
ST 117  
4. Linear Regression
Lecture 22 (Linear) prediction 

Regression effect 
Test-retest

(Week 8)



Regression line (recall) 

Calculating the regression line from data:                     
Y = α+βX,  where α and β are estimated by

b =
sy

sx
rxy =

sxy

s2
x

a = ȳ � bx̄

Regression line:

ŷi = bxi + a
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Y � Ȳ =
Cov(X,Y )

V ar(X)
(X � X̄)
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Y � Ȳ = rXY
SDY

SDX
(X � X̄)

Sample Covariance sxy =
1

n� 1

nX

i=1

(xi � x̄)(yi � ȳ)

Sample Correlation rxy =
sxy

sxsy

See also Theorem and 
corollary about MLE  
for the coefficients in 
handwritten notes



y = 0.649x + 23.8

Suppose the average height of the parents is 72 inches.
What do we predict for the height of the child?

ypred = 0.649⇥ 72 + 23.8 = 70.5

Suppose the child’s height is 70.5 inches.
What do we predict for the height of the parents?

b =
sxy

s2
y

= 0.326 a = x̄� bȳ = 45.9

xpred = 0.326⇥ 70.5 + 45.9 = 68.9

Prediction: y from x



y = 0.649x + 23.8

Suppose the average height of the parents is 72 inches.
What do we predict for the height of the child?

ypred = 0.649⇥ 72 + 23.8 = 70.5

Suppose the child’s height is 70.5 inches.
What do we predict for the height of the parents?

b =
sxy

s2
y

= 0.326 a = x̄� bȳ = 45.9

xpred = 0.326⇥ 70.5 + 45.9 = 68.9

Prediction: both ways



Example: Heights of fathers and sons
PEARSON’S FATHER-SON DATA

• The following scatter diagram shows the heights of 1,078
fathers and their full-grown sons, in England, circa 1900.
There is one dot for each father-son pair.
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Heights of fathers and their full grown sons

• How would you describe the relationship between the heights
of the fathers and the heights of their sons?

• For a father of a given height, what height would you predict
for his son?
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• How tall are the sons of 6 foot fathers?
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• The points in the vertical chimney are the father-son pairs
where the father is 6 feet tall, to the nearest inch.

• The cross marks the average height of the sons of these
fathers.

• These sons are inches tall, on average.

• This is the natural guess for the height of a son of a 6
foot father.
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Historical data collection: Heights of 1,078 fathers and their full-grown sons, in England, circa 1900, 
Pearson and Lee 1903
Available for example at https://www.kaggle.com/datasets/abhilash04/fathersandsonheight
More comprehensive data collection including full families: https://vincentarelbundock.github.io/
Rdatasets/doc/HistData/PearsonLee.html

https://www.kaggle.com/datasets/abhilash04/fathersandsonheight
https://vincentarelbundock.github.io/Rdatasets/doc/HistData/PearsonLee.html
https://vincentarelbundock.github.io/Rdatasets/doc/HistData/PearsonLee.html


Local means
PEARSON’S FATHER-SON DATA

• The following scatter diagram shows the heights of 1,078
fathers and their full-grown sons, in England, circa 1900.
There is one dot for each father-son pair.
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Heights of fathers and their full grown sons

• How would you describe the relationship between the heights
of the fathers and the heights of their sons?

• For a father of a given height, what height would you predict
for his son?
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• How tall are the sons of 6 foot fathers?
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• The points in the vertical chimney are the father-son pairs
where the father is 6 feet tall, to the nearest inch.

• The cross marks the average height of the sons of these
fathers.

• These sons are inches tall, on average.

• This is the natural guess for the height of a son of a 6
foot father.
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From local means to regression• How does son’s height vary with father’s height?
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• Reading from left to right, the crosses mark the average of
son’s height, for fathers who are respectively 61, 62, . . . , 73
inches tall, to the nearest inch.

• These averages are the conditional means of son’s height,
for fathers of the given heights.

