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Hawkes process modelling of the pandemic

Joint projects with integrated Master’s students on COVID-19 data


1. Data from Israel  
Vaccine for data deal with Pfizer/BioNTech

(Marianna Mavroleftherou’s project) 


2. Data from England  
ONS/Oxford survey

(Adam Davison’s project) 


The only issue that did come up was in combining data sets with di↵erent periods of observation.
For example, daily cases and daily observations. Daily cases began being recorded in early 2020
whereas vaccinations began being recorded in early 2021. Hence combining two data sets of this
form becomes problematic and there were three options I considered when tackling this.

1. Replace all ’blank’ observations with N/A values.

2. Replace all ’blank’ observations with 0 values.

3. Remove all observations up to the latest data start date e.g. in the example above, remove
data up to the start date of the vaccination data.

Naturally each of these solutions had upsides and downsides. Although solution 2 allows the
most ease within plotting and analysis the 0 values can be misleading in terms of fitting models and
visualising the ’rate’ of increase. Solutions 1 and 3 have lots of similarities, notably N/A values are
not considered when plotting however they can cause issues during the likelihood algorithm. Due
to this I opted to use a combination of these methods depending whether I was in the exploratory
phase or the modelling phase. This did not prove to be an issue outside of ensuring that I maintained
organisation my working data frames.

2.2 Exploratory Data Analysis

2.3 Waves

I order to compare the e↵ects of vaccinations I chose to model each wave of Covid-19 separately.
In doing this I would allow for models to vary with time despite having constant parameters
individually and be able to compare how these parameters changed throughout the course of the
pandemic. As I was working with the 7 day rolling average this smoothed the data making it easier
to classify the waves, I believe the waves are quite distinct and they are all shown below.

Figure 1: A graph to show where the specified waves are within the case/death data

I generally attempted to begin the wave before the initial period of rapid self-excitation and
end it when the decline began showing signs of increasing again. Below is a brief summary of each
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Hawkes process modelling of the pandemic

[e.g. J. Rousseau, 2020]
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Hawkes process modelling of the pandemic

1. Data preprocessing

  Small counts, smoothing

Model fitting in practice:

2. Waves 
Piecewise fitting, piques

3. Likelihood function 4. Inference 
• ML with Nelder-Mead 

• Bayesian posterior MCMC




Hawkes process modelling of the pandemic

English data:



Hawkes process modelling of the pandemic

Further and future work:

• Models including age

• Including vaccination rates

• Testing coverage/reliability

• Behavioural indicators (e.g. google searches or mobility)

• Lockdown effects

• Events (e.g. football, holidays) and interaction with other factors

• Mixture population

• Regional models



Project partners: 
EOS systems, Nikon, Renishaw

Team members: 
Clair Barnes, Jay Warnett

EPSRC grant

Dead pixel formations on digital X-ray detectors

Further team members: Clair Barnes, Jay Warnett, Audrey Kueh

Industrial partners: Nikon Metrology, Remishaw, EOS systems



Spatial analysis of dead pixels

Objectives: 
• Feedback about state of detector through spatial pixel damage analysis

• Detector data repository

• Identify poor quality regions (patches with high dead pixels density) 
through density thresholding

• Remaining area CSR means no special causes of poor quality

• Identify causes of poor quality

• Monitor over time

• Conclusions for usage modes

• Conclusions about weakness of detector construction

Applications:



https://www.researchgate.net/figure/Example-of-an-industrial-computed-tomography-CT-system_fig1_324511614

X-ray chamber



X-ray detector

Perkin Elmer 
XRD 1621
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4.4 Detector�Overview�
�

