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3 Microscopic image based modelling of biological processes
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Preamble: mathematical sciences as bridge

“The instrument that mediates between theory and
practice, between thought and observation, is mathematics;

it builds the connecting bridge and makes it stronger and
stronger. Thus it happens that our entire present-day culture, insofar
as it rests on intellectual insight into and harnessing of nature, is

founded on mathematics.”
David Hilbert

In Konigsberg on 8 September 1930, David Hilbert addressed the yearly meeting of the Society of German
Natural Scientists and Physicians (Gesellschaft der Deutschen Naturforscher und Arzte).
Full text of the speech in English and German at url below, including audio file:

http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.pdf


http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.pdf

Point processes

Definition: Point Process

Point processes are a class of random process whose realisations are a set of points on
some given space.

i.e. A sequence of random variables t = {t4, t,, . . ., t;} taking values in a subset of RY .

Definition: Temporal Point Process

Temporal Point process is a point process over time: It describes the occurrence of
random events over time.

i.e. asequence of events t={t, t;, ..., tgtst. 0<t; <t,<...<ty



Covid-19 cases

Hawkes process modelling of the pandemic

Joint projects with integrated Master’s students on COVID-19 data

1. Data from Israel 2. Data from England
Vaccine for data deal with Pfizer/BioNTech ONS/Oxford survey
(Marianna Mavroleftherou’s project) (Adam Davison’s project)
Daily counts of confirmed Covid-19 cases A Graph to Show Daily Cases and Waves in England
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Hawkes process modelling of the pandemic

Hawkes Process

A Hawkes Process N is defined to be a self-exciting temporal point process, where N(t)
represents the number of events up to time t.

And is fully described by the conditional intensity function A: Triggering kernel
Or

l decay function

AO) =u+a Y ygt—t)

L:ti<t

Background intensity
Or
Baseline mean



Hawkes process modelling of the pandemic

Model Setup |

*We want to model the number of cases per day,
i.e. Y(t) where each time period t is a day.

* Self — excitation property: Hawkes Process suitable for modelling Covid-19
cases.



Hawkes process modelling of the pandemic

Model Setup |

» It is a natural response to assume that Y(t) follows Poisson( A(t) )

Since Poisson distribution is governed by one parameter A, which is the expected number of
times an event occurs in an interval of time or space.

Hence, we set:

P(Y(t) =y |A)) =

» Further to this:

A(t)Y eA®)
y!

we choose the triggering kernel g() to be the geometric excitation kernel:

gt —t1B) = p(1 - p)F 5

Since it can be shown to be the generalization of the exponential distribution in discrete time.



Hawkes process modelling of the pandemic

Model fitting in practice:

1. Data preprocessing 2. Waves
Small counts, smoothing Piecewise fitting, piques
Daily counts of 2nd wave in Israel
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3. Likelihood function 4. Inference

* ML with Nelder-Mead
 Bayesian posterior MCMC



Deaths

Cases

Hawkes process modelling of the pandemic

English data:
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Hawkes process modelling of the pandemic

Further and future work:

* Models including age
* Including vaccination rates

» Testing coverage/reliability

- Behavioural indicators (e.g. google searches or mobility)
» Lockdown effects

 Events (e.g. football, holidays) and interaction with other factors
» Mixture population

* Regional models



Dead pixel formations on digital X-ray detectors

Inside-out

Statistical Methods for Computed EPSRC grant
Tomography Validation of Complex 3 years

Structures in Additive Layer Manufacturing
10/2013 -
Pl: Prof W Kendall 9/2016
Other investigators: Prof M A Williams, Dr G J Gibbons,
Dr J Brettschneider, Prof T Nichols EP/K031066/1

Further team members: Clair Barnes, Jay Warnett, Audrey Kueh
Industrial partners: Nikon Metrology, Remishaw, EOS systems




Spatial analysis of dead pixels
o g =

Objectives:
e Feedback about state of detector through spatial pixel damage analysis

® Detector data repository

Applications:

® |dentify poor quality regions (patches with high dead pixels density)
through density thresholding

® Remaining area CSR means no special causes of poor quality
® |dentify causes of poor quality

® Monitor over time

® Conclusions for usage modes

® (Conclusions about weakness of detector construction



X-ray chamber

https://www.researchgate.net/figure/Example-of-an-industrial-computed-tomography-CT-system_fig1_324511614



X-ray detector

Perkin Elmer
XRD 1621

Readout groups (ROG):
Upper groups transferred
first, starting read out from

the upper row.
Lower groups starting from

the last row.




Local defects: Isolated dead pixels

Singles, doubles, small clusters
- A_O:

A_0: Grey image [R] bp_binary A_0: Black
N image [R] image [R]




Local defects: Dead lines

A_0 : Length of longest run

A _0: Graph of
bad pixel images




L ocal defects: Corners

B _0:Binary bad pixel image [R]




Local defects: Patches

= Areas with high density area of
bad pixels




Spatial model for dead pixels

Dead pixel set as point process

Detector is based on a lattice, but our interest is in locations of
dead pixels and these are relatively few. Hence, use a spatial point pattern
model, but with reduced resolution (given by the detector lattice).