• As fathers increase in height, on average so do their sons.
The relationship is nearly linear.

• Are the bumps “real”?
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• What’s a simple way to describe how son’s height varies
with father’s height?
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The graph of averages and the regression line
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• The so-called regression line (of son’s height on father’s
height) is a smoothed version of the graph of averages.

• The average height of sons whose fathers are x inches
tall is approximately equal to the y coordinate of the point
on the regression line directly above x.
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Regression line and SD line• How does the regression line compare to the SD line?

58 60 62 64 66 68 70 72 74 76 78

Father’s height (inches)

Average = 67.7, SD = 2.7

58

60

62

64

66

68

70

72

74

76

78

S
o
n
’s

h
e
ig

h
t

(
in

c
h
e
s
)

A
v
e
ra

g
e

6
8
.7

,
S
D

=
2
.7

The regression line and the SD line

correlation coefficient
r = 0.5

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..................

..................
............

............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.
............
.

√ SD line

• How is the regression line like the SD line?
• It goes through the point of averages. Fathers of average
height tend to have sons of average height.

• How is it different from the SD line?
• It is less steeply sloped, by a factor of r.

• What does that mean?
• For each increase of one SD in father’s height, there is
an increase of only r SDs in son’s height, on average.
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• Where does the term “regression” come from?
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√ SD line

• Sons of fathers who are taller
shorter than average are themselves

taller
shorter than average, but by not so much as the fathers.

• There is a “falling back” towards the mean. In Galton’s
terms: a “regression towards mediocrity.”

• The term “regression” is widely used in statistics in connec-
tion with how one variable varies with respect to another.

10–6

Regression line for 
predicting SH from FH



There are two regression lines
THERE ARE TWO REGRESSION LINES

• As well as regressing son’s height on father’s height, we can
regress father’s height on son’s height:
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Regression line
for predicting
FH from SH

......................................................................................................................................... ..........................

• The points in the horizontal strip are the father-son pairs
where the son is one SD above average, to the nearest inch.
• The cross at the point (69.3, 71.4) marks the average height
of the fathers of these sons. The cross lies very close to the
regression line for FH on SH, which predicts these fathers to
be above average in height by only .
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• Two regression lines can be drawn across a scatter diagram:
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Regression line
for y on x

°!

√° Regression line
for x on y

SD line °!
r =

• The regression line for y on x is used to predict y from x.
• It involves thinking about:

• dividing the scatter diagram into strips;
• finding the average value of in each strip; and
• smoothing the resulting graph of averages to a
straight line.

• The line goes through the point of averages and is less
steeply sloped than the SD line by a factor of |r|.

• The regression line for x on y is used to predict x from y.
• It involves thinking about:

• dividing the scatter diagram into horizontal strips;
• finding the average value of x in each strip; and
• smoothing the resulting graph of averages to a
straight line.

• The line goes through the point of averages and is more
steeply sloped than the SD line by a factor of 1/|r|.

• In general the two regression lines are different. You can
screw up a prediction badly by using the wrong line!

• When will the two lines be the same?
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Phenomenon: Regression to the mean

• Sons of fathers who are taller than average are themselves 
taller than average, but by not so much as the fathers.

• Sons of fathers who are shorter than average are themselves 
shorter than average, but by not so much as the fathers.

• There is a move towards the mean. 

• In Galton’s terms: “regression towards mediocrity”.

Observations in the father-son data:

ypred = 0.649⇥ 72 + 23.8 = 70.5

Recall prediction: Parent’s 
height

Child’s 
height

Why does this happen?



 Why? First aspect
A person’s height depends on the heights of both the mother 
and father.  
Very tall men do not generally have children with very tall 
women, because: 
• factors other than height enter into the choice of a mate
• in terms of numbers, there are less very tall women than 

not very tall women
Illustration:  A man who is 2 SDs taller than the average male may marry a women who is 2 
SDs taller than the average female. But because attributes other than height matter, the wife 
is very likely to be a woman who is less than 2 SDs taller than average, just because there are 
so many more such women.

