims

I To give an introduction into how the use of probabilistic
and mathematical ideas can enhance decision making by
providing a framework in which actions can be judged as
sensible or irrational.

I Examples will be given both of games against nature and
games against other rational opponents.
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Objectives

I The student will be taught some of the arguments
underpinning the use of rationality and a definition of
subjective probability.

I They will be taught how to use the simpler tools of decision
analysis as a framework to discover sensible decision rules
which balance quantified uncertainties and payo↵s.

I The course will explain and illustrate some of the issues of
rationality as they apply to games and techniques will be
given which will enable the student to solve some simple
zero sum games.
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Syllabus

Ideas to be presented will include:
I The quantification of subjective belief through probability.
I The EMV decision rule.
I The quantification of subjective preferences.
I The concept of a rational opponent in a two player game.

The course aims to
I Provide an insight into various applications of

mathematical concepts.
I Inform students how they might ensure that their own

decision-making is coherent and rational.

5



Introduction Probability Elicitation Conditions Decisions Preferences Games

Detailed Syllabus

1. Introduction
2. Axiomatic Probability
3. What is Probability
4. Conditional Probability
5. Decisions
6. Preferences and Objectives
7. Games
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Books

There are a great number of books of the subjects of this
course. . .

I You don’t need to buy any of them.
I Many are available in the library.
I Jim Smith has kindly made copies of his “Decision

Analysis: A Bayesian Approach” available at cost price
(⇠ £3.50) from Hilda Cooper’s o�ce.

I James Berger’s “Statistical Decision Theory and Bayesian
Analysis” is a good reference but goes way beyond the
scope of this course.

I Dover republishes many classics, including:
I Thomas’ “Games, Theory and Applications”
I Luce and Rai↵a’s “Games and Decisions”
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Introduction
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The basis of decision analysis

The Problem of the Decision Analyst

This stylised scenario embodies the core problems of decision
analysis:

I You have a client1.
I The client must choose one action from a set of possibilities.
I This client is uncertain about many things, including:

I Her priorities.
Conflicting requirements can be di�cult to resolve.

I What might happen.
Fundamental uncertainty – things not within her control.

I How other people may act.
Other interested parties might influence the outcome.

I You must advise this client on the best course of action.
1This may be yourself, but it is useful to separate the two rôles.
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The basis of decision analysis

A problem of two parts

I Elicitation: Obtain precise answers to several questions:
I What is the client’s problem?
I what does she believe?
I What does she want?

I Calculation: Given this information
I What are its logical implications?
I What should our client do?

Elicitation �! Calculation �! Elicitation �! Calculation �! . . .
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The basis of decision analysis

What does she really want?

Example (Advising a university undergraduate)

What is their objective?
I Getting the best possible degree?
I Trying to get a particular job after university?
I Learning for its own sake?
I Having as much fun as possible?
I A combination of the above?
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The basis of decision analysis

Example (A small business owner)

What is their objective?
I Staying in business?
I Making £X of profit in as short a time as possible?
I Making as much profit as possible in time T?
I Eliminating competition?
I Maximising growth?
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The basis of decision analysis

What does she know?

As well as knowing what our client wants we need to know what
they know:

I What are their options?
I What are the possible consequences of these actions?
I How are the consequences related to the action taken?
I Are any other parties involved? If so, what are their

objectives?
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The basis of decision analysis

Example (Marketing)

I How can we advertise?
I What are the costs of di↵erent approaches?
I What are the e↵ects of these approaches?
I What volume of production is possible?
I What competition do we have?
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The basis of decision analysis

Example (Insurance)

Insurance against a particular type of loss. . .
I Probability of the loss occurring is p⌧ 1.
I Cost of that lost would be, say, £5, 000.
I Insurance premium is £10.

Why are both parties happy with this?

Example (A Simple Lottery)

I P ({Win}) = 1/10, 000
I V alue (Win) = £5, 000
I Ticket price £1.

Why is this acceptable? What about simple variations?
15
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The basis of decision analysis

Is that really what she believes?
It is important to distinguish between that which is believed

from that which is hoped, feared or simply asserted.

Example (Economic forecasting)

Recent forecasts of British GDP growth in 2009:
I -0.1% – International Monetary Fund
I -0.75– -1.25% British Government
I -1.1% Organisation for Economic Co-operation and. . .
I -1.7% Confederation of British Industry
I -2.9% Centre for Economics and Business research

Each organisation has di↵erent objectives & knowledge.
Are they necessarily reliable indications of the underlying
beliefs of these organisations2?

2We will put aside the philosophical questions raised by this concept. . .
16



Introduction Probability Elicitation Conditions Decisions Preferences Games

The basis of decision analysis

Quantification of Subjective Knowledge

Our client has beliefs and some idea about her objective. She
probably isn’t a mathematician. We have to codify things in a
rigorous mathematical framework.
In particular, we must be able to encode:

I Beliefs about what can happen and how likely those things
are to happen.

I The cost or reward of particular outcomes.
I In the case of games: What any other interest parties want

and how they are likely to react.
Having done this, we must use our mathematical skills to work
out how to advise our client.
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The basis of decision analysis

Some Terminology

Before considering details, we should make sure we agree about
terminology.

I In a decision problem we have:
I A (random) source of uncertainty.
I A collection of possible actions.
I A collection of outcomes.

and we wish to choose the action to obtain a favourable
outcome.

I A game is a similar problem in which the uncertainty arises
from the behaviour of a (rational) opponent.
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The basis of decision analysis

From Questions to Answers

Now we need to answer some questions:
1. How can be elicit and quantify beliefs?
2. How can we represent their particular problem

mathematically?
3. How do we represent her objectives quantitatively?
4. What should we advise our client to do?
5. What can we do if other rational agents are involved?

We will begin by answering question 1: we can use probability.
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Probability
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Axiomatic Probability

Foundations of An Axiomatic Theory of Probability

The Russian school of probability is based on axioms.
The abstract specification of probability requires three things:

1. A set of all possible outcomes, ⌦.
The sample space containing elementary events.

2. A collection of subsets of ⌦, F .
Outcomes of interest.

3. A function which assigns a probability to our events:
P : F ! [0, 1]

The probability itself.
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Axiomatic Probability

Example (Simple Coin-Tossing)

I All possible outcomes might be:

⌦ = {H,T}.

I And we might be interested in all possible subsets of these
outcomes:

F = {;, {H}, {T},⌦}.

I In which case, under reasonable assumptions:

P(;) = 0 P({H}) =
1
2

P({T}) =
1
2

P({H,T}) = 1
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Axiomatic Probability

Example (A Tetrahedral (4-faced) Die)

I The possible outcomes are: ⌦ = {1, 2, 3, 4}
I And we might again consider all possible subsets:

F = { ;, {1}, {2}, {3},
{4}, {1, 2}, {1, 3}, {1, 4},

{2, 3}, {2, 4}, {3, 4}, {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

I In this case, we might think that, for any A 2 F :

P(A) = |A|/|⌦| =
Number of values in A

4
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Axiomatic Probability

Example (The National Lottery)

I ⌦ = {All unordered sets of 6 numbers from{1, . . . , 49}}
I F = All subsets of ⌦
I Again, we can construct P from expected uniformity.

I But there are
�
49

6

�
= 13983816 elements of ⌦ and

consequently 213983816 ⇡ 6⇥ 106000000 subsets!
I Even this simple discrete problem has produced an object

of incomprehensible vastness.
I What would we do if ⌦ = R?
I It’s often easier not to work with all of the subsets of ⌦.
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Axiomatic Probability

Algebras of Sets
Given ⌦, F must satisfy certain conditions.

1. ⌦ 2 F
The event “something happening” is in our set.

2. If A 2 F , then

⌦ \ A = {x 2 ⌦ : x 62 A} 2 F

If A happening is in our set then A not happening is too.
3. If A, B 2 F then

A [B 2 F

If event A and event B are both in our set then an event
corresponding to either A or B happening is too.

A set that satisfies these conditions is called an algebra (over ⌦).
25
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Axiomatic Probability

�-Algebras of Sets

If, in addition to meeting the conditions to be an algebra, F is
such that:

I If A
1

, A
2

, · · · 2 F then
1S
i=1

Ai 2 F

If any countable sequence of events is in our set, then the
event corresponding to any one of those events happening

is too.
then F is known as a �-algebra.
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Axiomatic Probability

Example (Selling a house)

I You wish to sell a house, for at least £250,000.
I On Monday you receive an o↵er of X.
I You must accept or decline this o↵er immediately.
I On Tuesday you will receive an o↵er of Y .
I What should you do?

I ⌦ = {(x, y) : x, y � £100, 000}
I But, we only care about events of the form:

{(i, j) : i < j} and {(i, j) : i > j}

I Including some others ensures that we have an algebra:

{(i, j) : i = j} {(i, j) : i 6= j} {(i, j) : i  j} {(i, j) : i � j} ; ⌦
27
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Axiomatic Probability

Atoms
Some events are indivisible and somehow fundamental: An
event E 2 F is said to be an atom of F if:

1. E 6= ;
2. 8A 2 F :

E \A =
⇢

;
or E

Any element of F contains all of E or none of E.
If F is finite then any A 2 F , we can write:

A =
n[

i=1

Ei

for some finite number, n, and atoms Ei of F .

We can represent any event as a combination of atoms.
28
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Axiomatic Probability

Example (Selling a house. . . )

Here, our algebra contained:

{(i, j) : i < j} {(i, j) : i > j} {(i, j) : i 6= j} ;
{(i, j) : i  j} {(i, j) : i � j} {(i, j) : i = j} ⌦

Which of these sets are atoms?
I {(i, j) : i < j} is
I {(i, j) : i > j} is
I {(i, j) : i 6= j} is not – it’s the union of two atoms
I ; is not ; is never an atom
I {(i, j) : i = j} is
I {(i, j) : i  j} is not – it’s the union of two atoms
I {(i, j) : i � j} is not – it’s the union of two atoms
I ⌦ is not – it’s the union of three atoms 29
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Axiomatic Probability

The Axioms of Probability – Finite Spaces
P : F ! R is a probability measure over (⌦,F) i↵:

1. For any A 2 F :
P(A) � 0

All probabilities are positive.
2.

