ST117

5. Regression WARWICK

Lecture 23/24
(Week 8)

Example: Mammals

Regression diagnostics
Model fit

Data transformations
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R Data Set: Mammals

Brain and body weights for 62 different land mammals.
> library (MASS)
> mammals
body brain

ArcEic LOX C P L 44 .50
Owl monkey 0.480 15.50
Mountain beaver RN 8.10
Cow 465.000 423.00
Grey wolf 36.330 119.50
Goat 27.660 115.00
Roe deer 14.830 98.20
Guinea pig 1.040 5.50
Verbet 4.190 58.00
Chinchilla 0.425 6.40
Ground sgquirrel 0.101 4,00
Arctic ground sguirrel 0.920 - Py |
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R Data Set: Mammals
Type in ?7mammals. You might need to upload the MASS libary first.

Brain and Body Weights for 62 Species of Land Mammals

Description
A data frame with average brain and body weights for 62 species of land mammals.
Usage
mammals
Format
body
body weight in kg.
brain
brain weight in g.
name

Common name of species. (Rock hyrax-a = Heterohyrax brucci, Rock hyrax-b = Procavia habessinic..)
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R Data Set: Mammals (Data Format)

> library(MASS)

> dim(mammals)

[1] 62 2

> str(mammals)

’data.frame’: 62 obs. of 2 variables:
$ body : num 3.38 0.48 1.35 465 36.33 ...

$ brain: num 44.5 15.5 8.1 423 119.5 ...

> head (mammals)

body brain
Arctic fox 3.385 44.5
Owl monkey 0.480 15.5
Mountain beaver 1.350 8.1
Cow 465.000 423.0
Grey wolf 36.330 119.5
Goat 27.660 115.0
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Attaching datasets

Allows us to access directly variables of a dataset.

> body[1:4] #want to access the first 4 body weights

Error in body[1:4] : object of type ’closure’ is not subsettable
> mammals$body[1:4]

[1] 3.386 0.480 1.350 465.000

>

> attach(mammals)

> body[1:4]

[1] 3.386 0.480 1.350 465.000

(This is a data preparation step for convenience)
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Logical Subscript Practice

> mammals|[,mammals[,1]>100]

Error in ‘[.data.frame‘(mammals,
undefined columns selected

> mammals[mammals[,1]>100, ]

body brain
Cow 465.0 423
Asian elephant  2547.0 4603
Donkey 187.1 419
Horse 521.0 655
Giraffe 529.0 680
Gorilla 207.0 406
African elephant 6654.0 5712
Okapi 250.0 490
Pig 192.0 180
Brazilian tapir 160.0 169

>

> #mammals [body>100, ]
> #would give the same output

, mammals[, 1] > 100)
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Scatter Graph For Mammals Data

Do we have a linear relationship between the body and brain weights in mammals?

plot(body, brain, xlab="Body weight (kg)", ylab="Brain weight (kg)",

main="Brain vs body weights in mammals")

Brain vs Body Weight in Mammals
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Regression Line

How do we fit a regression line? Try 1m function. Type 7Im to get:

Fitting Linear Models

Description

1mis used to fit linear models. It can be used to carry out regression, single stratum analysis of variance and analysis of
covariance (although aov may provide a more convenient interface for these).

Usage

Im(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, gqr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, ...)
Arguments
formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the

model to be fitted. The details of model specification are aiven under ‘Details’.

A typical model has the form response ~ terms, where response is the numeric response

vector and terms is a series of terms which specifies a linear predictor for response. We will
use Im(brain ~ body).
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Using 1m

plot (body, brain)
Regression<-1lm(brain~body)
abline (Regression)

Brain vs Body Weight in Mammals
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Regression Line Formula

Finding the coefficients of the regression line is not complicated.

> Regression

Call:
Im(formula = brain ~ body)

Coefficients:
(Intercept) body
91.0044 0.9665

brain = 91.0044 + 0.9665 x body
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Outliers?
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Dealing With Outliers

Should unusual observations be included in the fitting?

» Yes, to keep data as they really are.