Thus, most very tall men do not have children with women 
who are also exceptionally tall. Since there is some aspect of 
heritability, have sons who are not as exceptionally tall either. 
Note: Same arguments for mother, daughters, just different dataset.



Why? Second aspect

Diet, exercise, and other environmental factors influence 
height, so that observed height is not a perfect reflection of 
one’s genes. 
Someone who is very tall is much more likely to be the 
unusually tall result of what might be less exceptional genes. 
Thus the observed height of a very tall person is usually an 
overstatement of his or her genetic height, which is 
what determines the expected height of the child.

These are aspect of a wider topic (and debate) called:  
Nature versus Nurture

Sticking with height, an example for the impact of nutrition in the 
evolution of height of Dutch people in the 19th vs 20th century



Source: https://oxfordre.com/psychology/doc/10.1093/acrefore/9780190236557.001.0001/
acrefore-9780190236557-e-518-graphic-001-full.gif

Contextual information: Nature vs Nurture

https://en.wikipedia.org/wiki/Nature_versus_nurture

Introduction e.g. 



Why? General principle

Large deviations from the mean occur as a 
combination of factors some of which can be 
passed on to the to children via the relationship 
expressed in correlation, while other are not. 

Hence the deviations from the mean are 
expected to shrink in the next generation. 



Test-retest situations:  
observations and conceptional interpretation
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Observations: 

• Students who did very well 
on the first quiz did less 
well on the second quiz

• Students who did poorly on 
the first quiz did better on 
the second quiz.

Situation: Students take two tests.



Test-retest situations:  
observations and conceptional interpretation
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Observations: 

• Students who did very well 
on the first quiz did less 
well on the second quiz

• Students who did poorly on 
the first quiz did better on 
the second quiz.

Situation: Students take two tests.

Interpretation: 
• Students who did well the 

first time slacked off.  
• Those shocked by a poor 

score the first time studied 
hard and improved.

Maybe, but it is a speculation.



Test-retest situations:  
observations and conceptional interpretation
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Observations: 
• Students who did very well 

on the first quiz did less 
well on the second quiz

• Students who did poorly on 
the first quiz did better on 
the second quiz.

Alternative interpretation:
Students who did well the first 
time had nowhere to go but 
down... 
This is like regression to the 
mean. In this context also 
knowns as 
“Test-retest effect”

Situation: Students take two tests.



Test-retest: a model based analysis

• An instructor standardises her midterm and final so the 
class average is 50 and the SD is 10 on both tests. 

• The correlation between the tests is always around 0.50. 

• On one occasion, she took the students who scored in the 
lower quartile at the midterm and gave them special 
tutoring. 

• On average, they scored about 6 points higher on the final 
than they did on the midterm. 

• Does this show that the special tutoring was effective? 

An experiment:



Test-Retest effect

PREDICTING PERCENTILE RANKS

• For the first-year students and Podunk University, the
correlation between SAT scores and first-year GPA is 0.60.
Predict the percentile rank of the first-year GPA for a student
whose percentile rank on the SAT was 30%.

• Line of attack:
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• Percentile rank for SAT = .
• Standard units for SAT = .
• Standard units for GPA = .
• Estimated percentile rank for GPA = .
• You don’t need to know the Average and SD for SAT or
GPA. But you do need to assume that .
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THE TEST-RETEST SCENARIO

• An instructor standardizes her midterm and final so the class
average is 50 and the SD is 10 on both tests. The correlation
between the tests is always around 0.50. On one occasion,
she took the students who scored in the lower quartile at the
midterm and gave them special tutoring. On average, they
scored about 6 points higher on the final than they did on
the midterm. Does this show that the special tutoring was
effective? Answer yes or no, and explain briefly.
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r = 0.52

Midterm and final scores

The scores of the students in the lower quartile on the
midterm are marked by •’s; their point of averages is
marked by the £. The scores of the remaining students
are marked by ±’s.
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SD line