P(⌦) = 1

Something certainly happens.
3. For any3 A, B 2 F such that A \B = ;:

P(A [B) = P(A) + P(B)

Probabilities are (sub)additive.
3
This is su�cient if ⌦ is finite; we need a slightly stronger property in general.
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Axiomatic Probability

The Axioms of Probability – General Spaces [see ST213]
P : F ! R is a probability measure over (⌦,F) i↵:

1. For any A 2 F :
P(A) � 0

All probabilities are positive.
2.

P(⌦) = 1

Something certainly happens.
3. For any A

1

, A
2

, · · · 2 F such that 8i 6= j : Ai \Aj = ;:

P
 1[

i=1

Ai

!
=

1X

i=1

P(Ai).

Probabilities are countably (sub)additive.
31
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Axiomatic Probability

Measures and Masses

I A measure tells us “how big” a set is [see MA359/ST213].
I A probability measure tells us “how big” an event is in

terms of the likelihood that it happens [see ST213/ST318].
I In discrete spaces probability mass functions are often used.

Definition (Probability Mass Function)

If F is an algebra containing finitely many atoms E
1

, . . . , En. A
probability mass function, f , is a function defined for every
atom as f(Ei) = pi with:

I pi 2 [0, 1]

I and
nP

i=1

pi = 1.

32



Introduction Probability Elicitation Conditions Decisions Preferences Games

Axiomatic Probability

Masses to Measures
I Let S = {A

1

, . . . , An} be such that:
I 8i 6= j : Ai \Aj = ;

The elements of S are disjoint.
I [n

i=1Ai = ⌦
S covers ⌦.

I We can construct a finite algebra, F which contains the 2n

sets obtained as finite unions of elements of S.
This algebra is generated by S.

I The atoms of the generated algebra are the elements of S.
I A mass function f on the elements of S defines a

probability measure on (⌦,F):

P(B) =
X

f(Ai)

(the sum runs over those atoms Ai which are contained in B).
33
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What do we mean by probability. . . Objectively?

So what?

So far we’ve seen:
I A mathematical framework for dealing with probabilities.
I A way to construct probability measures from the

probabilities of every elementary event in a discrete
problem.

I A way to construct probability measures from the
probability mass function of a complete set of atoms.

But this doesn’t tell us:
I What probabilities really mean.
I How to assign probabilities to real events. . . dice aren’t

everything!
I Why we should use probability to make decisions.
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What do we mean by probability. . . Objectively?

Geometry, Symmetry and Probability
I If probabilities have a geometric interpretation, we can

often deduce probabilities from symmetries.

Example (Coin Tossing Again)

I Here, ⌦ = {H,T} and F = {;, {H}, {T}, {H,T}}
I Axiomatically: P(⌦) = P ({H,T}) = 1.
I The atoms are {H} and {T}.
I Symmetry arguments suggest that P({H}) = P({T}).

Implicitly, we are assuming that the symbol on the face of
a coin does not influence its final orientation.

I Axiomatically: P({H,T}) = P({H}) + P({T}).
I Therefore: P({H}) = P({T}) = 1/2.
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What do we mean by probability. . . Objectively?

Example (Tetrahedral Dice Again)

I Here, ⌦ = {1, 2, 3, 4} and F is the set of all subsets of ⌦.
I The atoms in this case are {1}, {2}, {3} and {4}.
I Physical symmetry suggests that:

P({1}) = P({2}) = P({3}) = P({4})

I Axiomatically, 1 = P({1, 2, 3, 4}) =
4P

i=1

P({i}) = 4P({1}).

I And we again end up with the expected result P({i}) = 1/4
for all i 2 ⌦.
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What do we mean by probability. . . Objectively?

Example (Lotteries Again)

I ⌦ = {All unordered sets of 6 numbers from{1, . . . , 49}}
I F = All subsets of ⌦
I Atoms are once again the sets containing a single element

of ⌦.
This is usual when |⌦| <1. . .

I As |⌦| = 13983816, we have that many atoms.
I Each atom corresponds to drawing one unique subset of 6

balls.
I We might assume that each subset has equal probability...

in which case:

P({< i
1

, i
2

, i
3

, i
4

, i
5

, i
6

>}) = 1/13983816

for any valid set of numbers < i
1

, . . . , i
6

>.
37
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What do we mean by probability. . . Objectively?

Complete Spatial Randomness and ⇡

I Let (X,Y ) be uniform
over the centred unit
square.

I Define

E =
⇢

(x, y) : x2 + y2  1
4

�

I Now

P((X,Y ) 2 E) =A
circle

/A
square

=⇡ ⇥ (1/2)2/12

=⇡/4
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What do we mean by probability. . . Objectively?

Balls in Urns

I Let I be (discrete) a set of colours.
I An urn contains ni balls of colour

i.
I The probability that a drawn ball

has colour i is:
niP

j2I
nj

We assume that the colour of the
ball does not influence its

probability of selection.
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What do we mean by probability. . . Objectively?

Spinners

a

✓

I P[Stops in purple] = a

I Really a statement about
physics.

I What do we mean by
probability?

40
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What do we mean by probability. . . Objectively?

A Frequency Interpretation
A classical objective interpretation of probabilities.
Consider repeating an experiment, with possible outcomes ⌦, n
times.

I Let X
1

, . . . ,Xn denote the results of each experiment.
I Let A ⇢ ⌦ denote an event of interest (A 2 F).
I If we say P(A) = pA we mean:

lim
n!1

nP
i=1

IA(Xi)

n
= pA

where
IA(Xi) =

⇢
1 if Xi 2 A
0 otherwise

Probabilities are relative frequencies of occurrence.
41
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What do we mean by probability. . . Subjectively?

Subjective Probability

What is the probability of a nuclear war occurring next year?
I First, we must be precise about the question.
I We can’t appeal to symmetry of geometry.
I We can’t appeal meaningful to an infinite ensemble of

experiments.
I We can form an individual, subjective opinion.

If we adopt this subjective view, di�culties emerge:
I How can we quantify degree of belief?
I Will the resulting system be internally consistent?
I What does our calculations actually tell us?
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What do we mean by probability. . . Subjectively?

Bayesian/Behavioural/Subjective Probability

I All uncertainty can be represented via probabilities.
I Inference can be conducted using Bayes rule:

P(✓|y) =
P(y|✓)P(✓)

P(y)

I Later [Bruno de Finetti et al.]: Probability is personalistic

and subjective.

Rev. Thomas Bayes, “An Essay towards solving a Problem in
the Doctrine of Chances”, Philosophical Transactions of the
Royal Society of London (1763). Reprinted as Biometrika
45:293–315 (1958).

http://www.stat.ucla.edu/history/essay.pdf
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What do we mean by probability. . . Subjectively?

A Behavioural Definition of Probability

I Consider a bet, b(M, A), which pays a reward M if A
happens and nothing if A does not happen.

I Let m(M, A) denote the maximum that You would be
prepared to pay for that bet.

I Two events A
1

and A
2

are equally probable if
m(M,A

1

) = m(M,A
2

).
I Equivalently m(M,A) is the minimum that You would

accept to o↵er the bet.
I A value for m(M,⌦ \ A) is implied for a rational being. . .

Personal probability must be a matter of action!
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What do we mean by probability. . . Subjectively?

A Bayesian View of Symmetry

I If A
1

, . . . , Ak are disjoint/mutually exclusive, equally likely

and exhaustive

⌦ = A
1

[ · · · [Ak,

I then, for any i,

P(Ai) =
1
k
.

I Think of the examples we saw before. . .
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What do we mean by probability. . . Subjectively?

Discretised Spinners

I Each of k segments is
equally likely:

P[Stops in purple] = 1/k

I k may be very large.
I Combinations of arcs give

rational lengths.
I Limiting approximations

give real lengths.
I We can describe most

subsets this way [ST213].

46



Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Example (House selling again)

I The three atoms in this case were:

{(i, j) : i > j} {(i, j) : i = j} {(i, j) : i < j}

I No reason to suppose all three are equally likely.
I If our bidders are believed to be exchangeable

P({(i, j) : i > j}) = P({(i, j) : i < j})

I So we arrive at the conclusion that:

P({(i, j) : i > j}) = P({(i, j) : i < j})  1
2

P({(i, j) : i = j}) � 0

I One strategy would be to accept the first o↵er if i > k. . .
47



Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Elicitation

What probabilities does someone assign to a complex event?
I We can use our behavioural definition of probability.
I The urn and spinner we introduced before have

probabilities which we all agree on.
I We can use these to calibrate our personal probabilities.
I When does an urn or spinner bet have the same value as

one of interest.
I There are some di�culties with this approach, but it’s a

starting point.
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What do we mean by probability. . . Subjectively?

A First Look At Coherence

I Consider a collection of events A
1

, . . . , An.
I If

I the elements of this collection are disjoint:
8i 6= j : Ai \Aj = ;

I the collection is exhaustive: [n
i=1Ai = ⌦

then a collection of probabilities p
1

, . . . , pn for these events
is coherent if:

I 8i 2 {1, . . . , n} : pi 2 [0, 1]
I
Pn

i=1 pi = 1

Assertion: A rational being will adjust their personal
probabilities until they are coherent.
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What do we mean by probability. . . Subjectively?

Dutch Books

I A collection of bets which:
I definitely won’t lead to a loss, and
I might make a profit

is known as a Dutch book.
A rational being would not accept such a collection of bets.

I If a collection of probabilities is incoherent, then a Dutch
book can be constructed.
A rational being must have coherent personal probabilities.
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What do we mean by probability. . . Subjectively?

Example (Trivial Dutch Books)

I Consider two cases of incoherent beliefs in the coin-tossing
experiment:

Case 1 P ({H}) = 0.4, P ({T}) = 0.4.
Case 2 P ({H}) = 0.6, P ({T}) = 0.6.

