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“Wege entstehen indem man sie geht.”              Franz Kafka 
          (Paths are created by walking them.)

Research in probability/
theoret. statistics:   
measure valued diffusion proc. & 
quasilinear pde,  
large deviations for random fields

Research in applied 
statistics: 
methods for statistical analysis of 
high-dim. molecular measurements 
(pre-processing, QA)

Learning genomics: 
molecular biology basics, genetics, genomics,  
high-throughput measurement technology 

My path 

PhD

Master’s

Postdoc period/now

now

This was my first slide at my Warwick job talk in 2007!



 http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.pdf

“The instrument that mediates between theory and 
practice, between thought and observation, is mathematics;           
it builds the connecting bridge and makes it stronger and 
stronger.  Thus it happens that our entire present-day culture, insofar 
as it rests on intellectual insight into and harnessing of nature, is 

founded on mathematics.”                                      

In Königsberg on 8 September 1930, David Hilbert addressed the yearly meeting of the Society of German 
Natural Scientists and Physicians (Gesellschaft der Deutschen Naturforscher und Ärzte). 
Full text of the speech in English and German at url below, including audio file:

Preamble:  Applied mathematics as bridge

David Hilbert

http://math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.pdf


Outline

Microscopy
… using images to quantify spatial abundance of protein

Microtubules formation during mitosis
… probabilistic point patterns

… statistical summaries and tests

… case study: microtubules during mitosis with TACC3 overexpression

Dead pixel formations on digital X-ray detectors

Dependencies between bulk movement patterns 
… colocalisation

… earth movers distance and comparison statistics

… tests for a variety of hypotheses

… simulations and real data applications



Microscopy to observe
quantifying spatial 
abundance of proteins

Confocal fluorescent laster microscopy (live cells)

Electron microscopy (dead cells, higher resolution)



Confocal microscope: 
• Field of view limited by 

geometric optics
• Pinhole in front of the detector 

to eliminate out-of-focus signal
• Long exposure required
• Scanning arrangement to build 

up image of larger region
• Better resolution

Confocal microscope

https://www.britannica.com/technology/microscope/Confocal-microscopes

Wide-field microscopy: 
• All of specimen excited at 

the same time
• Large unfocused 

background 



Fluorescent proteins: 
• Sample 

Confocal microscope: 
• Field of view limited by 

geometric optics
• Pinhole in optically conjugate 

plane in front of the detector to 
eliminate out-of-focus signal

• Long exposure required
• Scanning arrangement to build 

up image of larger region

Fluorescent microscope

https://www.wikiwand.com/en/
Fluorescence_microscope

Filters out all wavelengths  
of the light source, except 
fluorophore’s excitation 
range

Reflects excitation signal 
towards fluorophore and 
transmits emission signal 
towards the detector 

Filters out entire excitation 
range and transmits 
fluorophore’s emission range

Fluorescent microscope: 
• high intensity light source 
• excites a fluorescent species 

in a sample
• Sample emits different 

wavelength

Labelled with fluorescent 
protein (e.g. GFP)



Confocal fluorescent laser microscope

https://en.wikipedia.org/wiki/Green_fluorescent_protein#/media/File:Fluorescence_from_Fluorescent_Proteins.jpg

Fluorescent confocal microscope: 
• Combination of two ideas in microscopy technology
• High resolution images 
• Life cells
• 2D or 3D through scanning schemes
• Multi-channel through use of range of fluorescent proteins

https://www.biocompare.com/25608-Microscopes-and-Cell-Imaging-Systems/14617250-ZEISS-LSM-980-Confocal-
Laser-Scanning-Microscope/?pda=25608|14617250_0_1|2254289,2254327|1|&dfp=true



Example: Quantifying protein abundance 
in their actual locations in cells 

Green: SSX2IP expression visualised
by anti-SSX2IP-fluorescein 
isothiocyanate on the cell’s surface. 

Blue: Stained Cell nuclei using 4,6'-
diamino-2-phenylindole (DAPI).