Test-retest effect: a model

Model: observed score = true score + chance error

To check whether this model could explain the effect, create a 
data set accordingly:

• assign “true scores” to students, ~N(50,10)
• add random errors to the test scores, ~N(0,10)
• plot chance errors against true scores
• label lower quartile student and check their error distribution

 

chance error: accounts for factors like 
preparedness, anxiety, concentration etc 

true score: reflects students ability



Test-retest effect
PREDICTING PERCENTILE RANKS

• For the first-year students and Podunk University, the
correlation between SAT scores and first-year GPA is 0.60.
Predict the percentile rank of the first-year GPA for a student
whose percentile rank on the SAT was 30%.

• Line of attack:
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• Percentile rank for SAT = .
• Standard units for SAT = .
• Standard units for GPA = .
• Estimated percentile rank for GPA = .
• You don’t need to know the Average and SD for SAT or
GPA. But you do need to assume that .
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THE TEST-RETEST SCENARIO

• An instructor standardizes her midterm and final so the class
average is 50 and the SD is 10 on both tests. The correlation
between the tests is always around 0.50. On one occasion,
she took the students who scored in the lower quartile at the
midterm and gave them special tutoring. On average, they
scored about 6 points higher on the final than they did on
the midterm. Does this show that the special tutoring was
effective? Answer yes or no, and explain briefly.

30 40 50 60 70
Score on midterm

30

40

50

60

70

S
c
o
re

o
n

fi
n
a
l

•

•

•

•

•

•

•

•

•

••

•
••

•

±

±
±

±±

±

±

±
±±

±

±

±

±±

±

±

±±

±

±

±
±

±

±

±

±

±

±

±
±±
±

±

±
±
±

±

±
±

±±

±

±

±

£

r = 0.52

Midterm and final scores

The scores of the students in the lower quartile on the
midterm are marked by •’s; their point of averages is
marked by the £. The scores of the remaining students
are marked by ±’s.
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• No. The improvement can be explained by chance variation,
using the model

Observed test score = True score + chance error.

The data points in the preceding diagram were actually created
as follows. First a set of normally distributed “true scores” were
randomly assigned to the students in the class; these scores
represent the students’ innate abilities. Then the midterm
and final scores were constructed by adding random normally
distributed “chance errors” to the true scores; these chance
errors account for factors such as preparedness, concentration,
and anxiety that vary from test day to test day. The following
diagram shows the breakdown of the midterm scores into their
innate-ability and test-day components.
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Students in the lower quartile on the midterm are
represented by •’s, the other students by ±’s.
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The diagram shows that students in the lower quartile on
the midterm tended to have some bad luck — their chance
errors for that test were mostly negative. Their midterm
scores thus tend to understate their true abilities, which is
what determines their average performance on the final. In
other words, you should expect this group to do better on
average on the final, even without any special tutoring. The
expected amount of improvement can be found by applying
the regression method to estimate the group’s average score
on the final from its average score on the midterm.

• What is the expected improvement?

• Suggest a design to study whether special tutoring is
effective. What problems might arise?

THE REGRESSION EFFECT AND
THE REGRESSION FALLACY

• In a typical test-retest situation, the subjects get different
scores on the two tests. Take the bottom group on the first
test. Some improve on the second test, others do worse; but
on the average the bottom group shows an improvement. Now
the top group. Some do better the second time, others fall
back; but on average the top group does worse the second
time. This is the regression effect , and it happens whenever
the scatter diagram spreads out around the SD line into a
football-shaped cloud of points.

• The regression fallacy consists in thinking that the regression
effect is due to something other than spread around the SD
line.

10–18

Model: observed score = true score + chance error

Lower quartile midterm students had mostly negative chance errors!



Test-retest effect: 
The model offers an explanation for the improvement:

• For students in lower quartile on the midterm, distribution of 
random errors in midterm is skewed: mostly negative.  In other 
words, their midterm scores understate their true performance. 

• Their average performance on the final is expected to improve. 

• The improvement may be due to special tutoring or it may be 
due to chance error or it maybe be due to a combination of both. 