» No, they might be misleading and regression is too sensitive to outliers.
Look closely at reasons for unusual observation:

» Error?

» Different measurement method?

» Too isolated from other values in predictor variable? (Potentially high leverage).
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Outlier Definition

Recall: The residual e; is the difference between the true value of y; and its predictive value y;
eiZYi—}A’iZYi—CAV—BXi

Observation with response which is unusual relative to the fitted value (i.e. with large absolute
residual). But what is “large”?

Scale residual by its standard deviation. Normal errors imply normal residuals, which can be

standardised:

_ €/

e = —
Oj

Different softwares and methodologies may differ, but flag values outside (—2,2), or sometimes
outside (—3, 3).
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Influential Points
Compare fits with and without influential points.

Old model
Brain = 91.004 + 0.967 x body

5000

4000

New model
Brain = 36.572 + 1.228 x body

brain
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0

[ | [ [ I I I
0 1000 2000 3000 4000 5000 6000

body
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Assoclated code

> stand.res<-Regression$residuals/sd(Regression$residuals)
> which(abs(stand.res)>2)

19 32 33

19 32 33

>

> mammals[c(19,32,33),]
body brain

Asian elephant 2547 4603

Human 62 1320

African elephant 6654 5712
> mammals2=mammals[-c(19,32,33),]

> dim(mammals?2)
[1] 59 2
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Associated code

> reg2<-1lm(brain~body, data=mammals?2)
> reg2

Call:
lm(formula = brain ~ body, data = mammals2)

Coefficients:
(Intercept) body
36.572 1.228
> plot(body, brain)
> abline(Regression, col="red")
> abline(reg2, col="blue")
> plot (mammals2$body, mammals2$brain)
> abline(reg2, col="red")
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Residual plots

After defining a linear model m, if we type plot(m), R gives us four plots (might have to press
ENTER to make each new plot appear):

1. Residuals vs Fitted Values plot: This plot shows if residuals have non-linear patterns.
2. Normal Q-Q plot: This plot shows if residuals are normally distributed.

3. Scale-Location plot: This plot shows if residuals are spread equally along the ranges of
predictors.

4. Residuals vs Leverage plot: This plot helps us to find influential cases.

http://data.library.virginia.edu/diagnostic-plots/ \/\/ £ Statistics



Residual plots

After defining a linear model m, if we type plot(m), R gives us four plots (might have to press
ENTER to make each new plot appear):

1. Residuals vs Fitted Values plot: This plot shows if residuals have non-linear patterns.
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Residuals
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There could be a non-linear relationship between predictor variables and an outcome variable
and the pattern could show up in this plot if the model doesn’t capture the non-linear
relationship. If you find equally spread residuals around a horizontal line without distinct
patterns, that is a good indication you don't have non-linear relationships.

http://data.library.virginia.edu/diagnostic-plots/
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Normal Q-Q

Case 1 Case 2
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Do residuals follow a straight line well or do they deviate severely? It's good if residuals are
lined well on the straight dashed line.
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Scale-Location
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Also called Spread-Location plot. This is how you can check the assumption of equal variance
(homoscedasticity). It's good if you see a horizontal line with equally (randomly) spread points.

http://data.library.virginia.edu/diagnostic-plots/
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Residuals vs Leverage
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Unlike the other plots, this time patterns are not relevant. We watch out for values outside the
red dashed lines. When cases have high Cook’s distance scores, the cases are influential to the
regression results.

http://data.library.virginia.edu/diagnostic-plots/ \\/\/ £ Statistics



What to do if we identify an issue?

These diagnostic plots are not a strict “go” or “stop” sign. It can tell you several things about
the data.

You may want to rethink your model and hypotheses. You may want to:
» Transform variables

» Add new variables in the model
» Remove a few influential points

» Need better or different data collection methods, because of systematic bias in the data
» Possibly other things.
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Residual Diagnostics For Mammal Data Cont.

par (mfrow=c(2,2))
plot (Regression, which=c(1:3,5))

Residuals vs Fitted Normal Q-Q
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Residual Diagnostics For Mammal Data Cont.