Protocol of the experiment: 
Leukaemia cell line K562 air dried for 
4-18hours onto glass microscope slides, stored 
at -20oC wrapped in saranwrap, defrosted, 
stained with antigen specific primary, and 
fluorescently labelled secondary antibodies. 

http://www.intechopen.com/books/novel-gene-therapy-approaches/identification-and-validation-of-targets-for-cancer-immunotherapy-from-the-bench-to-bedside

Sub-cellular localisation of tumour antigen SSX2IP in leukemia cells 

http://www.intechopen.com/books/novel-gene-therapy-approaches/identification-and-validation-of-targets-for-cancer-immunotherapy-from-the-bench-to-bedside


Example: 
3 components in dividing human cancer cells

 

Scanning scheme for 
fluorescent imaging: 

• Blue: Chromosomes (DNA) 

• Green: INCENP (protein) 

• Red: microtubules

• Fluorophores imaged 
separately using different 
excitation and emission filters

• Images captured sequentially

• Overlaid

http://www.intechopen.com/books/novel-gene-therapy-approaches/identification-and-validation-of-targets-for-cancer-immunotherapy-from-the-bench-to-bedside


Microtubules formation during mitosis

https://science.sciencemag.org/content/300/5616/91/tab-figures-data



Microtubules during mitosis (cell division)

Figure 1: Diagram of the stages of mitosis (Ali Zifan).

Point pattern data comprising observations from two populations may arise in numerous ways.

The locations of a particular subcellular structure within multiple cells identified from microscope

images, when one set of cells has received a treatment and the other has not. The locations of trees

or plants across multiple locations, when observations are divided into two sets based upon the

climate conditions at each location. The location of particular archaeological finds within historical

sites, when observations are divided into two sets based upon the ages of the sites. The location

of aftershocks after earthquakes, when observations are divided into two sets based upon whether

they are on land or underwater.

Development of the proposed methodologies is motivated by a biological problem. During

mitosis, subcellular structures known as kinetochore fibers (K-fibers) connect two anchor points,

centrosomes, within the cell to each of the chromosome pairs. The chromosomes contain the genetic

information and successful mitosis requires the pairs to be evenly divided, such that each of the two

daughter cells contains one of each chromosome. K-fibers are believed to apply the force necessary

to separate chromosome pairs and as a result they are important for successful cell division. An

illustration of the process of mitosis including the function of the K-fibers can be seen in Figure 1.

Each K-fiber is made up of a number of microtubules, approximately cylindrical structures

which are bound together by a mesh structure to form the rigid K-fiber. Our collaborators, Dr.

Steve Royle and his research group within the Centre for Mechanochemical Cell Biology at the

University of Warwick, are interested in the e↵ect that overexpression of the TACC3 protein,

Transforming acidic coiled-coil containing protein 3, may have on the structure of microtubules

within K-fibers. The structure may be visualised by microscopy imaging of cells at the correct point

in the cell cycle under a control regime and a treatment regime for which there is overexpression of

TACC3. Images are collected in planes perpendicular to the K-fiber axis, resulting in microtubules

visible through their cross-sections as dark circles. Example images may be seen in Figure 2. The

collection of microtubule centres within a single image produces a set of coordinate locations, with

imaging of multiple cells under each regime producing the two sets of coordinate locations for

analysis.

Also available is a data set comprised of paired 2D microtubule coordinate locations obtained

from two parallel image slices through the same sample, including information on which coordinate

locations represent the same microtubule in each of the slices. These are similarly collected for
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 https://www.scienceabc.com/nature/mitosis-vs-meiosis-how-does-cell-division-work.html

• Centrosomes = centrioles + microtubules 

• Centrioles help the spindle into proper formation

• Spindle microtubules are arranged in K-fibers

• Intertubule bridges formed by mesh

Microtubule

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Perpendicular to the microtubule axis Parallel



Microtubules locations as point patterns

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Perpendicular view Parallel

Model: locations as point pattern

Experiment: Overexpression of TACC3 through treatment versus control.
Data: Microscopic images collected in planes perpendicular to the fibre axes. 

Stephen Royle’s Lab (Centre for Mechanochemical Cell Biology) asks: 
What is the role of TACC3 protein for the structure of microtubules 
within K-fibres and mesh?

Mesh



Describing and comparing protein abundance

Data:

Point patterns xI , I = I0 [ I1.

Model:

Point patterns xI0 independent realisations of point process X0.

Point patterns xI1 independent realisations of point process X1.

Task:

Inference on existence and form of a di↵erence between X0 and X1.

x
i
j

x
I0 = {xi : i 2 I0}

x
i ⇠ X

0

x
I1 = {xi : i 2 I1}

x
i ⇠ X

1

x
i

Figure 3: Plots of sample microtubule location data. Each pattern represents a single K-fiber with

microtubules represented as circles, the centres of which are analysed as point locations and the

radii of which are consistent with the expected microtubule radius.

coordinate locations, with imaging of multiple cells under each regime producing the two collections

of coordinate locations, xI0 and x
I1 , for analysis.