• This group’s average improvement on the final can be predicted 
by regression applied to this group’s midterm. 

• In practice, however, we usually do not know all the necessary 
parameters of the model (e.g. SD of error).



Daniel Kahneman: 
“We normally reinforce others when their behaviour is good and punish 
them when their behaviour is bad. By regression alone, therefore, they 
are most likely to improve after being punished and most 
likely to deteriorate after being rewarded. 
     Consequently, we are exposed to a lifetime schedule in which we are 
most often rewarded for punishing others, and punished for rewarding.”

Regression fallacy: Implications
Typical mistake:  People attribute a decrease or increase to a 
systematic cause, based on selected observations of the top or 
bottom part of data. But the change may be due to chance variation 
(skewed distribution for selected parts of data

Examples: test scores, pilot performance, safety measures etc 

Implications for education, policy evaluation, evaluation of 
population based health recommendations etc.
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Test-retest: What is better study design?
How would you design an experiment to find out whether or 
not the special tutoring helped?

Control group: Some students get special tutoring others do not. 
Then compare test score differences between groups.

Randomised: Assignment to special tutoring and control groups at 
random to avoid that other factors interfere (e.g. if special tutoring 
would be offered to volunteers, motivation would interfere with 
the results).

Blind (students): All students could receive something called “special 
tutoring”, but for the ones in the control group this would in 
reality be designed as having no effect (e.g. irrelevant topics 
presented in incomprehensible ways as “placebo tutoring”).

Blind (instructor): Instructor marking the exams does not know who 
received special tutoring.
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Test-retest: better study design (ct.)
Is any of this doable in reality? That depends…

Control group: Sounds easy, but is not.  Anticipating that students not 
assigned special tutoring may complain, the exam secretary will not 
allow this to go ahead. One way to get around this is to allow all 
students to participate with the understanding that some will 
receive real special tutoring and others something less effective. 
However, if the exam results matter, they may try to get each 
other’s tutoring material destroying the study design.  And, the 
exam secretary may still refuse based on legal concerns.

Randomised: Easy to implement.

Blind (students): May be hard with students exchanging experiences 
and the controls realising they don’t receive actual special tutoring.

Blind (instructor): Easy to implement as marking is anonymous. 
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Data visualisation: Difference vs mean plot

• For matched pairs data

• Instead of  Y vs X plot difference vs mean (or difference vs sum)

• Difference more obvious (w/o tilting your head)

• Shows dependency on intensity

• It’s just a simple transformation

• Traditionally used for comparing different measurement methods, 
in particularly in medical diagnostic tests etc 

• Suitable to access agreement 

• Goes back to Tukey (EDA), became very popular in medical 
application through Bland & Altman’s paper in Statistics of Medicine



A: regression analysis of the comparison between RV and LV stroke volumes (SV) as 
assessed by MR imaging (MRI). B: Bland-Altman analysis for assessment of the agreement 
between RV and LV SV measurements. Given is the difference between RV and LV SV for 
each mouse studied (y-axis) over the mean of RV and LV SV for each mouse (x-axis).

Source: http://ajpheart.physiology.org/content/283/3/H1065

Example with MRI imaging data

http://ajpheart.physiology.org/content/283/3/H1065


Bland-Altman plot showing level 
of agreement between technical 
replicates for natural log 
transformed RPKM D. simulans 
biological replicate 3. On the Y 
axis is the difference between 
technical replicates and on the X 
axis is the average between 
technical replicates. Green lines 
are the average of all differences 
+/- 1.96 (standard deviation of the 
differences). The red line is drawn 
at zero. The blue line is a loess fit. 
The discrepancy between 
technical replicates is a function of 
the estimated expression level. 
The horizontal line is drawn at an 
average coverage per nucleotide of 
5. Bland-Altman plots for all the 
remaining comparisons among 
technical replicates are in 
Additional file 11.
McIntyre et al. BMC Genomics 
2011 12:293  

Example with genomic data

http://www.biomedcentral.com/1471-2164/12/293/suppl/S11


Matched-Pairs Data

Matched-Pairs Data
Matched pairs arise when the same variable is measured on two
matched experimental units.