�

Figure�3� Detector�Overview�

�
1� Potential�Equalization�

2� Ground�Connector�

3� Trigger�Input�(page�14)�

4� Power�Input�(page�14)�

5� XRD�Fibre�Optical�Interface�Bus��

Detector�Mode�and�Frame�Rate�(page�16)�

Green� Free�Running�

6�

Yellow� Trigger�Mode�

Power�On�and�Detector�Status��

Green� Power�ON�

7�

Orange� Self�Inspection�

6�+�7� All�Lights�On�during�Self�Inspection�(PowerǦON)�

8� PROM�Holder�

9� Electronics�(This�Area�needs�to�be�shielded)�

10� Active�Area�

Table�3� Detector�Overview�
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�
4.2 Electronic�control�and�readout�
Charge�amplifiers�for�readout�of�the�sensor,�and�row�drivers�for�addressing�the�rows�are�placed�on�
chip�on�board�(COB)�modules�contacting�the�pads�at�the�edges�of�the�sensor.�The�COBs�for�
control�and�readout�are�connected�to�A/D�conversion�PCB�boards.�The�analogue�part�of�the�
electronics�is�placed�beside�the�sensor�and�includes�sophisticated�FPGA�control�of�the�detector.�
Numerous�features�are�realized�to�minimize�noise,�as�well�as�shaping�and�timing�of�the�control�
pulses�and�isolation�of�digital�and�analogue�sections.�The�digital�control�is�reprogrammable�
through�a�PROM�to�enable�future�upgrades�or�modifications.�
�
�
4.3 Structure�of�the�XRD�1621��
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Figure�2� Structure�of�the�XRD�1621��
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5.5.3 Sorting�schemes�overview�
The�XISL�sorts�the�data�in�an�internal�buffer�with�highly�optimized�routines�written�in�machine�
code.�Figure�10�shows�the�read�out�scheme�of�the�XRD�1621�sensor.��
�

�

Figure�10� Sorting�scheme�of�the�XRD�1621�

The�sensor�is�divided�into�an�upper�and�a�lower�part.�Both�sections�are�electrically�separated.�The�
data�of�each�section�is�transferred�by�32�“read�out�groups”�(ROG).�Each�ROG�has�128�channels�for�
the�detector.�The�upper�groups�scan�the�sensor�columns�from�left�to�right.�The�lower�groups�scan�
from�right�to�left.�The�upper�groups�are�transferred�first,�followed�by�the�lower�groups.�The�upper�
groups�start�read�out�from�the�upper�row.�The�lower�groups�start�read�out�from�the�last�row.�
The�following�Table�20�displays�the�data�stream�for�XRD�1621:�
�
data�stream�no.� sensor�pixel�(row,�column)� ROG�no.�

1� (1,1)� 1�

2� (1,129)� 2�

3� (1,257)� 3�

4� (1,385)� 4�

5� (1,513)� 5�

6� …� �

15� (1,1793)� 15�

16� (1,1921)� 16�

17� (2048,�128)� 18�

18� (2048,�256)� 17�

19� (2048,�384)� 20�

20� (2048,�512)� 19�

…� …� …�

Table�20� Sorting�scheme�of�the�XRD�1621�

�

Readout	groups	(ROG):											
Upper	groups	transferred	
first,	starting	read	out	from	
the	upper	row.		
Lower	groups	starting	from	
the	last	row.



Local defects: Isolated dead pixels

A_0: Black 
image [R]

A_0: Grey image [R]

Singles, doubles, small clusters

A_0:
bp binary 
image [R]



Local defects: Dead lines
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Local defects: Corners

B_0: Binary bad pixel image [R]



Local defects: Patches

Areas with high density area of 
bad pixels   
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Spatial model for dead pixels

Detector is based on a lattice, but our interest is in locations of 
dead pixels and these are relatively few. Hence, use a spatial point pattern 
model, but with reduced resolution (given by the detector lattice).