Point pattern X: random locations of dead pixels (2 dimensional)

Objectives:
e describe spatial distribution of dead pixels

* hypothesise causes for dead pixels

For example, look at CSR...



Complete spatial randomness (CSR)

CSR: Points are distributed independently and homogeneously,
as in a homogenous Poisson process.

o

Regular (nearly)

)

)

O
N4

)

Clustering




Exploring CSR using F- and G-functions

Nearest neighbour function G:
Cumulative distribution function of the distance from an

arbitrary point to its nearest point

Under CSR:  G(r) = 1 —exp(—Anr?)

Empty space function F:
Cumulative distribution function of the distance from an

arbitrary location to its nearest point

Under CSR:  F(r) = 1 — exp(—A\mr?)



Exploring CSR using Ripley’s K-function

K-function:
expected number of extra points in circle of radius r rescaled
by density

K(r) = A" E[No(r)]

No(r) number of points within distance r from arbitrary point

)\ globally estimated density

Under CSR: K (1) = 712



Point pattern and K-function

Point pattern A_0
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Point pattern and K-function

Point pattern E_0
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Are we asking the right question!?

Modified question: Is it CSR after we remove all
specific (known) problems?

/
Step I: 4
Convert point process into event process by |
¢ Reducing a line to one endpoint
¢ Reducing a clusters to its centre point ® 4
®
Step 2: y
* Fit inhomogeneous density ® Ao
e (Cut out areas above threshold
® y




Modified process: K-function

Pixel level Event level

. K function normed E_0 cropped K—function, Events, nsim=100
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Seed funding for a software project with Turing

® Working with Turing Research Software Engineer Group

o DetectorChecker R package for statistical analysis of pixel damage in CT
scanners available at

https://github.com/alan-turing-institute/DetectorChecker

o DetectorCheckerWebApp for useful initial graphical/analysis, available at
https://detectorchecker.azurewebsites.net

e Facility to upload data in different formats (crowd sourcing)

Brettschneider, Giles, Kendall, Lausaskas, (2020). DetectorChecker: analyzing patterns of
defects in detector screens. Journal of Open Source Software, 5(56), 2474

Layout Damage Model fitting

|. Select Layout [ 2. Visualisation [#] 3. Import File [|4. Choose Level M| 5. Choose Analysis M| 6. Send Data [{ 7. Modelling Damage Intensity \




Microscopic image based modelling of biological processes

Quantifying spatial abundance of proteins in living cells

Confocal fluorescent laster microscopy (live cells)

Electron microscopy (dead cells, higher resolution)
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Confocal fluorescent laser microscope

Fluorescent confocal microscope:

« Combination of two ideas in microscopy technology
 High resolution images

e Life cells

» 2D or 3D through scanning schemes

e Multi-channel through use of range of fluorescent proteins

https://www.biocompare.com/25608-Microscopes-and-Cell-lmaging-Systems/14617250-ZEISS-LSM-980-Confocal-
Laser-Scanning-Microscope/?pda=25608|14617250_0_1|2254289,2254327|1|&dfp=true

https://en.wikipedia.org/wiki/Green_fluorescent_protein#/media/File:Fluorescence_from_Fluorescent_Proteins.jpg



Example:
3 components in dividing human cancer cells

Scanning scheme for
fluorescent imaging:

* Blue: Chromosomes (DNA)
* Green: INCENP (protein)
* Red: microtubules

* Fluorophores imaged
separately using different
excitation and emission filters

* Images captured sequentially

e Overlaid



http://www.intechopen.com/books/novel-gene-therapy-approaches/identification-and-validation-of-targets-for-cancer-immunotherapy-from-the-bench-to-bedside

Microtubules formation during mitosis

https://science.sciencemag.org/content/300/5616/91/tab-figures-data



Microtubules during mitosis (cell division)

Microtubule

\ * Centrosomes = centrioles + microtubules
\ e e Centrioles help the spindle into proper formation
i /.-.-). * Spindle microtubules are arranged in K-fibers
W o | * Intertubule bridges formed by mesh

e emsiope ‘ Perpendicular to the microtubule axis Parallel

Kinetochore




Microtubules locations as point patterns

Stephen Royle’s Lab (Centre for Mechanochemical Cell Biology) asks:
What is the role of TACC3 protein for the structure of microtubules
within K-fibres and mesh?

Experiment: Overexpression of TACC3 through treatment versus control.

Data: Microscopic images collected in planes perpendicular to the fibre axes.