I Example: BLOOD.
I Non-examples: PROTEIN (units aren’t matched),

PRIMARY SCHOOL (di↵erent variables).

Q1: Are the blood pH levels of a mother and her baby related?
Answer: Draw a scatter plot (which in fact shows that the pH
levels are positively related).

Q2: Do the babies pH levels tend to be higher (or tend to be
lower) than their mothers’?
Wrong Answer: DON’T draw a back-to-back stem & leaf
display (which ignores and obscures the matching).
Possible Solution: draw a stem & leaf display of the di↵erence
(mother pH � child pH).

Illustrative Data Sets

5. BLOOD

To examine the relationship, during labour, of the blood pH-levels
of a mother and child. (in pH units: below 7 indicates acidity,
above 7 alkalinity)

Maternal pH 7.33 7.41 7.49 7.43 7.32 7.43 7.55 7.36
Child pH 7.34 7.32 7.36 7.34 7.17 7.36 7.44 7.26
Maternal pH 7.34 7.45 7.51 7.48 7.38 7.36 7.43 7.47
Child pH 7.32 7.32 7.48 7.42 7.40 7.44 7.42 7.31
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Exercise: 
Create a difference versus sum 
plots from this dataset.

Mother’s and baby’s blood pH 
level during labour



Aggregating and stratifying data

• Observe two variables X and Y 

• Population can be divided into a number of groups (known)

• For each group, the correlation between X and Y is 0.6

• What is the correlation, approximately, in the whole population?

Prototype question:

Groups could be, for example, by age, occupation, nationality etc





http://rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original_Manuscript_7_7.pdf

Figure on following pages: Front Psychol. 2013; 4: 513. 
Simpson's paradox in psychological science: a practical guide, Rogier A. Kievit et al

Simpson’s paradox

http://rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original_Manuscript_7_7.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kievit%20RA%5Bauth%5D




Note: In addition to what is said above, the 
graduation times for chemistry probably 
relate to PhD not diploma. For traditional 
reasons, in Germany, almost all chemistry 
students stay on for PhD. This is not the 
case for other degrees.



rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original_Manuscript_7_7.pdf

Figure on following figures from a review paper explaining the 
Simpson’s paradox and how to detect and avoid it. This has in 
mind real-world applications, but has simulated data scenarios 
making the particular mechanisms very transparent.

Front Psychol. 2013; 4: 513. 
Simpson's paradox in psychological science: a practical guide
Rogier A. Kievit et al

Typical scenarios for Simpson’s paradox

http://rogierkievit.com/wp-content/uploads/2013/05/Kievit_Original_Manuscript_7_7.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kievit%20RA%5Bauth%5D


Example of Simpson's Paradox. Despite the fact that there exists a negative 
relationship between dosage and recovery in both males and females, when grouped 
together, there exists a positive relationship. All figures created using ggplot2 
(Wickham, 2009). Data in arbitrary units.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740239/#B102


Simpson's paradox in individual differences

Alcohol use and intelligence. Simulated data illustrating that despite a 
positive correlation at the group level, within each individual there exists a 
negative relationship between alcohol intake and intelligence. Data in 
arbitrary units.



Using cluster analysis to uncover Simpson's Paradox. The cluster 
analysis (correctly) identifies that there are three subclusters, and that the 
relationship in two of these both deviates significantly from the group mean, 
and is in the opposite direction. Data in arbitrary units.



A case when visualizing the data illustrates that although there are 
separate clusters, the inference is not affected: the relationship 
between income and healthcare quality is homogeneously positive. The 
clusters may have arisen due to a sampling artifact or due to naturally occurring 
patterns in the population (e.g., discontinuous steps in healthcare plans).