I To exploit our good fortune, in case 1:
I

Place a bet of £X on both possible outcomes.
I Stake is £2X; we win £X/ 2

5 = £5X/2.
I Profit is £(5/2� 2)X = X/2.

I In case 2:
I

Accept a bet of £X on both possible outcomes.
I Stake is £2X; we lose £X/ 3

5 = £5X/3.
I Profit is £(2� 5/3)X = X/3.

51



Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Example (A Gambling Example)

Consider a horse race with the following odds:
Horse Odds
Padwaa 7-1
Nutsy May Morris 5-1
Fudge Nibbles 11-1
Go Lightning 10-1
The Coaster 11-1
G-Nut 5-1
My Bell 10-1
Flu↵y Hickey 15-1

If you had £100 available, how would you bet?
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What do we mean by probability. . . Subjectively?

Example
My own collection of bets looked like this:
Horse Odds Stake
Padwaa 7-1 £14.38
Nutsy May Morris 5-1 £19.17
Fudge Nibbles 11-1 £9.58
Go Lightning 10-1 £10.46
The Coaster 11-1 £9.58
G-Nut 5-1 £19.17
My Bell 10-1 £10.45

Flu↵y Hickey 15-1 £7.19
Outcome: profit of

16⇥£7.19�£99.99 = £(115.04� 99.99) = £(15.05)
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What do we mean by probability. . . Subjectively?

Example
My own collection of bets looked like this:
Horse Odds Implicit P. Stake
Padwaa 7-1 0.125 £14.38
Nutsy May Morris 5-1 0.167 £19.17
Fudge Nibbles 11-1 0.083 £9.58
Go Lightning 10-1 0.091 £10.46
The Coaster 11-1 0.083 £9.58
G-Nut 5-1 0.167 £19.17
My Bell 10-1 0.091 £10.45

Flu↵y Hickey 15-1 0.063 £7.19
Outcome: profit of

16⇥£7.19�£99.99 = £(115.04� 99.99) = £(15.05)
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What do we mean by probability. . . Subjectively?

Example
My own collection of bets looked like this:
Horse Odds Implicit P. Stake S/P

Padwaa 7-1 0.125 £14.38 £115.04
Nutsy May Morris 5-1 0.167 £19.17 £115.02
Fudge Nibbles 11-1 0.083 £9.58 £114.96
Go Lightning 10-1 0.091 £10.46 £115.06
The Coaster 11-1 0.083 £9.58 £114.96
G-Nut 5-1 0.167 £19.17 £115.02
My Bell 10-1 0.091 £10.45 £115.06

Flu↵y Hickey 15-1 0.063 £7.19 £115.04
Outcome: profit of

16⇥£7.19�£99.99 = £(115.04� 99.99) = £(15.05)
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What do we mean by probability. . . Subjectively?

E�cient Markets and Arbitrage

I The e�cient market hypothesis states that the prices at
which instruments are traded reflects all available
information.

I In the world of economics a Dutch book would be referred
to as an arbitrage opportunity: a risk-free collection of
transactions which guarantee a profit.

I The no arbitrage principle states that there are no arbitrage
opportunities in an e�cient market at equilibrium.

I The collective probabilities implied by instrument prices
are coherent.
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Elicitation
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Elicitation of Personal Beliefs

What does she believe?

We need to obtain and quantify our clients beliefs.
Asking for a direct statement about personal probabilities
doesn’t usual work:

I P(A) + P(Ac) 6= 1
I Recall the British economy: people confuse belief with

desire.

A better approach uses calibration: comparison with a standard.
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Elicitation of Personal Beliefs

Example (General Election Results)

Which party you think will win most seats in the next general
election?

I Conservative
I Labour
I Liberal Democrat
I Green
I Monster-Raving Loony

Consider the bet b(£1,Conservative Victory):
I You win £1 if the Conservative party wins.
I You win nothing otherwise.
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Elicitation of Personal Beliefs

Behavioural Approach to Elicitation

Conservative

Not Conservative

£1

£0

In Arc

Not In Arc

£1

£0

a

✓

I We said that A
1

and A
2

are equally

probable if m(M,A
1

) = m(M, A
2

).
I The probability of a Conservative

victory is the same as the probability
of a spinner bet of the same value.

I What must a be for us to prefer the
spinner bet to the political one?
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Elicitation of Personal Beliefs

Eliciting With Urns Full of Balls

Green

Not Green

£1

£0

Conservative

Not Conservative

£1

£0

I If the urn contains:
I n balls
I g of which are green

I Increase g from 0 to n. . .
I Let g? be such that

I The real bet is preferred
when g = g?.

I The urn bet is preferred
when g = g? + 1.

I This tells us that:
I P(C.) � g?/n
I P(C.)  (g? + 1)/n

I Nominal accuracy of 1/n.
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Axiomatic and Subjective Probability Combined

Why should subjective probabilities behave in the same way as
our axiomatic system requires?

I We began with axiomatic probability.
I We introduce a subjective interpretation of probability.
I We wish to combine both aspects. . .

I We briefly looked at “coherence” previously.
I Now, we will formalise this notion.
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Axiomatic and Subjective Probability Combined

Coherence Revisited

Definition
Coherence An individual, I, may be termed coherent if her
probability assignments to an algebra of events obey the
probability axioms.

Assertion
A rational individual must be coherent.

A Dutch book argument in support of this assertion follows.

63



Introduction Probability Elicitation Conditions Decisions Preferences Games

Axiomatic and Subjective Probability Combined

Theorem
Any rational individual, I, must have P(A) + P(Ac) = 1.
Proof: Case 1: P(A) + P(Ac) < 1
Consider an urn bet with n balls.

I Let g?(A) and g?(Ac) be preferred to bets on A and Ac.
I As P(A) + P(Ac), for large enough n and k > 0:

g?(A) + g?(Ac) = n� k.

I (Think of an urn with three types of ball).
I Let bu(n, k) pay £1 if a “k from n” urn-draw wins.
I Bet b(A) pay £1 if event A happens.
I Consider two systems of bets. . .
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Axiomatic and Subjective Probability Combined

I System 1: Su
1

= [bu(n, g?(A)), bu(n, g?(Ac) + k)]

Green

Not Green

£1

£0

Not Green

Green

£1

£0

I System 2: Se
1

= [b(A), b(Ac)]

£1

£0
Ac

A
£1

£0

Ac

A

I I prefers Su
1

to Se
1

and so should pay to win on Su
1

and lose
of Se

1

. . . but everything cancels!
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Axiomatic and Subjective Probability Combined

Case2: P(A) + P(Ac) > 1
I Now, our elicited urn-bets must have

g?(A) + g?(Ac) = n + k

I Consider an urn with g?(A) green balls and g?(Ac)�k blue.
I This time, consider two other systems of bets:

Su
2

= [bu(n, g?(A)), bu(n, g?(Ac)� k)]

Se
2

= [A, Ac]

I The stated probabilities mean, I will pay £c to win on Se
2

and lose on Su
2

.
I Again, everything cancels.

A rational individual won’t pay for a bet which certainly
returns £0. So P(A) + P(Ac) = 1.
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Axiomatic and Subjective Probability Combined

Theorem
A rational individual, I, must set

P(A) + P(B) = P(A [B)

for any A, B 2 F with A \B = ;.
Proof: Case 1 P(A) + P(B) < P(A [B)

I Urn probabilities must be such that:

g?(A) + g?(B) = g?(A [B)� k

I Let
se
3

= [b(A), b(B)]
and

Su
3

= [bu(n, g?(A)), bu(n, g?(B) + k)]
I I will pay £c to win with S3

u which they consider
equivalent to b({A [B} and lose with S3

e . . .
I Hence they will pay to win and lose on equivalent events!

Similar reasoning holds when P(A) + P(B) > P(A [B).
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Axiomatic and Subjective Probability Combined

Example (Football betting)

I Football team C is to play AV .
I A friend says:

P(C) = P(C wins) =
7
8

P(A) = P(AV wins) =
1
3

I This is vexatious. Your revenge is as follows:
I Consider an urn containing 7 balls; 6 are green. . .
I and the “sure-thing” system of bets:

Green

Not Green

£1

£0

Not Green

Green

£1

£0
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Axiomatic and Subjective Probability Combined

Example (continued)

I The two urn bets are inferior to b(C) and b(A), respectively.
I Your friend should pay £c to win on [b(A), b(C)] but lose

on the urn system.
I But logically, b(C) and b(A) are not exhaustive (there may

be a draw).
I So your friend should pay a little to switch back.
I Iterate until your point has been made.
I If your friend refuses argue that their “probabilities” are

meaningless.
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Axiomatic and Subjective Probability Combined

The Cox-Jaynes Axioms

Another view: if we want the following to hold
I Degrees of plausibility can be represented by real numbers,

B.
I Mathematical reasoning should show a qualitative

correspondence with common sense.
I If a conclusion can be reasoned out in more than one way,

then every possible way must lead to the same result.
Then, up to an arbitrary rescaling, B, must satisfy our
probability axioms.
See “Probability Theory: The Logic of Science” by E. T. Jaynes
for a recent summary of these results.

70



Introduction Probability Elicitation Conditions Decisions Preferences Games

Axiomatic and Subjective Probability Combined

Caveat Mathematicus

There are several points to remember:
I Subjective probabilities are subjective.

People need not agree.
I Elicited probabilities should be coherent.

The decision analyst must ensure this.
I Temporal coherence is not assumed or assured.

You are permitted to change your mind.

The latter is re-assuring, but how should we update our beliefs?
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Conditions
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Conditional Probability

Conditional Probabilities

I The probability of one event occurring given that another
has occurred is critical to Bayesian inference and decision
theory.