> plot (L)
Waiting to confirm page change...

Residuals
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Residual Diagnostics For Mammal Data Cont.

Standardized residuals
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Residual Diagnostics For Mammal Data Cont.
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Residual Diagnostics For Mammal Data Cont.

Residuals vs Leverage
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Transforming Mammals Data Cont.

Could try replacing measures with log values of those measures.

brain.log<-loglO(brain)
body.log<-logl0(body)
plot (body.log, brain.log)

reg2<-1m(brain.log body.log)
abline(reg2)
reg?2

VvV VV VYV VYV

Call:
1m(formula = brain.log ~ body.log)

Coefficients:
(Intercept) body.log
0.9271 0.7517

logioBrain=

log4oBrain weight (g)

o —

0.752log 10Body+0.927

log1oBody weight (kg)

Statistics




Original scatterplot
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Diagnostic plots of the new model

Residuals vs Fitted Normal Q-Q
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Cook’s Distance

A measure that estimates the influence of a data point when performing a least-squares
regression analysis.

Given the data set (x1,y1),- .., (Xn, Yn):

A\

yi=a+ BXJ fitted response value.

2= 25 371 (9 — y;)* mean squared error of the regression model.

(can show this is unbiased estimate of the error variance in the model )

S

9i(i) =: fitted response value obtained after fitting the model without the i observation (but
including a fitted value for x; from the new fit).

Then Cook’s Distance (Cook’s D) is given by:

n A A . 2
. . (1
- TG IOF
S
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Cook’s Distance Interpretation

> =17 = 3i(i))?
252

D; is a measure of how point i is influencing all predicted mean values y;. It's then normalised.

D; =

,1=1,...,n

Large values indicate an influential observation. But how large is too large? The consensus
seems to be that a D; value of more that 1 indicates an influential value, but you may want to
look at all values and investigate the ones that stick out from the other.

We might consider removing influential observations or outliers from the analysis if there is
justification for doing so in the context of the scientific problem. Otherwise, we could report

the analysis with and without the data point.
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Cook's D For Mammals Data

We have
62

> (Y — Yi)? =112037.3

i=1
Linear model for all points: y = 0.9965x + 91.0044.

5 1

SZ@

Linear model for all points but 1st: y = 0.9663x + 91.8609. So

5% (0.9965x; + 91.0044 — (0.9663x; + 91.8609))>

_ Zij= — 0.0001934
Dy 2 % 112037.3 0-000193
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Associated code for “manual” computation

s2<-sum((brain-fitted (Regression)) "2)/(nrow(mammals)-2)

cooks.distances=vector()
for (i in 1:nrow(mammals)){
reg.reduced<-lm(brain[-i] “body[-i])
pred.red<-coef (reg.reduced) [1]+coef (reg.reduced) [2] *body
cooks.distances[i]=sum((fitted (Regression)-pred.red) ~2)/(2*s2)
}

cooks.distances
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Cook's D For Mammals Data

> cooks.distance (Regression)

1 2 3 4 5 6
.933860e-04 4.510931e-04 5.540317e-04 1.119943e-03 3.367734e-06 5.785392e-07
7 8 9 10 11 12
.954908e-06 5.848035e-04 1.071240e-04 5.649444e-04 5.931145e-04 5.805735e-04
13 14 15 16 17 18
.695214e-04 6.455597e-04 6.34129%94e-04 5.453056e-04 5.078680e-04 5.824256e-04
19 20 21 22 r b 24
.156125e+00 6.435294e-04 1.610721e-03 3.085204e-04 6.088278e-04 1.597883e-05
25 26 27 28 29 30
.672598e-04 5.8083449e-04 4.379110e-04 5.130252e-04 9.823146e-04 1.743314e-03
31 32 % k. 34 " b 36
.930657e-04 1.041011e-01 1.306176e+02 6.39049%e-04 5.166193e-04 3.645885e-04
37 38 39 40 41 92
. 73727%e-04 6.349275e-04 6.421116e-04 6.440647e-04 4.982377e-04 1.847855e-03
43 44 45 46 17 48
.163850e-04 7.034557e-05 7.07595%9e-05 6.81455%e-03 4.768863e-04 6.210010e-04
49 S0 51 52 53 54
.523865e-04 4.214277e-04 2.442171e-04 6.24949191e-04 6.315151e-04 6.07084%e-04
o 56 S7 S8 59 60
.434387e-04 6.935297e-04 3.706414e-04 4.376644e-0494 6.228221e-04 5.146%961e-04