We choose to investigate 2D coordinate locations obtained from imaging biological samples as

point patterns. Choosing to model the TACC3 2D point pattern data within this framework, we

have |I| = 63, I0 indexing observations under the control regime with |I0| = 26 and I1 indexing

observations under the treatment regime with |I1| = 37.

Also available is a data set comprising paired 2D microtubule coordinate locations obtained

from two parallel image slices through the same sample approximately perpendicular to microtubule

directions, including information on which coordinate locations represent the same microtubule in

each of the slices. Paired coordinate locations are reported as

x = {(x1,0, x1,1), (x2,0, x2,1), . . . , (xn(x),0, xn(x),1)}.

We choose to investigate paired 2D coordinate locations obtained by imaging biological samples

as marked point patterns y with xj = xj,0 ⇥ {0} and vj = (xj,1 � xj,0)⇥ {h}. An example plot of

marked point pattern data may be seen in Figure 4.

Paired coordinate observations are similarly collected for multiple samples under each of the

two experimental regimes. Choosing to model the TACC3 paired point pattern data within this

framework, we have |I| = 28, I0 indexing observations under the control regime with |I0| = 13 and

I1 indexing observations under the treatment regime with |I1| = 15.

5.2 TACC3 data features

Using the notation introduced in Section 3.1.1, point patterns x are realisations of point processes,

X, obtained by reporting the locations of all points contained within a fixed observation windowW .
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<latexit sha1_base64="zBEjeR5RMefWenUw8EQmFc0/AUs=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWpgi6LblxWsA9oY5lMJu3QySTMTIQa+iVuXCji1k9x5984abPQ1gMDh3Pu4d45fsKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUXEqCW2TmMey52NFORO0rZnmtJdIiiOf064/ucn97iOVisXiXk8T6kV4JFjICNZGGtrVQSoCKvN41ps9OEO75tSdOdAqcQtSgwKtof01CGKSRlRowrFSfddJtJdhqRnhdFYZpIommEzwiPYNFTiiysvmh8/QqVECFMbSPKHRXP2dyHCk1DTyzWSE9Vgte7n4n9dPdXjlZUwkqaaCLBaFKUc6RnkLKGCSEs2nhmAimbkVkTGWmGjTVcWU4C5/eZV0GnX3vN64u6g1r4s6ynAMJ3AGLlxCE26hBW0gkMIzvMKb9WS9WO/Wx2K0ZBWZI/gD6/MH8qiTRQ==</latexit>
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Point patterns models

Set of point patterns:

�2 := {(x = x1, x2, . . . , xn(x)) : n(x) 2 N, xi 2 R2 for i = 1, 2, . . . , n}

Model pattern as realisations of a point process:

Random subset X on R2.

For B in Borel �-algebra B(R2) on R2 : XB = X \B

Counts (random variable): N(B) = n(XB) = number of points of X in B

Intensity measure µ

µ(B) = E[N(B)], 8B 2 B(Rd).

If for some function ⇢ : R2 ! [0,1)

µ(B) =

Z

x2B
⇢(x)dx, 8B 2 B(Rd),

then ⇢ is referred to as the intensity function of X.



Summary statistics: basics

Let x be a realisation of X on the observation window W .

Estimator for the intensity of X :

⇢̂ =
n(x)

|W |

Let nn(xj) be the (set of) nearest neighbours of point xj .

nn(xj) = {xk : k = argminl||xl � xj ||} ,

and nnd(xj) its nearest neighbour distance

nnd(xj) = inf
x2nn(xj)

{||xj � x||}.

Estimator for the mean nearest neighbour distance for X :

nnd(x) =
1

n(x)

n(x)X

j=1

nnd(xj)



Summary statistics: K-function

K-function (Ripley 1977) (scaled neighbourhood count function):

K(r) =
1

⇢
E

2

4 1

N(S)

X

xj 6=xk2X

1{||xj�xk||<r}

3

5

Estimate:

K̂(x, r) =
|W |
n(x)2

X

j 6=k

ej,k1{||xj�xk||r}

where ej,k is the proportion of the circumference of the circle with

centre xj and radius ||xj � xk|| in W (edge correction).

K(r) = ⇡r2 : CSR (complete spatial randomness)

K(r) > ⇡r2 : aggregation at distances less than r

K(r) < ⇡r2 : repulsion at distances less than r



Summary statistics: G-function

Nearest neighbour function (Diggle 2003):

G(r) =
1

⇢|B|E

2

4
X

x2XB

1{X\x)\b(x,r) 6=0}

3

5

for finite B in R2, and b(x, r) the disc centred at x with radius r.