I If A and B are events and P(B) > 0, then the conditional

probability of A given B (i.e. conditional upon the fact that
B is known to occur) is:

P(A|B) = P(A \B)/P(B)

I This amounts to taking the restriction of P to B and
renormalizing.
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Conditional Probability

Example (Cards)

I Consider a standard deck of 52 cards which is well shu✏ed.
I Let A be the event “drawing an ace”.
I Let B be the event “drawing a spade”.
I If we believe that each card is equally probable:

P(A) =4/52 = 1/13
P(B) =13/52 = 1/4

P(A|B) =P(A \B)/P(B)
=1/52/13/52 = 1/13

I Knowing that a card is a spade doesn’t influence the
probability that it is an ace.
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Conditional Probability

Example (Cards Again)

I Consider a standard deck of 52 cards which is well shu✏ed.
I Let A0 be the event “drawing the ace of spades”.
I Let B be the event “drawing a spade”.
I If we believe that each card is equally probable:

P(A0) =1/52
P(B) =13/52 = 1/4

P(A0|B) =P(A0 \B)/P(B)
=1/52/13/52 = 1/13

I Knowing that a card is a spade does influence the
probability that it is the ace of spades.
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Conditional Probability

Called-o↵ Bets

I We must justify the interpretation of conditional
probabilities within a subjective framework.

I Consider a called-o↵ bet b(A|B) which pays
I

£1 if A happens and B happens,
I nothing if B happens but A does not
I nothing and is called o↵ (stake is returned) if B does not

happen.

B

Called OffNot B

A

Not A

£1

£0

I How would a rational being value such a bet?
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Conditional Probability

Theorem (Conditional Probability and Called-O↵ Bets)

A rational individual, I, with subjective probability measure P
must assess the called-o↵ bet b(A|B) as having the same value

as a simple bet on an event with probability P(A|B).
Outline of proof:

I Consider a simple bet with 4 possible outcomes
(A \B,A \Bc, Ac \B and Ac \Bc).

I Given an urn containing n balls, let nAB be red, nABc be
blue, nAcB be green and nAcBc be yellow.

I Choose that I is indi↵erent to bets on the four outcomes
and the four colours of ball.
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Conditional Probability

I Logically, a bet on B or Bc is of the same value as one on
(red or blue) or on (green or yellow)

I Consider a second bet: B occurs. What are the
probabilities I attaches to A and Ac conditional upon this?

I Given an urn with m balls, let mA and mAc be the number
of red and blue balls.

I Let mA and mAc be chosen such that I is indi↵erent to the
two bets.

I By equivalence/symmetry arguments, we may deduce that:
nAB + nAcB

n
⇥ mA

m
=

nAB

n

I Hence
mA

m
=

nAB

nAB + nAcB
=

P(A \B)
P(A \B) + P(A \Bc)
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Conditional Probability

Independence
Some events are unrelated to one another. That is, sometimes
knowing that an event B occurs tells us nothing about how
probable it is that a second event, A, also occurs.

Definition (Independence)

Events A and B are independent if:

P(A \B) = P(A)⇥ P(B)

and this can be written as A ?? B.
If A and B are independent and of positive probability, then:

P(A|B) =P(A)
P(B|A) =P(B)

Learning about one doesn’t influence our beliefs about the
other. 79
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Useful Probability Formulæ

The Law of Total Probability
I Let B

1

, . . . , Bn partition the space:
n[

i=1

Bi =⌦

Bi \Bj =; 8i 6= j

I Let A be another event.
I It is simple to verify that:

A =
n[

i=1

(Bi \A)

I And hence that:

P(A) =
nX

i=1

P(A \Bi)

I This is sometimes termed the law of total probability. 80
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Useful Probability Formulæ

The Partition Formula

Theorem (The Partition Formula)

If B
1

, . . . , Bn partition ⌦, then:

P(A) =
nX

i=1

P(A|Bi)P(Bi)

Proof:
By the law of total probability:

P(A) =
nX

i=1

P(A \Bi)

and P(A \Bi) = P(A|Bi)P(Bi) by definition of P(A|Bi).
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Useful Probability Formulæ

Example (Buying a house)

I Your client wishes to decide whether to buy a house.
I If A = [Making a loss when buying the house.]
I It might be easier to elicit probabilities for component

events:
P(A) =

X

i

P(A|Bi)P(Bi)

where

E
1

=[Inflation is low.]
E

2

=[Inflation is high; salary rises]
E

1

=[Inflation is high; salary doesn’t rise]
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Useful Probability Formulæ

Bayes’ Rule
The core of Bayesian analysis is the following elementary result:

Theorem
If A and B are events of positive probability, then:

P(A|B) =
P(A)P(B|A)

P(B)

=
P(A)P(B|A)

P(A)P(B|A) + P(Ac)P(B|Ac)

Proof: This follows directly from the definition of conditional

probability:

P(A|B)P(B) = P(A \B) = P(B|A)P(A)

This allows us to update our beliefs.
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Useful Probability Formulæ

Example (Disease Screening)

Consider screening a rare disease.

A =[Subject has disease.]
B =[Screening indicates disease.]

If P(A) = 0.001, P(B|A) = 0.9 and P(B|Ac) = 0.1 then:

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)

=
0.9⇥ 0.001

0.9⇥ 0.001 + 0.1⇥ 0.999
=0.0089

Think about what this means. . .

screening requires small P(B|Ac)
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Useful Probability Formulæ

Some Bayesian Terminology

I In the previous example P(A) is the prior probability of the
subject carrying the disease.

That is, the probability assigned to the event before the
observation of data.

I Given that event B is observed, P(A|B) is termed the
posterior probability of A.

That is, the probability assigned to the event after the
observation of data.

I Note that these aren’t absolute terms: in a sequence of
experiments the posterior distribution from one stage may
serve as the prior distribution for the next.
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Random Variables and Expectations

Random Variables

I So far we have talked only about events.
I It is useful to think of random variables in the same

language.
I Let X be a “measurement” which can take values

x
1

, . . . , xn.
I let F be the algebra generated by X .
I If we have a probability measure, P, over F then X is a

random variable with law P.
I A probability mass function is su�cient to specify P.
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Random Variables and Expectations

Example (Roulette)

I Consider spinning a roulette wheel with n(r) = n(b) = 18
red/black spots and n(g) = 1 green one.

I Set X to 1 if the ball stops in a red region, 2 for a black
one and 20 for a green.

I Under a suitable assumption of symmetry, the probability
mass function is:

P[X = 1] =n(r)/n

P[X = 2] =n(g)/n

P[X = 20] =n(b)/n
where n = n(r) + n(g) + n(b) = 37 normalises the
distribution.
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Random Variables and Expectations

Independence of Random Variables

As you might expect, the concept of independence can also be
applied to random variables.

Definition
Random variables, X and Y , are independent if for all possible
xi, yj :

P[X = xi, Y = yj ] = P[X = xi]P[Y = yj ]
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Random Variables and Expectations

[Mathematical] Expectation

It is useful to have a mathematical idea of the expected value of
a random variable: a weighted average of its possible values
that behaves as a “centre of probability mass”.

Definition
The expectation of a random variable, X, is:

E [X] =
X

i

xi ⇥ P[X = xi]

where the sum is taken over all possible values.
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Random Variables and Expectations

Useful Properties of Expectations
I Expectation is linear:

E [aX + bY + c] = aE [X] + bE [Y ] + c

I The expectation of a function of a random variable is:

E [f(X)] =
X

i

f(xi)⇥ P[X = xi]

where the sum is over all possible values.
I One interpretation: a function of a random variable is itself

a random variable.
I If X takes values in xi 2 ⌦ with probabilities P[X = xi]

then f(X) takes values f(xi) in f(⌦):

P[f(X) = f(xi)] = P[X = xi].
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Random Variables and Expectations

Example (Die Rolling)

Consider rolling a six-sided die:
I ⌦ = {1, 2, 3, 4, 5, 6}
I Let X be the number rolled.
I Under a symmetry assumption:

8x 2 ⌦ : P[X = x] = 1/6

I Hence, the expectation is:

E [X] =
X

x2⌦

xP[X = x]

=
6X

x=1

xP[X = x]

=21⇥ 1/6 = 7/2
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Random Variables and Expectations

Example (A Roulette Wheel Again)

I Recall the roulette random variable introduced earlier.

E [X] =
X

xi

xi ⇥ P[X = xi]

=1⇥ P[X = 1] + 2⇥ P[X = 2] + 20⇥ P[X = 20]
=1⇥ n(r)/n + 2⇥ n(b)/n + 20⇥ n(g)/n

=(n(r) + 2⇥ n(b) + 20⇥ n(g))/n = (18 + 36 + 20)/37 = 2

I Whilst, considering f(x) = x2 we have:

E
⇥
X2

⇤
=E [f(X)]

=12 ⇥ P[X = 1] + 22 ⇥ P[X = 2] + 202 ⇥ P[X = 20]
=(n(r) + 4⇥ n(b) + 400⇥ n(g))/n = 490/37
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Decisions
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Decision Problems

Decision Ingredients

The basic components of a decision analysis are:
I A space of possible decisions, D.
I A set of possible outcomes, X .

By choosing an element of D you exert some influence over
which of the outcomes occurs.

Definition (Loss Function)

A loss function, L : D ⇥ X ! R relates decisions and outcomes.
L(d, x) quantifies the amount of loss incurred if decision d is
made and outcome x then occurs.

An algorithm for choosing d is a decision rule.
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Decision Problems

Example (Insurance)

I You must decide whether to pay c to insure your
possessions of value v against theft for the next year:

d = {Buy Insurance,Don’t Buy Insurance}

I Three events are considered possible over that period:

x
1

={No thefts.} x
2

={Small theft, loss 0.1v}
x

3

={Serious burglary, loss v}

I Our loss function may be tabulated:

L(d, x) x
1

x
2

x
3

Buy c c c
Don’t Buy 0 0.1v v

95



Introduction Probability Elicitation Conditions Decisions Preferences Games

Decision Problems

Uncertainty in Simple Decision Problems

I As well as knowing how desirable action/outcome pairs are,
we need to know how probable the various possible
outcomes are.

I We will assume that the underlying system is independent
of our decision.

I Work with a probability space ⌦ = X and the algebra
generated by the collection of single elements of X .

I It su�ces to specify a probability mass function for the
elements of X .

I One way to address uncertainty is to work with
expectations.
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Decision Problems

Example (Insurance Continued)

I There are 25 million occupied homes in the UK (2001
Census).