6l 62

6.137580e-04 1.55873%e-04

> cooks.distance(Regression) [c(19,32,33)]
19 32 33
3.1561247 0.1041011 130.6176034
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Cook’s distance plot
> plot(L,which = 4)
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What to do if we identify an issue?

These diagnostic plots are not a strict “go” or “stop” sign. It can tell you several things about
the data.

You may want to rethink your model and hypotheses. You may want to:
» Transform variables

» Add new variables in the model
» Remove a few influential points

» Need better or different data collection methods, because of systematic bias in the data
» Possibly other things.
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Examples for Linear Regression Fit and Diagnostics

Taken from the book by John Rice,
Mathematical Statistics and Data Analysis, Duxbury Press

1. Yellow dye quantification by chromatography
2. Stream depth and flow
3. Breast cancer mortality in 301 countries
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1. Curves are often fit to data as part of the process of calibrating instruments.
For example, Bailey, Cox, and Springer (1978) discuss a method for measuring the
concentrations of food dyes and other substances by high-pressure chromatography.
Measurements of the chromatographic peak areas corresponding to sulfanilic acid
were taken for several known concentrations of FD&C Yellow No. 3.

\\/\/ £i." Statistics
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1. Curves are often fit to data as part of the process of calibrating instruments.
For example, Bailey, Cox, and Springer (1978) discuss a method for measuring the
concentrations of food dyes and other substances by high-pressure chromatography.
Measurements of the chromatographic peak areas corresponding to sulfanilic acid
were taken for several known concentrations of FD&C Yellow No. 3.

Acrylamide
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“How Much There Is”
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Under Peak

Figure I-2. Identification and Quantitation.

Three dye compounds are
represented by three peaks
separated in time in the
chromatogram.

Each elutes at a specific
ocation.

s the area under the peak
iInked to relative amount of the

dye?

John Rice: Mathematical Statistics and Data Analysis, Duxbury Press
Chromatography figure source: https://www.waters.com/nextgen/us/en/education/primers/ WARWICK
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https://www.waters.com/nextgen/us/en/education/primers/beginner-s-guide-to-liquid-chromatography/identifying-and-quantitating-compounds.html
https://www.waters.com/nextgen/us/en/education/primers/beginner-s-guide-to-liquid-chromatography/identifying-and-quantitating-compounds.html
https://www.waters.com/nextgen/us/en/education/primers/beginner-s-guide-to-liquid-chromatography/identifying-and-quantitating-compounds.html

1. Curves are often fit to data as part of the process of calibrating instruments.
For example, Bailey, Cox, and Springer (1978) discuss a method for measuring the
concentrations of food dyes and other substances by high-pressure chromatography.
Measurements of the chromatographic peak areas corresponding to sulfanilic acid
were taken for several known concentrations of FD&C Yellow No. 3.
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FIGURE 14.2 Data points and the least squares line for the relation of sulfanilic
acid peak area to percentage of FD&C Yellow.

John Rice: Mathematical Statistics and Data Analysis, Duxbury Press \\/\/ #:* Statistics



1. Curves are often fit to data as part of the process of calibrating instruments.
For example, Bailey, Cox, and Springer (1978) discuss a method for measuring the
concentrations of food dyes and other substances by high-pressure chromatography.
Measurements of the chromatographic peak areas corresponding to sulfanilic acid
were taken for several known concentrations of FD&C Yellow No. 3.
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FIGURE 14.5 A plot of residuals for the data on chromatographic peak area.
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2. The data in the following table were gathered for an environmental impact study that
examined the relationship between the depth of a stream and the rate of its flow (Ryan,

Joiner, and Ryan 1976).