(For stationary X it is independent of B.)

Distribution of distance of randomly selected point to its nearest neighbour.

Estimate:

Ĝ(x, r) =
1

n(x)

n(x)X

j=1

1{nnd(xj)r}

If X is completely spatially at random then G(r) = 1� exp(�⇢⇡r2)



Excursion:  
Point process models of dead pixels

https://www.researchgate.net/figure/Example-of-an-industrial-computed-tomography-CT-system_fig1_324511614

Modern computed tomography uses digital detectors



X-ray detector

Perkin Elmer 
XRD 1621
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4.4 Detector�Overview�
�

�

Figure�3� Detector�Overview�

�
1� Potential�Equalization�

2� Ground�Connector�

3� Trigger�Input�(page�14)�

4� Power�Input�(page�14)�

5� XRD�Fibre�Optical�Interface�Bus��

Detector�Mode�and�Frame�Rate�(page�16)�

Green� Free�Running�

6�

Yellow� Trigger�Mode�

Power�On�and�Detector�Status��

Green� Power�ON�

7�

Orange� Self�Inspection�

6�+�7� All�Lights�On�during�Self�Inspection�(PowerǦON)�

8� PROM�Holder�

9� Electronics�(This�Area�needs�to�be�shielded)�

10� Active�Area�

Table�3� Detector�Overview�
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�
4.2 Electronic�control�and�readout�
Charge�amplifiers�for�readout�of�the�sensor,�and�row�drivers�for�addressing�the�rows�are�placed�on�
chip�on�board�(COB)�modules�contacting�the�pads�at�the�edges�of�the�sensor.�The�COBs�for�
control�and�readout�are�connected�to�A/D�conversion�PCB�boards.�The�analogue�part�of�the�
electronics�is�placed�beside�the�sensor�and�includes�sophisticated�FPGA�control�of�the�detector.�
Numerous�features�are�realized�to�minimize�noise,�as�well�as�shaping�and�timing�of�the�control�
pulses�and�isolation�of�digital�and�analogue�sections.�The�digital�control�is�reprogrammable�
through�a�PROM�to�enable�future�upgrades�or�modifications.�
�
�
4.3 Structure�of�the�XRD�1621��
�
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Figure�2� Structure�of�the�XRD�1621��
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5.5.3 Sorting�schemes�overview�
The�XISL�sorts�the�data�in�an�internal�buffer�with�highly�optimized�routines�written�in�machine�
code.�Figure�10�shows�the�read�out�scheme�of�the�XRD�1621�sensor.��
�

�

Figure�10� Sorting�scheme�of�the�XRD�1621�

The�sensor�is�divided�into�an�upper�and�a�lower�part.�Both�sections�are�electrically�separated.�The�
data�of�each�section�is�transferred�by�32�“read�out�groups”�(ROG).�Each�ROG�has�128�channels�for�
the�detector.�The�upper�groups�scan�the�sensor�columns�from�left�to�right.�The�lower�groups�scan�
from�right�to�left.�The�upper�groups�are�transferred�first,�followed�by�the�lower�groups.�The�upper�
groups�start�read�out�from�the�upper�row.�The�lower�groups�start�read�out�from�the�last�row.�
The�following�Table�20�displays�the�data�stream�for�XRD�1621:�
�
data�stream�no.� sensor�pixel�(row,�column)� ROG�no.�

1� (1,1)� 1�

2� (1,129)� 2�

3� (1,257)� 3�

4� (1,385)� 4�

5� (1,513)� 5�

6� …� �

15� (1,1793)� 15�

16� (1,1921)� 16�

17� (2048,�128)� 18�

18� (2048,�256)� 17�

19� (2048,�384)� 20�

20� (2048,�512)� 19�

…� …� …�

Table�20� Sorting�scheme�of�the�XRD�1621�

�

Readout	groups	(ROG):											
Upper	groups	transferred	
first,	starting	read	out	from	
the	upper	row.		
Lower	groups	starting	from	
the	last	row.