I Approximately 280,000 domestic burglaries are carried out
each year (2007/08 Crime Report)

I Approximately 1.07 million acts of “theft from the house”
were carried out.

I We might näıvely assess our pmf as:

p(x
1

) =
25� 1.07� 0.28

25
= 0.946

p(x
2

) =
1.07
25

= 0.043

p(x
3

) =
0.28
25

= 0.011
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Decision Problems

The EMV Decision Rule

I If we calculate the expected loss for each decision, we
obtain a function of our decision:

L̄(d) = E [L(d,X)] =
X

x2X
L(d, x)⇥ p(x)

I The expected monetary value strategy is to choose d?, the
decision which minimises this expected loss:

d? = arg min
d2D

L̄(d)

I This is sometimes known as a Bayesian decision.
I A justification: If you make a lot of decisions in this way

the you might expect an averaging e↵ect. . .
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Decision Problems

Example (Still insurance)

I Here, we had a loss function:
L(d, x) x

1

x
2

x
3

Buy c c c
Don’t Buy 0 0.1v v

I And a pmf:

p(x
1

) =0.946 p(x
2

) =0.043 p(x
3

) =0.011

I Which give us an expected loss of:

L̄(Buy) =0.946c + 0.043c + 0.011c = c

L̄(Don’t Buy) =0.946⇥ 0 + 0.0043v + 0.011v = 0.0153v
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Decision Problems

I Our decision should, of course, depend upon c and v.
I If c < 0.0153v then the EMV decision is to buy insurance:

0 1 2 3 4 5 6 7 8 9 10
x 104

0

200
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v

c

We should buy if the parameters c,v lie in the blue region
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Decision Problems

Optimistic EMV

I We can be more optimistic in our approach.
I Rather than defining a loss function, we could work with a

reward function:

R(d, x) = �L(d, x)

I Leading to an expected reward:

R̄(d) = E [R(d, ·)] = �E [L(d, ·)] = �L̄(d)

I And the EMV rule becomes choose

d? = arg max
d2D

R̄(d)
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Decision Trees

Desiderata

I We need a convenient notation to encode the entire
decision problem.

I It must represent all possible outcomes for all possible
decision paths.

I It must encode the possible outcomes and their
probabilities given each set of decisions.

I It must allow us to calculate the EMV decision for a
problem. . .

and ultimately, other “optimal” decisions.

Ch.2 of Jim Smith’s “Decision Analysis” covers this material in
detail.
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Decision Trees

Graphical Representation: Decision Trees

Drawing a decision tree:
1. Find a large piece of paper.
2. Starting at the left side of the page and working

chronologically to the right. . .
2.1 Indicate decisions with a ⇤.
2.2 Draw forks from decision nodes labelled with the decisions.
2.3 Indicate sets of random outcomes with a �.
2.4 Draw edges from random event nodes labelled with their

(conditional) probabilities.
2.5 Continue iteratively until all decisions and random variables

are shown.
2.6 At the right hand end of each path indicate the loss/reward.
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Decision Trees

In the case of the insurance example, start with the first
possible decision and we obtain:

Don’t

0
0.946

0.1 v0.043

v

0.011
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Decision Trees

Doing this for all of the decisions and combining them:

1.000c
Buy

0.0153v

Don’t

c
0.946

c0.043

c
0.011

00.946

0.1 v
0.043

v

0.011

We’ve worked backwards from the RHS filling in the expected
loses associated with each decision.

105



Introduction Probability Elicitation Conditions Decisions Preferences Games

Decision Trees

But we didn’t need to make things that complicated. . . there is
only one outcome if we buy insurance:

cBuy

0.0153v

Don’t
0

0.946

0.1 v0.043

v

0.011
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Decision Trees

In more complex examples, we should label the random events
(say N for no robbery, T for small theft and B for burglary. . .

cBuy

0.0153v

Don’t
N: 0

0.946

T: 0.1 v0.043

B: v

0.011

107



Introduction Probability Elicitation Conditions Decisions Preferences Games

Decision Trees

Calculation and Decision Trees
First, we fill in the expected loss associated with decisions:

I starting at the RHS of the graph, trace paths back to �
nodes.

I Fill in the rightmost � nodes with the (conditional4)
expected losses (the probabilities and losses are indicated
at the edges and ends of the edges).

I For each decision node which now has values at the end of
each branch, find the branch with the largest value.

I Eliminate all of the others.
I This produces a reduced decision tree.
I Iterate.
I When left with one path, this is the EMV decision!
4On all earlier events – i.e. ones to the left
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Decision Trees

Do Not Laugh at Notations5

I At this point you may be thinking that this is a silly
picture and that you’d rather just calculate things.

I That’s all very well. . .
I but it gets harder and harder as decisions become more

complicated.
I This graphical representation provides an easy to

implement recursive algorithm and a convenient
representation.

I This lends itself to automatic implementation as well as
manual calculation.

5Invent them, for they are powerful. RP Feynman.
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Decision Trees — Example

More Complicated Cases

Consider this case:
I You may drill (at a cost of £31M) in one of two sites: field

A and field B.
I If there is oil in site A it will be worth £77M.
I If there is oil in site B it will be worth £195M.

I Or you may conduct preliminary trials in either field at a
cost of £6M.

I Or you can do nothing. This is free.
This gives a set of 5 decisions to make immediately. If you
investigate site A or B you must then, further, decide whether
to drill there, in the other site or not at all (we’ll make things
simpler by neglecting the possibility of investigating both).
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Decision Trees — Example

Your Knowledge

I The probability that there is oil in field A is 0.4.
I The probability that there is oil in field B is 0.2.
I If oil is present in a field, investigation will advise drilling

with probability 0.8.
I If oil is not present, investigation will advise drilling with

probability 0.2.
I The presence of oil and investigation results in one field

provides no information about the other field.
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Decision Trees — Example

What do you know – formally?

Let A be the event that there is oil in site A and let B be the
event that there is oil in site B. Let a be the event that
investigation suggests there is oil in site a and let b be the event
that investigation suggests that there is oil in site b.
The information on the previous page becomes:

I P(A) = 0.4
I P(B) = 0.2
I P(a|A) = P(b|B) = 0.8
I P(a|Ac) = P(b|Bc) = 0.2
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Decision Trees — Example

Bayes Rule is Needed
We really need to know the probability that oil is present in a
field given that investigation indicates that there is (we know
the converse).

P(A|a) =
P(a|A)P(A)

P(a|A)P(A) + P(a|Ac)P(Ac)

=
0.8⇥ 0.4

0.8⇥ 0.4 + 0.2⇥ 0.6
= 0.727

P(B|b) =
P(b|B)P(B)

P(b|B)P(B) + P(b|Bc)P(Bc)

=
0.8⇥ 0.2

0.8⇥ 0.2 + 0.2⇥ 0.8
= 0.500
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.

Drill A

Drill B

Look at A
Look at B

0

Do nothing

-(31 - 77)

-31

-(31 - 195)

-31

Drill A

Drill B

-6Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

Ac

Ac

Ac

Ac

Ac

A

A

A

A
A

Bc

Bc

Bc

Bc

Bc

B

B

B

B
B

ac

a

bc

b
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.
Then work out what
each probability
should be.

Drill A

Drill B

Look at A
Look at B

0

Do nothing

46

-31

164

-31

Drill A

Drill B

-6Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

40

-37

158

-37

40

-37

158

-37

40        

-37    

158        

-37

40

-37

158

-37

P(Ac)

P(A)

P(Bc)

P(B)

P(a)c

P(a)

P(bc)

P(b)

P(A|a)

P(Ac|a)

P(B|a)

P(Bc|a)

P(A|ac)

P(Ac|ac)

P(B|ac)

P(Bc|ac)

P(A|b)

P(Ac|b)

P(B|b)

P(Bc|b)

P(A|bc)

P(Ac|bc)

P(B|bc)

P(Bc|bc)
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.
Then work out what
each probability
should be numerically.

Drill A

Drill B

Look at A
Look at B

0

Do nothing

46

-31

164

-31

Drill A

Drill B

-6Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

40

-37

158

-37

40

-37

158

-37

40        

-37    

158        

-37

40

-37

158

-37

0.6

0.4

0.8

0.2

.56

0.44

0.68

0.32

0.727

0.273

0.2

0.8

0.143

0.857

0.2

0.8

0.4

0.6

0.5

0.5

0.4

0.6

0.059

0.941
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.
Then work out what
each probability
should be numerically.
Then starting at the
RHS calculate
expectations and
make optimal
decisions to determine
the solution.

15.3

-0.2

Drill A

8
Drill B

9.5Look at A

15.3

Look at B

0

Do nothing

46

-31

164

-31

19

2

60.5

-6

19

Drill A

2
Drill B

-6Nothing

-25.9Drill A

2
Drill B

-6

Nothing

-6.2Drill A

60.5

Drill B

-6

Nothing

-6.2Drill A

-25.5

Drill B

-6

Nothing

40

-37

158

-37

40

-37

158

-37

40        

-37    

158        

-37

40

-37

158

-37

0.6

0.4

0.8

0.2

.56

0.44

0.68

0.32

0.727

0.273

0.2

0.8

0.143

0.857

0.2

0.8

0.4

0.6

0.5

0.5

0.4

0.6

0.059

0.941
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Decision Trees — Example

Perfect Information

I How useful would it be to know in advance what value all
relevant random variables take?

If we know everything in advance, how well would we do?
I Expected Value of Perfect Information: the di↵erence in

the expected value of a decision problem in which decisions
are made with full knowledge of the outcome of chance
events and one in which no additional knowledge is
available.
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Preferences
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The Trouble With Money

Example (The Farmer’s Trilemma)

A farmer must decide which crop to plant; profit depends upon
the weather:

Weather: Good Fair Bad
Crop A 11 1 -3
Crop B 7 5 0
Crop C 2 2 2

I Which crop should he plant?
I Thus far, we’ve considered EMV decisions.
I What else could we do?
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The Trouble With Money

Maximin Decisions

I One farmer believes that the weather will do whatever
makes things worst, whatever decision he makes.