Point pattern X: random locations of dead pixels (2 dimensional)

Dead pixel set as point process

Objectives:
• describe spatial distribution of dead pixels

• hypothesise causes for dead pixels

For example, look at CSR…



Complete spatial randomness (CSR)
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Figure 1: Realization of two-dimensional Poisson processes of 50 points on

the unit square exhibiting (a) complete spatial randomness, (b) regularity, and

(c) clustering.
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CSR: Points are distributed independently and homogeneously,
as in a homogenous Poisson process.
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Exploring CSR using F- and G-functions

Nearest neighbour function G: 
Cumulative distribution function of the distance from an 
arbitrary point to its nearest point

7

summarize spatial distribution. Let Z be a point process with state space I and (glob-

ally measured) intensity �. We distinguish between locations, that is any element in

I, and points, that is a location contained the realisation of the process in question.

A central question is whether Z process has the property of complete spatial random-

ness (short: CSR), which means that the points are distributed independently and

homogeneously over the state space I, such as for the homogeneous Poisson process.

The nearest neighbour function G is the cumulative distribution function of the dis-

tance from an arbitrary point to its nearest point. Under CSR, G(r) = 1�exp(��⇡r2).

The empty space function F is the cumulative distribution function of the distance from

an arbitrary location to its nearest point. Under CSR, F (r) = 1 � exp(��⇡r2). (The

two measures typically di↵er if CS does not hold.)

Ripley’s K-function calculates the expected number of points as a function of the

distance r for any point, that is, K(r) = ��1E[N0(r)], where N0(r) is the number

of points up to a distance of r from an arbitrary point of the process. It provides a

measure for the interaction between the points of the process and helps identifying and

competition at di↵erent scales. Under CSR, K(r) = ⇡r2.
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Figure 4: G-function. Empirical processes (black), under CSR (red) with confidence

bands (grey); horizontal scales di↵er. For the pixel process X the empirical G-function

increases very steeply for small distances r indicating the presence of areas with higher

abundance of points than the global density would suggest. For the event process

Y the empirical G-function is less steep, but still increases much more than its CSR

counterpart.

Under CSR:

Empty space function F: 
Cumulative distribution function of the distance from an 
arbitrary location to its nearest point

Under CSR:
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Exploring CSR using Ripley’s K-function

K-function: 
expected number of extra points in circle of radius r rescaled 
by density

Under CSR:
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measure for the interaction between the points of the process and helps identifying and

competition at di↵erent scales. Under CSR, K(r) = ⇡r2.
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(b) G-function of the event process

Figure 4: G-function. Empirical processes (black), under CSR (red) with confidence

bands (grey); horizontal scales di↵er. For the pixel process X the empirical G-function

increases very steeply for small distances r indicating the presence of areas with higher

abundance of points than the global density would suggest. For the event process

Y the empirical G-function is less steep, but still increases much more than its CSR

counterpart.



Point pattern and K-function 
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Point pattern and K-function 

Point pattern E_0
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Are we asking the right question?

Modified question: Is it CSR after we remove all 
specific (known) problems?

• Reducing a line to one endpoint
• Reducing a clusters to its centre point 

Step 1:
Convert point process into event process by

Step 2:

• Fit inhomogeneous density 
• Cut out areas above threshold



Modified process: K-function 
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Seed funding for a software project with Turing

• Working with Turing Research Software Engineer Group 

• DetectorChecker R package for statistical analysis of pixel damage in CT       
scanners available at                                                                              
https://github.com/alan-turing-institute/DetectorChecker

• DetectorCheckerWebApp for useful initial graphical/analysis, available at      
https://detectorchecker.azurewebsites.net

• Facility to upload data in different formats (crowd sourcing)

Brettschneider, Giles, Kendall, Lausaskas, (2020). DetectorChecker: analyzing patterns of 
defects in detector screens. Journal of Open Source Software, 5(56), 2474



Quantifying spatial abundance of proteins in living cells

Confocal fluorescent laster microscopy (live cells)

Electron microscopy (dead cells, higher resolution)

Microscopic image based modelling of biological processes



Confocal fluorescent laser microscope

https://en.wikipedia.org/wiki/Green_fluorescent_protein#/media/File:Fluorescence_from_Fluorescent_Proteins.jpg