Bad pixel maps 

Each bad pixel map consist of a total of 10 files:
White images: mean, min, max, sd (.tif)
Grey images: mean (.tif)
Black images: mean, min, max, sd (.tif)
Bad pixel list of locations (.xml)    

Criteria for “underperforming” (Perkin Elmer):
Signal sensitivity (at different energies)
Noise observed in sequence of 100 bright/dark images
Uniformity (global, local)



A_0: White image
from bpm folder

Horizontal 
midline



Local defects: Dead lines

Lines on bad pixel images
From centre horizontal line outwards
Visible on tif images of channel(s), too

Top right area in A_0: 
White image [R]



Local defects: Isolated dead pixels

A_0: Black 
image [R]

A_0: Grey image [R]

Singles, doubles, small clusters

A_0:
bp binary 
image [R]



Local defects: Corners

B_0: Binary bad pixel image [R]



Local defects:  Ends of dead lines

Most lines end in small cluster pointing to the right
Lines are composed of dark pixels
Lines have constant intensity, except end may differ

bmp binary image 

Black image



Local defects: Patches

Areas with high density area of 
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events occur in specific environments (such as the patterns of Philadelphia housing 
abandonments in Figures 1.4 and 1.5), then the relevant distances might be determined by 
these environments (such as travel distance on the Philadelphia street system).8  
 
Finally, it is important to emphasize that the expected value in (4.2.1) is a conditional 
expected value. In particular, given that there is a point event, s , at the center of the 
circle in Figure 4.2 above, this value gives the expected number of additional points in 
this circle. This can be clarified by rewriting ( )K h  in terms of conditional expectations. 
In particular if [as in Section 3.2.1 above] we now denote the circle in Figure 4.2 minus 
its center by  
 
(4.2.3)  { } { : 0 ( , ) }hC s v R d v s h�  � � d  
 
then ( )K h  can be written more precisely as follows:  
 
(4.2.4)  1( ) [ ( { }) | ( ) 1]hK h E N C s N sO �   
 
To see the importance of this conditioning, recall from expression (2.3.4) that for any 
stationary process (not just CSR processes) it must be true that the expected number of 
points in { }hC s�  is simply proportional to its area, i.e., that 
 
(4.2.5)  ( { }) ( { })h hE C s a C sO�  �  
 
But this is not true of the conditional expectation above. Recall from the wolf-pack case, 
for example, that for small circles around any given wolf, the expected number of 
additional wolves is much larger than what would be expected based on area alone [i.e.,is 
larger than ( { })ha C sO � ]. These ideas will be developed in more detail in Section 4.4, 
where it is shown that such deviations from simple area proportionality form the basis for 
all K-function tests of the CSR Hypothesis. 
 
4.3 Estimation of K-Functions 
 
Given this general definition of K-functions as (conditional) expected values, we now 
consider the important practical question of estimating these values. To do so, we 
introduce the following notation for analyzing point counts. For any given realized point 
pattern, ( : 1,.., )n iS s i n  , and pair of points ,i j ns s S�  we now denote the Euclidean 
distance between them by 
 
(4.3.1)  ( , )ij i jd d s s  
 
and for any distance, h , define the indicator function, hI , for point pairs in nS  by 
                                                 
8 Here it should be noted that tools are available in the spatial analyst extension of ARCMAP for 
constructing cost-weighted and shortest-paths distances. However, we shall not do so in this NOTEBOOK. 
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events occur in specific environments (such as the patterns of Philadelphia housing 
abandonments in Figures 1.4 and 1.5), then the relevant distances might be determined by 
these environments (such as travel distance on the Philadelphia street system).8  
 
Finally, it is important to emphasize that the expected value in (4.2.1) is a conditional 
expected value. In particular, given that there is a point event, s , at the center of the 
circle in Figure 4.2 above, this value gives the expected number of additional points in 
this circle. This can be clarified by rewriting ( )K h  in terms of conditional expectations. 
In particular if [as in Section 3.2.1 above] we now denote the circle in Figure 4.2 minus 
its center by  
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then ( )K h  can be written more precisely as follows:  
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To see the importance of this conditioning, recall from expression (2.3.4) that for any 
stationary process (not just CSR processes) it must be true that the expected number of 
points in { }hC s�  is simply proportional to its area, i.e., that 
 
(4.2.5)  ( { }) ( { })h hE C s a C sO�  �  
 
But this is not true of the conditional expectation above. Recall from the wolf-pack case, 
for example, that for small circles around any given wolf, the expected number of 
additional wolves is much larger than what would be expected based on area alone [i.e.,is 
larger than ( { })ha C sO � ]. These ideas will be developed in more detail in Section 4.4, 
where it is shown that such deviations from simple area proportionality form the basis for 
all K-function tests of the CSR Hypothesis. 
 
4.3 Estimation of K-Functions 
 
Given this general definition of K-functions as (conditional) expected values, we now 
consider the important practical question of estimating these values. To do so, we 
introduce the following notation for analyzing point counts. For any given realized point 
pattern, ( : 1,.., )n iS s i n  , and pair of points ,i j ns s S�  we now denote the Euclidean 
distance between them by 
 
(4.3.1)  ( , )ij i jd d s s  
 
and for any distance, h , define the indicator function, hI , for point pairs in nS  by 
                                                 
8 Here it should be noted that tools are available in the spatial analyst extension of ARCMAP for 
constructing cost-weighted and shortest-paths distances. However, we shall not do so in this NOTEBOOK. 