I He’s either pessimistic or paranoid.
I He maximise his worst case return.
I The worst behaviour of crop A is -3, that of crop B is 0 and

that of crop C is 2.
I He consequently sows crop C.
I This is known as a maximin decision: it maximises the

minimum reward.

121



Introduction Probability Elicitation Conditions Decisions Preferences Games

The Trouble With Money

Maximax Decisions

I One farmer believes that the weather will do whatever
makes things best, whatever decision he makes.

I He’s either optimistic or feeling lucky.
I He maximise his best case return.
I The best behaviour of crop A is 11, that of crop B is 7 and

that of crop C is 2.
I He consequently sows crop A.
I This is known as a maximax decision: it maximises the

maximum reward.
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The Trouble With Money

The Hazards of Extremism

I Maximin and maximax solutions may sometimes be
acceptable.

I But they aren’t stable: what if you introduce another
possible outcome with probability ✏⌧ 1?

I However small ✏ is, this outcome could be the only one you
base you decision upon.

I But, in decision problems, you work with an idealisation in
which you haven’t really considered every possible outcome.

I This seems rather inconsistent.
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The Trouble With Money

Paradoxes in St. Petersburg

I How much is the following bet worth?
I The prize is initial £1.
I A fair coin is tossed until a tail is shown.
I The prize is doubled every time a head is shown.
I You win the prize when the first tail arrives.
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The Trouble With Money

St Petersburg: Expected Monetary Value
I The expected value of the decision to play this game is:

R̄(“play”) =
1X

n=1

R(“play”, n)p(n)

=
1X

n=1

2n�12�n

=
1X

n=1

1
2

=1

I So a choice between receiving a reward R̄(“don’t”) <1 or
playing this game should, by EMV, always be resolved by
playing.

I Would you rather play this game of have £1, 000, 000?
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Utility

Utility of Opportunity / Certain Monetary Equivalence

I If there is a problem with using EMV it is this: it assumes
that we value a probability p of receiving some reward r as
being of the same value as receiving a reward pr with
certainty.

I Would you rather have £108 with certainty or a probability
of 10�9 of having £1017?

I We see that EMV might make sense for moderate
probabilities and moderate sums, but it doesn’t match our
real preferences in general.

I It is useful to think how much a probability p of receiving a
reward r is worth to us: we call this the utility of such a bet.
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Utility

Some Notation

I Let A, B and C be random outcomes (i.e. particular
rewards with some probability or nothing otherwise).

I Write A � B if A is preferred to B.
I Write A ⇠ B if A and B are equally preferable.
I Write A ⌫ B if A is at least as good as B.
I For some t 2 (0, 1), let tA + (1� t)B denote outcome A

occurring with probability t and B with probability 1� t.
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Utility

Axioms of Preference
If a collection of preferences obey the following:

1. Completeness: For any A, B one of the following holds:

A �B A ⇠B A � B

2. Transitivity:
A ⌫ B,B ⌫ C ) A ⌫ C

3. Independence: if A � B then, for any t 2 [0, 1):

(1� t)A + tC � (1� t)B + tC

4. Continuity: If A � B � C, there exists ⇢ 2 (0, 1) such that:

⇢A + (1� ⇢)C ⇠ B

Then that collection of preferences is considered rational.
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Utility

Utility Functions

I If the axioms from the previous slide are satisfied. . .
I The preferences can be encoded in a utility function, U .
I This function maps the (monetary) value of each outcome

to a real number.
I Maximising the expectation of the utility in a decision

problem makes decisions compatible with the preferences.

It’s outside the scope of this course to prove this. . . but it will
become apparent that it is reasonable from the next few slides.
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Utility

Eliciting Utilities

If preferences are to be represented by utilities, we must be able
to determine utility functions.

I What m would you
accept not to benefit
from the bet shown?

I This is a function of ↵.
I The utility of m is

U(m) = f�1(m).

This bet:

↵

1� ↵

£t

£s

has CME value

m = f(↵).
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Utility

A Family of Utilities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

U
(x

)

Utility vs. Value for Various Values of α

 

 

     0.01
0.0215443
0.0464159
      0.1
 0.215443
 0.464159
        1
  2.15443
  4.64159
       10

U(x) = x↵ ↵ > 0
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Utility

Example (The Utility of Insurance)

EMV:
9800Buy

9847

Don’t
N: 10000

0.946

T: 90000.043

B: 0

0.011

EMU:
99.0Buy

98.7

Don’t
N: 100

0.946

T: 94.90.043

B: 0

0.011

I Consider the insurance example.
I The first figure shows the EMV

position: the insurer would
prefer you to insure; you’d prefer
not to.

I The second shows the EMU
position with

U(x) =
p

x

You prefer to insure.
I EMV makes sense for the

insurer; EMU for you.
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Utility

Example (The Value of Money)

I Consider a lottery which pays a reward £X where X is a
random number distributed uniformly over [0, 4].

I An individual with utility function U↵(x) = x↵ considers
buying a ticket.

I How much would they be prepared to pay for a ticket?
I The expected utility of the lottery is:

E [U↵(X)] =
Z

4

0

1
4
x↵dx =

4↵

↵ + 1

I The fair price, xf is such that

U↵(x) = E [U↵(X)]
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Utility

Example

I The fair price is the solution of the equation:

U(xf ) = x↵
f =

4↵

x + 1

xf =
4

(x + 1)1/↵

I For various values of ↵:
↵ 0.5 1.0 1.5 2.0
xf 1.78 2 2.17 2.31

I Notice that for ↵ < 1 the “fair price” of the game is less
than its expected value; for ↵ = 1 the price and expected
value coincide and for ↵ > 1 a price above the expected
value is considered fair.
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Utility

Making Decisions

We’ve covered the making of decisions:
1. Determine possible chance events and elicit probabilities.
2. Enumerate the possible actions.
3. Determine preferences via utility.
4. Choose actions to maximise expected utility.
5. Return to elicitation if necessary.

Now, we move on to games. . .

135



Introduction Probability Elicitation Conditions Decisions Preferences Games

Games
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What is a Game?

What is a Game

A game in mathematics is, roughly speaking, a problem in
which:

I Several agents or players make 1 or more decisions.
I Each player has an objective / set of preferences.
I The outcome is influenced by the set of decisions.
I There may be additional non-deterministic uncertainty.
I The players may be in competition or they may be

cooperating.
I Examples include: chess, poker, bridge, rock-paper-scissors

and many others.
However, we will stick to simple two player games with each
player simultaneously making a single decision.
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What is a Game?

Simple Two Player Games

I Player 1 chooses a move for a set D = {d
1

, . . . , dn}.
I Plater 2 chooses a move from a set � = {�

1

, . . . , �m}.
I Each player has a payo↵ function.
I If the players choose moves di and �j , then:

I Player 1 receives reward R(di, �j).
I Player 2 receives reward S(di, �j).

I The relationship between decisions and rewards is often
shown in a payo↵ matrix:

�
1

. . . �m

d
1

(R(d
1

, �
1

), S(d
1

, �
1

)) . . . (R(d
1

, �m), S(d
1

, �m))
...

...
dn (R(dn, �

1

), S(dn, �
1

)) . . . (R(dn, �m), S(dn, �m))
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What is a Game?

Payo↵ Matrices Again

It’s sometimes useful to consider a single player’s payo↵ as a
function of the possible decisions.
Player 1 and player 2 have these payo↵ matrices:

�
1

. . . �m

d
1

R(d
1

, �
1

) . . . R(d
1

, �m)
...

...
dn R(dn, �

1

) . . . R(dn, �m)
�
1

. . . �m

d
1

S(d
1

, �
1

) . . . S(d
1

, �m)
...

...
dn S(dn, �

1

) . . . S(dn, �m)
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What is a Game?

Example (Rock-Paper-Scissors)

I Each player picks from the same set of decisions:

D = � = {R,P, S}

I R beats S; S beats P and P beats R
I One possible payo↵ matrix is:

R P S
R (0,0) (-1,1) (1,-1)
P (1,-1) (0,0) (-1,1)
S (-1,1) (1,-1) (0,0)
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What is a Game?

Example (The Prisoner’s Dilemma)

I Again, each player picks from the same set of decisions:

D = � = {Stay Silent,Betray Partner}

I If they both stay silent they will receive a short sentence; if
they both betray one another they will get a long sentence;
if only one betrays the other the traitor will be released
and the other will get a long sentence.

I One possible payo↵ matrix is:
S B

S (1,1) (5,0)
B (0,5) (4,4)

I Notice that each player wishes to minimise this payo↵!
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What is a Game?

Example (Love Story)

I A boy and a girl must go to either of:

D = � = {Football,Opera}

I They both wish to meet one another most of all.
I If they don’t meet, the boy would rather see the football;

the girl, the opera.
I A possible payo↵ matrix might be:

F O
F (100,100) (50,50)
O (0,0) (100,100)
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What is a Game?

Some Features of these Examples

I The rock-paper-scissors game is purely competitive: any
gain by one player is matched by a loss by the other player.

I The RPS and PD problems are symmetric:

R(d, �) = S(�, d)

[Note that this makes sense as D = �]
I D = � in all three of these examples, but it isn’t always

the case.
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What is a Game?

Uncertainty in Games

As the players don’t know what action the other will take, there
is uncertainty.

I Thankfully, the Bayesian interpretation of probability
allows them to encode their uncertainty in a probability
distribution.

I Player 1 has a probability mass function p over the actions
that player 2 can take, �.

I Player 2 has a probability mass function q over the actions
that player 1 can take, denoted D.
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What is a Game?

Expected Rewards
Just as in a decision problem, we can think about expected
rewards:

I For player 1, the expected reward of move di is:

R̄(di) =E [R(di, �j)]

=
mX

j=1

q(�j)R(di, �j)

I Whilst, for player 2, we have

S̄(�j) =E [S(di, �j)]

=
nX

i=1

p(di)S(di, �j)
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What is a Game?

Some Interesting Questions

I When can a player act without considering what the
opponent will do? i.e. When is player 1’s strategy
independent of p or player 2’s of q?