Depth Flow Rate

34
29
28
42
29
41
16
13
46
40

636
319
134
1.327
487
924
7.350
5.890
1.979
1.124

John Rice: Mathematical Statistics and Data Analysis, Duxbury Press
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2. The data in the following table were gathered for an environmental impact study that
examined the relationship between the depth of a stream and the rate of its flow (Ryan,
Joiner, and Ryan 1976).

A plot of flow rate versus depth suggests that the relation 1s not linear (Fig-
ure 14.6).

Rate
N
|

Depth

FIGURE 14.6 A plot of flow rate versus stream depth.

John Rice: Mathematical Statistics and Data Analysis, Duxbury Press \/\/ : Statistics



2. The data in the following table were gathered for an environmental impact study that

examined the relationship between the depth of a stream and the rate of its flow (Ryan,

Joiner, and Ryan 1976).
A plot of flow rate versus depth suggests that the relation is not linear (Fig-

ure 14.6). This 1s even more immediately apparent from the bowed shape of the plot
of the residuals versus depth (Figure 14.7).
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FIGURE 14.6 A plot of flow rate versus stream depth. FIGURE 14.7 Residuals from the regression of flow rate on depth.

John Rice: Mathematical Statistics and Data Analysis, Duxbury Press \\/\/ E Statistics



Use of log transforms: In order to empirically linearize rela-
tionships, transformations are frequently employed. Figure 14.8 is a plot of log rate
versus log depth, and Figure 14.9 shows the residuals for the corresponding fit. There
1S no sign of obvious misfit.

ol ] Residual plot
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sk ' fit (no pattern)
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Depth Depth
FIGURE 14.8 Plot of log flow rate versus log depth. FIGURE 14.9 Residuals from the regression of log flow rate on log depth.
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3. Breast cancer mortality

A scatterplot of the number of cases
( y) versus population (x) is shown in Figure 14.10. This plot appears to be consistent
with the simple model that the number of cases 1s proportional to the population size,
or y ~ Bx.(We will test whether or not the intercept is zero below.) Accordingly, we
fit a model with zero intercept by least squares to the data, yielding 8 = 3.559 x 1073.
(See Problem 15 at the end of this chapter for fitting a zero intercept model.) Figure
14.11 shows the residuals from the regression of the number of cases on population
plotted versus population. Since it is very hard to see what is going on in the left-hand
side of this plot, the residuals are plotted versus log population in Figure 14.12, from
which it is quite clear that the error variance 1s not constant but grows with population
size.

The residual plot in Figure 14.12 shows no curvature but indicates that the vari-
ance 1s not constant. For counted data, the variability often grows with the mean,
and frequently a square root transformation is used in an attempt to stabilize the
variance. We therefore fit a model of the form ,/y =~ y./x. Figure 14.13 shows
the plot of residuals for this fit. The residual variability 1s more nearly constant
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3. Breast cancer mortality in 301 countries

A scatterplot of the number of cases
( y) versus population (x) 1s shown in Figure 14.10. This plot appears to be consistent
with the simple model that the number of cases 1s proportional to the population size,

ory ~ Bx.
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FIGURE 14.10 Scatterplot showing breast cancer mortality versus population.
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The residual plot in Figure 14.12 shows no curvature but indicates that the vari-

ance 1S not constant.
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FIGURE 14.11 Residuals from the regression of mortality on population. pulation.
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The residual plot in Figure 14.12 shows no curvature but indicates that the vari-
ance is not constant. For counted data, the variability often grows with the mean,
and frequently a square root transformation is used in an attempt to stabilize the
variance. We therefore fit a model of the form ,/y ~ y./x. Figure 14.13 shows
the plot of residuals for this fit. The residual variability is more nearly constant

here; B is estimated by the square of the slope, y, which for this example gives
B=79p?=3471 x 1073,
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FIGURE 14.13 Residuals from the regression of the square root of mortality on the
square root of population.
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