Fluorescent confocal microscope: 
• Combination of two ideas in microscopy technology
• High resolution images 
• Life cells
• 2D or 3D through scanning schemes
• Multi-channel through use of range of fluorescent proteins

https://www.biocompare.com/25608-Microscopes-and-Cell-Imaging-Systems/14617250-ZEISS-LSM-980-Confocal-
Laser-Scanning-Microscope/?pda=25608|14617250_0_1|2254289,2254327|1|&dfp=true



Example: 
3 components in dividing human cancer cells

 

Scanning scheme for 
fluorescent imaging: 

• Blue: Chromosomes (DNA) 

• Green: INCENP (protein) 

• Red: microtubules

• Fluorophores imaged 
separately using different 
excitation and emission filters

• Images captured sequentially

• Overlaid

http://www.intechopen.com/books/novel-gene-therapy-approaches/identification-and-validation-of-targets-for-cancer-immunotherapy-from-the-bench-to-bedside


Microtubules formation during mitosis

https://science.sciencemag.org/content/300/5616/91/tab-figures-data



Microtubules during mitosis (cell division)

Figure 1: Diagram of the stages of mitosis (Ali Zifan).

Point pattern data comprising observations from two populations may arise in numerous ways.

The locations of a particular subcellular structure within multiple cells identified from microscope

images, when one set of cells has received a treatment and the other has not. The locations of trees

or plants across multiple locations, when observations are divided into two sets based upon the

climate conditions at each location. The location of particular archaeological finds within historical

sites, when observations are divided into two sets based upon the ages of the sites. The location

of aftershocks after earthquakes, when observations are divided into two sets based upon whether

they are on land or underwater.

Development of the proposed methodologies is motivated by a biological problem. During

mitosis, subcellular structures known as kinetochore fibers (K-fibers) connect two anchor points,

centrosomes, within the cell to each of the chromosome pairs. The chromosomes contain the genetic

information and successful mitosis requires the pairs to be evenly divided, such that each of the two

daughter cells contains one of each chromosome. K-fibers are believed to apply the force necessary

to separate chromosome pairs and as a result they are important for successful cell division. An

illustration of the process of mitosis including the function of the K-fibers can be seen in Figure 1.

Each K-fiber is made up of a number of microtubules, approximately cylindrical structures

which are bound together by a mesh structure to form the rigid K-fiber. Our collaborators, Dr.

Steve Royle and his research group within the Centre for Mechanochemical Cell Biology at the

University of Warwick, are interested in the e↵ect that overexpression of the TACC3 protein,

Transforming acidic coiled-coil containing protein 3, may have on the structure of microtubules

within K-fibers. The structure may be visualised by microscopy imaging of cells at the correct point

in the cell cycle under a control regime and a treatment regime for which there is overexpression of

TACC3. Images are collected in planes perpendicular to the K-fiber axis, resulting in microtubules

visible through their cross-sections as dark circles. Example images may be seen in Figure 2. The

collection of microtubule centres within a single image produces a set of coordinate locations, with

imaging of multiple cells under each regime producing the two sets of coordinate locations for

analysis.

Also available is a data set comprised of paired 2D microtubule coordinate locations obtained

from two parallel image slices through the same sample, including information on which coordinate

locations represent the same microtubule in each of the slices. These are similarly collected for

2

 https://www.scienceabc.com/nature/mitosis-vs-meiosis-how-does-cell-division-work.html

• Centrosomes = centrioles + microtubules 

• Centrioles help the spindle into proper formation

• Spindle microtubules are arranged in K-fibers

• Intertubule bridges formed by mesh

Microtubule

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Perpendicular to the microtubule axis Parallel



Microtubules locations as point patterns

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Perpendicular view Parallel

Model: locations as point pattern

Experiment: Overexpression of TACC3 through treatment versus control.
Data: Microscopic images collected in planes perpendicular to the fibre axes. 