I When p or q is important, how can rationality of the
opponent help us to elicit them?

I What are the implications of this?
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Separability and Domination

Separable Games
If we can decompose the rewards appropriately, then there is no
interaction between the players’ decisions:

I A game is separable if:

R(d, �) =r
1

(d) + r
2

(�)
S(d, �) =s

1

(d) + s
2

(�)

I Here, the e↵ect of the other player’s act on a player’s
reward doesn’t depend on their own decision:

R̄(di) =r
1

(di) +
mX

j=1

q(�j)r2

(�j)

S̄(�j) =
nX

i=1

p(di)r1

(di) + r
2

(�j)
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Separability and Domination

Strategy in Separable Games

I Player 1’s strategy should depend only upon r
1

as the
decision they make doesn’t alter the reward from r

2

.
I Player 2’s strategy should depend only upon s

2

as the
decision they make doesn’t alter the reward from s

1

.
I So, player 1 should choose a strategy from the set:

D? = {d? : r
1

(d?) � r
1

(di) i = 1, . . . , n}

I And player 2 from:

�? = {�? : s
2

(�?) � s
2

(�j) j = 1, . . . ,m}
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Separability and Domination

The Prisoner’s Dilemma is a Separable Game

I Let r
1

(S) = 0 and r
1

(B) = 1.
I Let r

2

(S) = �1 and r
2

(B) = �5.
I Now, R(d, �) = r

1

(d) + r
2

(�).
I And D? = {B}.
I Similarly for the second player, �? = {B}.
I This is the so-called paradox of the prisoner’s dilemma:

both players acting rationally and independently leads to
the worst possible solution!
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Separability and Domination

Rationality and Games
As in decision theory, a rational player should maximise their
expected utility. We will generally assume that utility is equal
to payo↵; no greater complications arise if this is not the case.

I For a given pmf q, player 1 has:

R̄(di) =
mX

j=1

R(di, �j)q(�j)

I Whilst for given p, player 2 has:

S̄(�j) =
nX

i=1

S(di, �j)p(di)

I We want p and q to be consistent with the assumption that
the opponent is rational.

I We assume, that rationality of all players is common

knowledge.
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Separability and Domination

Common Knowledge: A Psychological Infinite Regress
In the theory of games the phrase common knowledge has a
very specific meaning.

I Common knowledge is known by all players.
I That common knowledge is known by all players is known

by all players.
I That common knowledge is common to all players is known

by all players
...

I More compactly: common knowledge is something that is
known by all players and the fact that this thing is known
by all players is itself common knowledge.

I This is an example of an infinite regress.
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Domination

I A move d? is said to dominate all other strategies if:

8di 6= d?, j : R(d?, �j) � R(di, �j)

I It is said to strictly dominate those strategies if:

8di 6= d?, j : R(d?, �j) > R(di, �j)

I A move d0 is said to be dominated if:

9i such that di 6= d0 and 8j : R(d0, �j)  R(di, �j)

I It is said to be strictly dominated if:

9i such that di 6= d0 and 8j : R(d0, �j) < R(di, �j)
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Theorem (Dominant Moves Should be Played)

If a game has a payo↵ matrix such that player 1 has a

dominant strategy, d?
then the optimal move for player 1 is d?

irrespective of q.
Proof:

I
Player 1 is rational and hence seeks the di which maximises

X

j

R(di, �j)q(dj)

I
Domination tells us that 8i, j : R(d?, �j) � R(di, �j)

I
And hence, that:

X

j

R(d?, �j)q(dj) �
X

j

R(di, �j)q(dj)

A similar results holds for player 2. 153
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Rationality and Domination

If rationality is common knowledge and d? is a strictly
dominant strategy for player 1 then:

I Player 1, being rational, plays move d?.
I Player 2, knows that player 1 is rational, and hence knows

that he will play move d?.
I Player 2 can exploit this knowledge to play the optimal

move given that player 1 will play d?.
I Player 2 plays moves �? with �? such that:

8j : S(d?, �?) � S(d?, �j)

I If there are several possible �? then one may be chosen
arbitrarily.
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Example (A game with a dominant strategy)

Consider the following payo↵ matrix:
�
1

�
2

�
3

�
4

d
1

(2,-2) (1,-1) (10,-10) (11,-11)
d

2

(0,0) (-1,1) (1,-1) (2,-2)
d

3

(-3,3) (-5,5) (-1,1) (1,-1)
I If rational, player 1 must choose d

1

.
I Player 2 knows that player 1 will choose d

1

.
I Consequently, player 2 will choose �

2

.
I (d

1

, �
2

) is known as a discriminating solution.
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Iterated Strict Domination
1. Let D

0

= D and �
0

= 0. Let t = 1
2. Player 1 checks Dt�1

to see if it contains one or more
strictly dominated moves. Let D0

t be the set of such moves.
3. Let Dt = Dt�1

\ D0
t.

4. Player 1 checks Dt�1

to see if it contains one or more
strictly dominated strategies given that player 2 must
choose a move from �t�1

. Let D0
t be the set of these

strategies. Let Dt = Dt�1

\ D0
t.

5. Player 2 updates �t�1

in the same way noting that player
1 must choose a move from Dt.

6. If |Dt| = |�t| = 1 then the game is solved.
7. If |Dt| < |Dt�1

| or |�t| < |�t�1

| let t = t + 1 and goto 2.
8. Otherwise, we have reduced the game to the simplest form

we can by this method.
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Example (Iterated Elimination of Dominated Strategies)

Consider a game with the following payo↵ matrix:
L C R

T (4,3) (5,1) (6,2)
M (2,1) (8,4) (3,6)
B (3,0) (9,6) (2,8)

Look first at player 2’s strategies. . .
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Example (Iterated Elimination of Dominated Strategies)

C is strictly dominated by R, leading to:
L R

T (4,3) (6,2)
M (2,1) (3,6)
B (3,0) (2,8)

Player 1 knows that player 2 won’t play C. . .
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Example (Iterated Elimination of Dominated Strategies)

Conditionally, both M and B are dominated by T:
L R

T (4,3) (6,2)
Player 2 knows that player 1 will play T and so, they play L.
Again, we have a deterministic “solution”.
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Purely Competitive Games
I In a purely competitive game, one players reward is

improved only at the cost of the other player.
I This means, that if R(d0, �) = R(d, �) + x then

S(d0, �) = S(d, �)� x.
I Hence R(d0, �) + S(d0, �) = R(d, �) + S(d, �).
I The sum over all players’ rewards is the same for all sets of

moves.
I It doesn’t change the domination structure or the ordering

of expected rewards if we add a constant to all rewards.
I Hence, any purely competitive game is equivalent to a

game in which:

8� 2 �, d 2 D : R(d, �) + S(d, �) = 0

a zero-sum game.
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Payo↵ and Zero-Sum Games
I In a zero-sum game:

S(di, �j) = �R(di, �j)
I Hence, we need specify only one payo↵.
I Payo↵ matrices may be simplified to specify only one

reward6

Example (Rock-Paper-Scissors is a zero-sum game)

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

I It can be convenient to use standard matrix notation, with
M = (mij) and R(di, �j) = mij .

6In the two player case, at least. 161
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What if no move is dominant?

I In the RPS game, like many others, no move is dominant
(or dominated) for either player.

I If either player commits themself to playing a particular
move, the other play can exploit that commitment (if they
knew what it was, that is).

I We need a strategy for dealing with such games.
I Perhaps the maximin approach might be useful here. . .
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Maximin Strategies in Zero-Sum Games
I If a player adopts a maximin strategy, he believes that the

opponent will always correctly predict their move.
I This means, the opponent will choose their best possible

action based upon the player’s act.
I In this case, player 1’s expected payo↵ is:

R
maximin

(di) = min
j

R(di, �j)

I If this is the case, then player 2’s payo↵ is:

�R
maximin

(di) = max
j
�R(di, �j)

I Hence P1 should play d?
maximin

= arg maxdi
minj R(di, �j).

I One could swap the two players to obtain a maximin
strategy for player 2.
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Example (RPS and Maximin)

I Let M = (mij) denote the payo↵ matrix for the RPS game.
I Then, minj R(di, �j) = minj mij = �1 for all i.
I Thus any move is maximin for player 1.
I Player 1 expects to receive a payout of �1 whatever he

does.
I If both players adopt a maximin view, then player 2 has

the same expectation (by symmetry).
I How can we resolve this paradox?
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What’s Gone Wrong?

I The players aren’t using all of the information available.
I They haven’t used the fact that it is a zero sum game.
I They don’t have compatible beliefs:

I If P1 believes P2 can predict their move and P2 believes
that P1 can predict their move then things inevitably go
wrong.

I It cannot be common knowledge that both players will
adopt a maximin strategy!

I If a player really believes their opponent can predict their
move then they can use randomization to make their action
less predictable. . .
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Mixed Strategies

I A mixed strategy for player 1 is a probability distribution
over D.

I If a player has mixed strategy x = (x
1

, . . . , xn) then they
will play move di with probability xi.

I This can be achieved using a randomization device such as
a spinner to select a move.

I A pure strategy is a mixed strategy in which exactly one of
the xi is non-zero (and is therefore equal to 1).

I A similar definition applies when considering player 2.
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Expected Rewards and Mixed Strategies

What is player 1’s expected reward if. . .
I Player 1 has mixed strategy x and player 2 plays pure

strategy �j?
I Player 1 has pure strategy di and player 2 plays mixed

strategy y?
I Player 1 has mixed strategy x and player 2 has mixed

strategy y?
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In the first case, the uncertainty is player 1’s own move, and his
expectation is:

nX

i=1

xiR(di, �j)

In the second case, the uncertainty comes from player 2:

mX

j=1

yjR(di, �j)

Whilst both provide (independent) uncertainty in the third
case:

nX

i=1

mX

j=1

xiR(di, �j)yj = xTMy
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Maximin Revisited
I Player 1’s maximin mixed strategy is the x which

minimises:

V
1

= max
x

min
y

X

i

X

j

xiR(di, �j)yj

I Player 2’s maximin mixed strategy is the y which
minimises:

max
y

min
x
�
X

i

X

j

xiR(di, �j)yj

= min
y

max
x

X

i

X

j

xiR(di, �j)yj

I Which leads to a payo↵ for player 1 of:

V
2

= min
y

max
x

X

i

X

j

xiR(di, �j)yj
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Theorem (Fundamental Theorem of Zero Sum Two Player
Games)

V
1

and V
2

as defined before satisfy:

V
1

= V
2

The unique value, V = V
1

= V
2

is known as the value of the

game.