Question

Is it CSR after we remove all specific problems?

• Reducing lines to their endpoint
• Reducing clusters to their centre point 

Step 1:
Convert point process into event process by

Step 2:

• Fit inhomogeneous density 
• Cut out areas above threshold



Higher level defect model (Step 1)

Conversion of point process to event process 

  Defect events  Defect pixels



Density based thresholding (Step 2)

Remove areas with local density above threshold 
(medial +1.5 IQR) 

  Density Events

1e
−0
4

2e
−0
4

3e
−0
4

4e
−0
4

5e
−0
4

  Density > threshold

FA
LS
E

TR
U
E

● ● ●●● ●● ●●●● ● ● ●● ● ●●● ● ●● ●● ●●
● ●● ●

● ● ● ●
● ●● ●● ● ●● ●● ●●●●●●●● ●●● ● ●● ●●● ●●●●●●● ● ●●● ● ●●● ●●● ●●●● ● ●●● ●● ●●● ●●●● ●● ● ● ●● ●●● ● ●● ●●●● ● ●● ●●● ●● ●●●● ●●● ●●● ● ●● ●● ●● ●● ● ●●●● ●● ●●●●● ● ●●●●●● ● ●●● ●●● ●●● ●●●● ● ●● ●●● ● ●●● ● ●●● ●●● ●● ● ● ●●●● ● ●● ●●● ● ●●●● ●● ●● ● ●●●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●● ● ●

● ● ●●●●
●

●

●

●

●

●

●

●
●

●

●

●● ● ● ●●●● ● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●
● ●

●

● ●● ●
●●● ●●

●●
●● ●●●

●●
●● ●

● ●● ●● ●●
● ● ●●

● ●● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ●●●● ●● ●●●●●●●●●●●●●● ●●● ● ●●



After modification: K-function 
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Before modification: G-function 
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After modification: G-function 
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Spatial statistics for detector QA 

• Transforming pixel based model into event 
based model makes damage independent of 
pixel resolution

• Fitting density allows to identify poor quality 
regions (patches with high dead pixels density)

• Remaining area CSR means no “special causes 
of poor quality” (see W. Shewhart)

• Density in remaining area gives global quality 
score for the detector



Software project with the Alan Turing Institute

Objectives: 
Web application “DetectorChecker”

• Feedback about state of detector through pixel damage analysis

• Detector data repository

Seed funded project:
• Working with Turing Research Software Engineer Group 

• DetectorChecker R package for statistical analysis of pixel damage in CT       
scanners available at                                                                              
https://github.com/alan-turing-institute/DetectorChecker

• DetectorCheckerWebApp for useful initial graphical/analysis, available at      
https://detectorchecker.azurewebsites.net

• Facility to upload data in different formats (crowd sourcing)

Brettschneider et al., (2020). DetectorChecker: analyzing patterns of defects in 
detector screens. Journal of Open Source Software, 5(56), 2474



Microtubules locations as point patterns

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Perpendicular view Parallel

Model: locations as point pattern

Experiment: Overexpression of TACC3 through treatment versus control.
Data: Microscopic images collected in planes perpendicular to the fibre axes. 

Stephen Royle’s Lab (Centre for Mechanochemical Cell Biology) asks: 
What is the role of TACC3 protein for the structure of microtubules 
within K-fibres and mesh?

Mesh



Test statistics based on basic observations

Pattern size test statistic:

�N (I) =
1

|I0|
X

i2I0

n(xi
)� 1

|I1|
X

i2I1

n(xi
)

Observation window statistic:

�W (I) =
1

|I0|
X

i2I0

|W i|� 1

|I1|
X

i2I1

|W i|

Intensity test statistic:

X

i2I0

!0(x
i
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)�
X

i2I1

!1(x
i
)⇢̂(xi

)

where �⇢(I) denotes unweighted case using !k(xi
) = 1/|Ik| (k = 0, 1)

�⇢,!(I) denotes weighted case using !k(xi
) = n(xi

)

.P
j2Ik

n(xj
) (k = 0, 1)



Test statistics based on nearest neighbours

Mean nearest neighbour test statistic:

�nnd(I) =
X

i2I0

!0(x
i)nnd(xi)�

X

i2I1

!1(x
i)nnd(xi) (1)

Unweighted and weighted versions as above.