Stephen Royle’s Lab (Centre for Mechanochemical Cell Biology) asks: 
What is the role of TACC3 protein for the structure of microtubules 
within K-fibres and mesh?

Mesh

Team:

Steve Royle 

Tom Honnor (now at UCL)

Adam Johnson

Julia Brettschneider



Study I: Microtubules - mathematical model

Data: 
Microscopic images of treatment (n=37) versus control (n=26)

Radius of microtubule=12.5, mesh extends to 80 max: nn distance in [25,105] 

Observation window surrogate for cross sectional area of K-fibres

x
i
j

x
I0 = {xi : i 2 I0}

x
i ⇠ X

0

x
I1 = {xi : i 2 I1}

x
i ⇠ X

1

x
i

Figure 3: Plots of sample microtubule location data. Each pattern represents a single K-fiber with

microtubules represented as circles, the centres of which are analysed as point locations and the

radii of which are consistent with the expected microtubule radius.

coordinate locations, with imaging of multiple cells under each regime producing the two collections

of coordinate locations, xI0 and x
I1 , for analysis.

We choose to investigate 2D coordinate locations obtained from imaging biological samples as

point patterns. Choosing to model the TACC3 2D point pattern data within this framework, we

have |I| = 63, I0 indexing observations under the control regime with |I0| = 26 and I1 indexing

observations under the treatment regime with |I1| = 37.

Also available is a data set comprising paired 2D microtubule coordinate locations obtained

from two parallel image slices through the same sample approximately perpendicular to microtubule

directions, including information on which coordinate locations represent the same microtubule in

each of the slices. Paired coordinate locations are reported as

x = {(x1,0, x1,1), (x2,0, x2,1), . . . , (xn(x),0, xn(x),1)}.

We choose to investigate paired 2D coordinate locations obtained by imaging biological samples

as marked point patterns y with xj = xj,0 ⇥ {0} and vj = (xj,1 � xj,0)⇥ {h}. An example plot of

marked point pattern data may be seen in Figure 4.

Paired coordinate observations are similarly collected for multiple samples under each of the

two experimental regimes. Choosing to model the TACC3 paired point pattern data within this

framework, we have |I| = 28, I0 indexing observations under the control regime with |I0| = 13 and

I1 indexing observations under the treatment regime with |I1| = 15.

5.2 TACC3 data features

Using the notation introduced in Section 3.1.1, point patterns x are realisations of point processes,

X, obtained by reporting the locations of all points contained within a fixed observation windowW .
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Point patterns models

Set of point patterns:

�2 := {(x = x1, x2, . . . , xn(x)) : n(x) 2 N, xi 2 R2 for i = 1, 2, . . . , n}

Model pattern as realisations of a point process:

Random subset X on R2.

For B in Borel �-algebra B(R2) on R2 : XB = X \B

Counts (random variable): N(B) = n(XB) = number of points of X in B

Intensity measure µ

µ(B) = E[N(B)], 8B 2 B(Rd).

If for some function ⇢ : R2 ! [0,1)

µ(B) =

Z

x2B
⇢(x)dx, 8B 2 B(Rd),

then ⇢ is referred to as the intensity function of X.



Summary statistics: basics

Let x be a realisation of X on the observation window W .

Estimator for the intensity of X :

⇢̂ =
n(x)

|W |

Let nn(xj) be the (set of) nearest neighbours of point xj .

nn(xj) = {xk : k = argminl||xl � xj ||} ,

and nnd(xj) its nearest neighbour distance

nnd(xj) = inf
x2nn(xj)

{||xj � x||}.