Simpson’s paradox

• Counterintuitive feature of data

• Arises when (causal) inferences are drawn across different 
explanatory levels (e.g. population to subgroups, subgroups 
to individuals)

• Linear relationships can weaken, disappear or even inverse 
when aggregating data

• Detect it by labelling data points based on subgroups, 
exploring alternative categorisations

• Unsupervised detection with clustering methods

• Related/aka: ecological regression, ecological fallacy, 
Robinson’s paradox (continuous case)



Some 
examples of 
ecological 
correlation

Colors for the two different hybe dates

Drosophila 
time series

Comparison of 4 
quality scores for 
36 microarrays

Note the effect 
of the date of the 
measurement 
(label in color)

Example from a scientific collaboration 



Eligible Population Maori  % Jury Pool Maori %

9.5 10.1

Representation in juries: 
a question with two answers?

Question:  Are Maoris properly represented in the New Zealand’s 
jury pools?

http://www.stats.govt.nz/NR/rdonlyres/5DFEE5C8-A969-4684-B95F-FA2AFEDA649A/0/Simpdox.pdf 
http://dx.doi.org/10.1080/09332480.1998.10542093

Source: Ian Westbrooke (1998) 
Simpson's Paradox:  An Example in a New Zealand Survey of Jury 
Composition, CHANCE, 11:2, 40-42

First quick answer:  Yes, the overall percentage (Whole new 
Zealand) is even slightly bigger than what would be expected.

Second attempt:  Look at the representation in each of the districts.

http://www.stats.govt.nz/NR/rdonlyres/5DFEE5C8-A969-4684-B95F-FA2AFEDA649A/0/Simpdox.pdf
http://dx.doi.org/10.1080/09332480.1998.10542093


Simpson’s paradox in Berkeley admissions

1973, UC Berkeley was sued for sex discrimination

Graduate School had just accepted, based on departmental decisions:
44% of male applications
35% of female applicants

Investigation by Bickel et al revealed Simpson’s paradox:
• Women were (slightly) more likely to be admitted by the individual 

departments, but more women applied to the departments with 
higher rejections rates. 

• In the aggregate data that amounted to a lower rejection rate for 
women.

PJ Bickel et al, Sex Bias in Graduate Admissions: Data from Berkeley, Science, 
new series,  Vol. 187, no.4175 (Feb. 7, 1975), pp 398-404

Full text at http://www.unc.edu/~nielsen/soci708/cdocs/Berkeley_admissions_bias.pdf

http://www.unc.edu/~nielsen/soci708/cdocs/Berkeley_admissions_bias.pdf


Detecting a lurking variable
% applicants admitted versus % women applicants

Scatter plot of % of women 
among the applicants (x) 
and the % of applicants 
accepted (y) for all 85 
departments at Berkeley. 

Source: PJ Bickel et al 1973

• Negative linear 
relationship: Percentage 
admitted decreases with 
percentage of women

• Relationship is stronger 
for bigger departments



Table demonstrating the effect
Further analysis shows that the departments with higher acceptance rates 
are in engineering/maths/science, while the lower acceptance rates are in 
the humanities departments. The table below (from PJ Bickel et al, 1973) 
visualises the Simpson’s paradox scenario for the case of two departments.



Summary of original paper

Source: PJ Bickel et al 1973



Visualisation of Simpson’s paradox 
in Berkeley grad admissions 

Source: 
vudlab.com/simpsons/

Aggregated data

Departmental data

http://vudlab.com/simpsons/
http://vudlab.com/simpsons/


Simpson’s paradox

• explained variable Y (response)

• observed explanatory variable X (predictor)

• lurking explanatory variable Z (may be known or suspected)

Effect of the observed explanatory variable on the explained 
variable changes substantially (even qualitatively) when lurking 
variable is taken into account.

Some continuous examples: weight vs height (lurking: gender), 1st 
salary vs graduation time (lurking: course), alcohol consumption vs 
IQ (lurking: individual), health care quality vs salary (social class)

Some discrete examples: Maori representation in New Zealand 
jury pools, graduate admission and gender 