Further work includes mean minimum spanning test statistics.



Test statistics based on G-functions

Estimated nearest neighbour functions averaged

over the collection of point patterns xJ with weights !J as above:

Ĝ(xJ , r) =
X

i2J

!J(x
i)Ĝ(xi, r)

Nearest neighbour distribution test statistic statistics:

�G,1(I) = ||Ĝ(xI0 , r)� Ĝ(xI1 , r)||1 =

Z 1

0
|Ĝ(xI0 , r)� Ĝ(xI1 , r)|dr

�G,1(I) = ||Ĝ(xI0 , r)� Ĝ(x(I1 , r)||1 = sup
r

|Ĝ(xI0 , r)� Ĝ(xI1 , r)|

For comparison of Ĝ(xI0 , r) and Ĝ(xI1 , r)

across the range of distances r > 0.

Also, scaled neighbourhood count test statistic (Diggle 2000).



Significance quantification

• Based on permutation tests (nonparametric)

• Need exchangeability under the Null under suitable set of operations

• Statistics under permutations are identically distributed

• p-values are uniformly distributed (test e.g. with KS)

• Exact or approximate (subset of operations)

Operations � = {�0, �1, . . . , �m}, where �0 = Id.

p-value for two-sided test of H0 using statistic t :

p =
1

m+ 1

X

�2�

1{|t(�x)|�|t(�0x)|}

� : random subsets of the symmetric group SI

Permuted I results in subsets I
(j)
0 and I

(j)
1 satisfying

I
(j)
0 [ I

(j)
1 = I, I

(j)
0 \ I

(j)
1 = ;, |I(j)0 | = |I0|, |I(j)1 | = |I1|



Simulation study
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Figure 1: Realisations of each of the simulation types.
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Data: d, W

Result: Point pattern x on W with nearest neighbour distances {d1} [ d

x1  centre of W ;

for i in 1 : n do

repeat

j ⇠ Uniform{1, . . . , i};
✓ ⇠ Uniform[0, 2⇡];

xi+1  xj + di(cos ✓, sin ✓);

until mink2{1,2,...,i} ||xi+1 � xk|| � di and xi+1 2W ;

end

x (x1, x2, . . . , xn+1);
Algorithm 1: CPP (d,W ) generation

An algorithmic description for the generation of a realisation of a CPP (d,W ) process is given in

Algorithm 1. From Algorithm 1, it is clear that nnd(x1) = d1 and nnd(xi) = di�1, i 2 {2, 3, . . . , n+
1}. Similarly, the minimum spanning tree of X ⇠ CPP (d,W ) has weight

P
i2{1,2,...,n} di by

construction.

Let MPP (n, u,�) denote the marked point process on �
+
2 with a fixed number of points n

and mark directions vj deviating from u by angles of up to �. As the e↵ective force transference

summary statistic depends only upon the distribution of marks vj , point locations xj are fixed at

the origin. Marks are then simulated for u
0
= (0, 0, 1) with

�j ⇠ Uniform[0,�], ✓j ⇠ Uniform[0, 2⇡], v
0

j = (sin�j cos ✓j , sin�j sin ✓j , cos�j).

Marks are transformed by the rotation R for which Ru
0
= u and scaled by the constant ⌘j such

that vj · ẑ = h, producing vj = ⌘jRv
0

j .

4.2 Study design

For each simulation type, the required collection of point patterns x
I or y

I is simulated before

permutation testing is carried out for each of the appropriate test statistics, with the resulting p-

value being recorded. One hundred replicates of each simulation and testing procedure are carried

out to provide information on the sensitivity and specificity of proposed tests and the variability of

these properties. In the case of point patterns x collection sizes are |I0| = |I1| = 30 and for marked

point patterns y the collection sizes are |I0| = |I1| = 14 to approximately match the TACC3 data.

A realisation of each simulation type is displayed in Figure 1.

Homogeneous intensity simulations are made up of point patterns x simulated according to

HPPP(⇢0,W ) for x 2 x
I0 and HPPP(↵⇢0,W ) for x 2 x

I1 . The base intensity ⇢0 = 10�4 is

chosen to approximately match that of the TACC3 data, with each W the square window with

area sampled independently from Uniform[5002 � 105, 5002 + 105] to produce approximately the

same number of points per pattern as the TACC3 data. Tested values of ↵ vary across the set

{1, 1.1, 1.2, 1.5}, resulting in various strengths of di↵erence between collections xI0 and x
I1 .