I The strategies x and y which achieve this value may not be
unique.

I How can we find suitable strategies in general?
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Example (Maximin in a Simple Game)

I Consider a zero sum two player game with the following
payo↵ matrix:

�
1

�
2

d
1

1 3
d

2

4 2
I With a pure strategy maximin approach:

I P1 plays d2 expecting P2 to play �2.
I P2 plays �2 expecting P1 to play d1.
I P1 expects to gain 2; P2 expects to lose 3.
I This is not consistent.
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Example

I Consider, instead, a mixed strategy maximin approach:
I P1 plays a strategy (x, 1� x) and player 2 plays (y, 1� y).
I Player 1’s expected payo↵ is:

[x 1� x]


1 3
4 2

� 
y

1� y

�
= �4(x� 1

2
)(y � 1

4
) +

5
2

I Player 1 seeks to maximise this for the worst possible y.
I As the 2nd player can control the sign of the first term, his

optimal strategy is to make it vanish by choosing x = 1
2 .

I Similarly, the 2nd player wants to prevent the first player
from exploiting the first term and chooses y = 1

4 .
I Now, the expected reward for the first player is,

consistently, 2.5 as both expect the same maximin
strategies to be played.

I
Both players have a higher expected return than they would
playing pure strategies.
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How do we determine maximin mixed strategies?
I We need a general strategy for determining strategies x?

and y? which achieve the common maximin return for
player 1.

I It’s straightforward (if possibly tedious) to calculate, for
payo↵ matrix M the expected return for player 1 as a
function of the strategies:

V (x, y) = xTMy

I We then seek to obtain x?, y? such that:

V (x?, y?) = max
x

min
y

V (x, y)

I In general, this is a problem which can be e�ciently
addressed by linear programming.

I If one player has only two possible decisions, however, a
simple graphical method can be employed.
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Graphical Solution, Part 1: Player 1’s approach
I Consider a two player zero sum game with payo↵ matrix:

M =


2 3 11
7 5 2

�

I Consider a mixed strategy (x, 1� x) for player 1.
I For the three pure strategies available to player 2, player 1

has expected reward:
I �1 : 2x + 7(1� x) = 7� 5x
I �2 : 3x + 5(1� x) = 5� 2x
I �3 : 11x + 2(1� x) = 2 + 9x

I For each value of x, the worst case response of player 2 is
the one for which the expected reward of player 1 is
minimised.

I Plotting the three lines as a function of x. . .
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I The maximin response maximises the return in the worst
case.

I In terms of our graph, this means we choose x to maximise
the distance between the lowest of the lines and the
ordinate axis.

I This is at the point where the lines associated with �
2

and
�
3

intersect, at x? which solves:

5� 2x =2 + 9x

11x =3) x? = 3/11

I Hence player 1’s maximin mixed strategy is (3/11, 8/11).
I Playing this, his expected return is:

V
1

=2 + 9⇥ 3/11 = 49/11 = 5� 2⇥ 3/11 = 49/11
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Graphical Solution, Part 2: Player 2’s approach
I Player 2 only needs to consider the moves which optimally

oppose player 1’s maximin strategy (�
2

and �
3

).
I They may consider a mixed strategy (0, y, 1� y).
I By the fundamental theorem, player 2’s maximn strategy

leads to the same expected payo↵ for player 1 as his own
maximin strategy:

V
2

= V
1

= 49/11.

I They should play y? to solve:

V
2

= 3y + 11(1� y) =49/11
8y =(121� 49)/11 = 72/11) y? = 9/11

I Leading to a mixed strategy (0, 9/11, 2/11).
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Example (Spy Game)

I A spy has escaped and must choose to flee down a river or
through a forest. Their guard must choose to chasse them
using a helicopter, a pack of dogs or a jeep.

I They agree that the probabilties of escape are as given in
this payo↵ matrix:

H D J
R 0.1 0.8 0.4
F 0.9 0.1 0.6

I Both players wish to adopt maximin strategies.
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Example

I The spy plays strategy (x, 1� x): with probability x they
escape via the river; with probability 1� x they run
through the forest.

I For given x, their probabilities of escaping for each of the
guard’s possible actions are:

pH =0.1x + 0.9(1� x) pD =0.8x + 0.1(1� x)

=
9� 8x

10
=

1 + 7x

10
pJ =0.4x + 0.6(1� x)

=
6� 2x

10

I Plotting these three lines as a function of x we obtain the
following figure:
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Example

I The maximin solution is the interesection of the lines for
strategies D and H.

I This occurs at the solution, x? of:

pH = pD ) 9� 8x =1 + 7x

8 =15x ) x? =8/15

I The value of the game is: V = V
1

= 9�8x?

10

= 71/150

181



Introduction Probability Elicitation Conditions Decisions Preferences Games

Zero-Sum Games

Example

I By the fundamental theorem of zero sum two player games,
the guard needs to consider only H and D.

I Otherwise the spy’s chance of escape will be better than V
1

if he plays his own maximin strategy.
I Consider a strategy (y, 1� y, 0).
I By the same theorem, V

2

= V = V
1

, so:

V
2

= 0.1y? + 0.8(1� y?) =71/150
8� 7y? =71/15

y? =7/15
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On Zero Sum Two Player Games

I The “fundamental theorem” does not generalise to games
of more than two players.

I The “fundamental theorem” does not generalise to
non-zero-sum games.

I Games with an element of co-operation are much more
interesting.
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A Few Useful Concepts from Game Theory

I Maximin pairs provide a “solution” concept for zero-sum
games.

I Some problems arise considering non-zero-sum games:
I Maximin pairs don’t necessarily make sense any more.
I It’s not obvious what properties a solution should have.

I In general, we consider ideas of equilbrium and stability.
I Notions of optimality and equilibrium:

I Pareto optimality.
I Nash equilibrium.
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Pareto Optimality

I A collection of strategies (one per player) in a game is
(strongly) Pareto optimal/e�cient if no change can be
made which will improve one players reward without
harming any other player.

I A collection of strategies is weakly Pareto optimal if no
change can be made which will improve all players’ rewards.

I If a collection of strategies is not Pareto optimal then at
least one player could obtain a better outcome with a
di↵erent collection.

I In a game of pure conflict, all sets of pure strategies are
Pareto optimal.
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Nash Equilibrium
I A collection of strategies (one per player) in a game is a

Nash equilibrium if no player can improve their reward by
unilaterally changing their strategy.

I In the two-player case, mixed strategies x and y comprise a
Nash equilibrium if:

8x0 : R̄(x, y) �R̄(x0, y)

8y0 : S̄(x, y) �S̄(x, y0)

where

R̄(x, y) =
nX

i=1

mX

j=1

xiR(di, �j)yj S̄(x, y) =
nX

i=1

mX

j=1

xiS(di, �j)yj

I If the inequality holds strictly we have a strict Nash

equilibrium.
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Nash Equilibria in 2 Player Zero Sum Games

I Maximin pairs are equivalent to Nash equilibria: if x? and
y? are maximin, then, by definition:

8x0 : R̄(x?, y?) �R̄(x0, y?)

8y0 : S̄(x?, y?) �S̄(x?, y0)

A similar argument holds in the reverse direction.
I All equilibria have the same expected payo↵ (this follows

from the fact that S = �R).
I These properties do not extend to non zero-sum games.
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Nash Equilibria and the Prisoner’s Dilemma

I Recall the prisoner’s dilemma:
S B

S (-1,-1) (-5,0)
B (0,-5) (-4,-4)

I (B,B): both players betraying one another is a
pure-strategy Nash equilibrium.

I (S, S): both players remaining silent is Pareto optimal: no
change can be made which leads to improvement for one
player and no worsening of the other player’s situation.

I The (S, S) strategy set is not stable: it is not an
equilibrium as either player can unilateral improve their
own reward.
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Solutions I: The Nash Sense

I Two pairs (x, y) and (x0, y0) are interchangeable with
respect to some property if (x0, y) and (x, y0) have the same
property.

I A game is Nash solvable if all equilibrium pairs are
interchangeable (with respect to being equilibrium pairs).

I All zero-sum games are Nash solvable.
I Not many other games are.
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Solutions II: The Strict Sense

I A game is solvable in the strict sense if:
I Amongst the Pareto optimal pairs there is at least one

equilibrium pair.
I The equilibrium Pareto optimal pairs are interchangeable.

I The solution to such a game is the set of equilibrium
Pareto optimal pairs.

I In a zero sum game, all strategies are Pareto optimal and
so this reduces to the notion of Nash solvability: all zero
sum games are solvable in the strict sense.
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Solutions III: The Completely Weak Sense

I A game is solvable in the completely weak sense if after
iterated elimination of dominated strategies, the reduced
game is solvable in the strict sense.

I The solution is then the strict solution of the reduced game.
I In a zero sum game no strategies are dominated and so this

reduces to the notion of solvability in the strict sense: all
zero sum games are solvable in the completely weak sense.
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Solutions and the Prisoner’s Dilemma

I The only equilibrium pair of this game is (B,B).
I The only Pareto optimal strategy is (S, S).
I The game is Nash Solvable, with solution (B,B).
I The game is not solvable in the strict sense: no Pareto

e�cient pair of strategies is an equilibrium pair.
I The game is solvable in the completely weak sense:

I S is a dominated strategy for both players.
I The reduced game after IEDS has a single strategy (B) for

each player.
I The strategy (B,B) is Pareto e�cient in the reduced game

(no other strategy exists).
I (B,B) is an equilibrium pair in the reduced game.
I The solution set is (B,B).
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