Perpendicular view Parallel

Team:

Steve Royle
Tom Honnor (now at UCL)
Adam Johnson

Julia Brettschneider Model: locations as point pattern




Study I: Microtubules - mathematical model

Data:

Microscopic images of treatment (n=37) versus control (n=26)

Observation window surrogate for cross sectional area of K-fibres
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Point patterns models

Set of point patterns:
X2 = (& =21, T2,...,%py)) : n(z) €N,z cR*fori=1,2,...,n}

Model pattern as realisations of a point process:

Random subset X on RZ.

For B in Borel o-algebra B(R*) on R*: X3 =X NB

Counts (random variable): N(B) = n(X gz) = number of points of X in B

Intensity measure p
w(B) =E[N(B)], VB € B(R?).
If for some function p : R? — [0, c0)
u(B) = [ playiz, VB e BEY,
z€

then p is referred to as the intensity function of X.



Summary statistics: basics

Let x be a realisation of X on the observation window W.

Estimator for the intensity of X :

n(z)

b=
W]

Let nn(x;) be the (set of) nearest neighbours of point z;.
nn(x,;) = {rg : k = argmin,||z; — x|},
and nnd(z,) its nearest neighbour distance

and(z;) = inf  {][a; - ]|}

rxenn(x;)
Estimator for the mean nearest neighbour distance for X :

- n(zx)

nnd(z) = @ Z nnd(z;)



Summary statistics: K-function

K-function (Ripley 1977) (scaled neighbourhood count function):

1 1
K(r)=-E | & Z L —anll<r}
PN, ex _
Estimate:
: W
K(z,7)=~=5 Y €jrl{|je;—wu||<r}
M) %

where e; ; 1s the proportion of the circumference of the circle with

centre x; and radius ||z; — z|| in W (edge correction).

K(r) = wr? : CSR (complete spatial randomness)
K(r) > 7r? : aggregation at distances less than r

K(r) < wr® : repulsion at distances less than r



Summary statistics: G-function

Nearest neighbour function (Diggle 2003):

1
G(r) = —=E | ) Lx\a)nb(zn#0)
Bl | &

for finite B in R?, and b(x,r) the disc centred at x with radius r.

(For stationary X it is independent of B.)
Distribution of distance of randomly selected point to its nearest neighbour.
Estimate:

A n(z)

1
G — N Linnd(z;)<r
(z,7) n(z) jz::l {nnd(z;)<r}

If X is completely spatially at random then G(r) = 1 — exp(—pnr?)



Test statistics based on basic observations

Pattern size test statistic:

1 .
on| ’ O\Zn 1 Zn@z)

ZEI ’iEIl
Observation window statistic:
1 . 1 .
Sw(l) = > |[W| > (W
o] =, 1] =,
1 (2 1

where ,(/) denotes 1

htedcase usmg wi(z') = 1/|I;] (k=0,1)
= n(@’) /Y ep, nla?) (k= 0,1)

0 p,w (I) denotes 1LEU CaAsE



Test statistics based on G-functions

Estimated nearest neighbour functions averaged

J

over the collection of point patterns x” with weights w; as above:

For comparison of G(z',r) and G(z*, r)

across the range of distances r > 0.

Also, scaled neighbourhood count test statistic (Diggle 2000).



EDA: First order statistics

Number of points Observation window area Estimated density
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Control Treatment Control Treatment Control Treatment

* All means/medians are greater for treatment

mean
weighted mean

* Treated K-fibers are made up of a greater number of microtubules which are

more closely separated within thicker K-fibers

* Weighted mean densities greater than unweighted means densities

(i.e. K-fibers with greater numbers of microtubules are more tightly packed



EDA: Spatial functions

average G functions average K functions
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« Some evidence of clustering at larger length scales
 Effect of limitation of nnd in [25,105]
* Difference between weighted mean and unweighted mean negligible



Significance quantification

e Based on permutation tests (nonparametric)

* Need exchangeability under the Null under suitable set of operations
e Statistics under permutations are identically distributed

e p-values are uniformly distributed (test e.g. with KS)

e Exact or approximate (subset of operations)

e Evaluated in simulations studies



Test statistics

Observations of exploratory analysis can be confirmed by formal testing.
All proposed test statistics show significant results:

Sy 0.0005 6bpna 0.0057 O 0.1092 dgrpr  0.0011
Sw 0.0018 dyna.  0.0005 dg4 0.0061 dppr. 0.0005
5, 0.0001 dmeqa  0.0019 bgq.  0.0005
0w 0.0002 Fpeaw 00005 dgoo  0.0087

8G.00w 0.0013

Results remain significant after multiple testing adjustment of critical
p-value (using Bonferroni).



What did we find?

* Microtubules are bound together (in K-fibers, by mesh-like structure)
e TACC3 overexpression is associated with an impact on the mesh

* Detection of treatment effects not visible by eye

Perpendicular to the microtubule axis Parallel view
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