Estimator for the mean nearest neighbour distance for X :

nnd(x) =
1

n(x)

n(x)X

j=1

nnd(xj)



Summary statistics: K-function

K-function (Ripley 1977) (scaled neighbourhood count function):

K(r) =
1

⇢
E

2

4 1

N(S)

X

xj 6=xk2X

1{||xj�xk||<r}

3

5

Estimate:

K̂(x, r) =
|W |
n(x)2

X

j 6=k

ej,k1{||xj�xk||r}

where ej,k is the proportion of the circumference of the circle with

centre xj and radius ||xj � xk|| in W (edge correction).

K(r) = ⇡r2 : CSR (complete spatial randomness)

K(r) > ⇡r2 : aggregation at distances less than r

K(r) < ⇡r2 : repulsion at distances less than r



Summary statistics: G-function

Nearest neighbour function (Diggle 2003):

G(r) =
1

⇢|B|E

2

4
X

x2XB

1{X\x)\b(x,r) 6=0}

3

5

for finite B in R2, and b(x, r) the disc centred at x with radius r.

(For stationary X it is independent of B.)

Distribution of distance of randomly selected point to its nearest neighbour.

Estimate:

Ĝ(x, r) =
1

n(x)

n(x)X

j=1

1{nnd(xj)r}

If X is completely spatially at random then G(r) = 1� exp(�⇢⇡r2)



Test statistics based on basic observations

Pattern size test statistic:

�N (I) =
1

|I0|
X

i2I0

n(xi
)� 1

|I1|
X

i2I1

n(xi
)

Observation window statistic:

�W (I) =
1

|I0|
X

i2I0

|W i|� 1

|I1|
X

i2I1

|W i|

Intensity test statistic:

X

i2I0

!0(x
i
)⇢̂(xi

)�
X

i2I1

!1(x
i
)⇢̂(xi

)

where �⇢(I) denotes unweighted case using !k(xi
) = 1/|Ik| (k = 0, 1)

�⇢,!(I) denotes weighted case using !k(xi
) = n(xi

)

.P
j2Ik

n(xj
) (k = 0, 1)



Test statistics based on G-functions

Estimated nearest neighbour functions averaged

over the collection of point patterns xJ with weights !J as above:

Ĝ(xJ , r) =
X

i2J

!J(x
i)Ĝ(xi, r)

Nearest neighbour distribution test statistic statistics:

�G,1(I) = ||Ĝ(xI0 , r)� Ĝ(xI1 , r)||1 =

Z 1

0
|Ĝ(xI0 , r)� Ĝ(xI1 , r)|dr

�G,1(I) = ||Ĝ(xI0 , r)� Ĝ(x(I1 , r)||1 = sup
r

|Ĝ(xI0 , r)� Ĝ(xI1 , r)|

For comparison of Ĝ(xI0 , r) and Ĝ(xI1 , r)

across the range of distances r > 0.

Also, scaled neighbourhood count test statistic (Diggle 2000).



EDA: First order statistics 
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• All means/medians are greater for treatment 
• Treated K-fibers are made up of a greater number of microtubules which are 

more closely separated within thicker K-fibers
• Weighted mean densities greater than unweighted means densities               

(i.e. K-fibers with greater numbers of microtubules are more tightly packed

mean
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EDA: Spatial functions
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• Some evidence of clustering at larger length scales 
• Effect of limitation of nnd in [25,105]
• Difference between weighted mean and unweighted mean negligible

         control, mean

         treatment, mean         Homogeneous Poisson
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Significance quantification

• Based on permutation tests (nonparametric)

• Need exchangeability under the Null under suitable set of operations

• Statistics under permutations are identically distributed

• p-values are uniformly distributed (test e.g. with KS)

• Exact or approximate (subset of operations)

• Evaluated in simulations studies



Test statistics

Observations of exploratory analysis can be confirmed by formal testing.

All proposed test statistics show significant results:

Results remain significant after multiple testing adjustment of critical 
p-value (using Bonferroni).



What did we find?

• Microtubules are bound together (in K-fibers, by mesh-like structure) 

• TACC3 overexpression is associated with an impact on the mesh

• Detection of treatment effects not visible by eye

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.
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