Inhomogeneous intensity simulations are made up of point patterns x simulated according to

HPPP(⇢0,W0) for x 2 x
I0 and IPPP(⇢,W0) for x 2 x

I1 . The observation window W0 is fixed as

13

• Homogeneous Poisson process density 

• Inhomogeneous Poisson process with 
density 

• Cluster point pattern generated by 
rejection sampling algorithm

ρ

ρ(x)



Study I: Microtubules

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Figure 1: Diagram of the stages of mitosis (Ali Zifan).

Point pattern data comprising observations from two populations may arise in numerous ways.

The locations of a particular subcellular structure within multiple cells identified from microscope

images, when one set of cells has received a treatment and the other has not. The locations of trees

or plants across multiple locations, when observations are divided into two sets based upon the

climate conditions at each location. The location of particular archaeological finds within historical

sites, when observations are divided into two sets based upon the ages of the sites. The location

of aftershocks after earthquakes, when observations are divided into two sets based upon whether

they are on land or underwater.

Development of the proposed methodologies is motivated by a biological problem. During

mitosis, subcellular structures known as kinetochore fibers (K-fibers) connect two anchor points,

centrosomes, within the cell to each of the chromosome pairs. The chromosomes contain the genetic

information and successful mitosis requires the pairs to be evenly divided, such that each of the two

daughter cells contains one of each chromosome. K-fibers are believed to apply the force necessary

to separate chromosome pairs and as a result they are important for successful cell division. An

illustration of the process of mitosis including the function of the K-fibers can be seen in Figure 1.

Each K-fiber is made up of a number of microtubules, approximately cylindrical structures

which are bound together by a mesh structure to form the rigid K-fiber. Our collaborators, Dr.

Steve Royle and his research group within the Centre for Mechanochemical Cell Biology at the

University of Warwick, are interested in the e↵ect that overexpression of the TACC3 protein,

Transforming acidic coiled-coil containing protein 3, may have on the structure of microtubules

within K-fibers. The structure may be visualised by microscopy imaging of cells at the correct point

in the cell cycle under a control regime and a treatment regime for which there is overexpression of

TACC3. Images are collected in planes perpendicular to the K-fiber axis, resulting in microtubules

visible through their cross-sections as dark circles. Example images may be seen in Figure 2. The

collection of microtubule centres within a single image produces a set of coordinate locations, with

imaging of multiple cells under each regime producing the two sets of coordinate locations for

analysis.

Also available is a data set comprised of paired 2D microtubule coordinate locations obtained

from two parallel image slices through the same sample, including information on which coordinate

locations represent the same microtubule in each of the slices. These are similarly collected for

2

Perpendicular to the microtubule axis Parallel showing mesh

Model locations as point pattern

Microtubule

Stephen Royle’s Lab (Centre for Mechanochemical Cell Biology): 
What is the role of the TACC3 protein for the structure of microtubules 
within K-fibres and mesh?
Experiment: 
Overexpression of TACC3 through treatment versus control.
Microscopic images collected in planes perpendicular to the fibre axes. 



Study I: Microtubules - mathematical model

Data: 
Microscopic images of treatment (n=37) versus control (n=26)

Radius of microtubule=12.5, mesh extends to 80 max: nn distance in [25,105] 

Observation window surrogate for cross sectional area of K-fibres
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Figure 3: Plots of sample microtubule location data. Each pattern represents a single K-fiber with

microtubules represented as circles, the centres of which are analysed as point locations and the

radii of which are consistent with the expected microtubule radius.

coordinate locations, with imaging of multiple cells under each regime producing the two collections

of coordinate locations, xI0 and x
I1 , for analysis.

We choose to investigate 2D coordinate locations obtained from imaging biological samples as

point patterns. Choosing to model the TACC3 2D point pattern data within this framework, we

have |I| = 63, I0 indexing observations under the control regime with |I0| = 26 and I1 indexing

observations under the treatment regime with |I1| = 37.

Also available is a data set comprising paired 2D microtubule coordinate locations obtained

from two parallel image slices through the same sample approximately perpendicular to microtubule

directions, including information on which coordinate locations represent the same microtubule in

each of the slices. Paired coordinate locations are reported as

x = {(x1,0, x1,1), (x2,0, x2,1), . . . , (xn(x),0, xn(x),1)}.

We choose to investigate paired 2D coordinate locations obtained by imaging biological samples

as marked point patterns y with xj = xj,0 ⇥ {0} and vj = (xj,1 � xj,0)⇥ {h}. An example plot of

marked point pattern data may be seen in Figure 4.

Paired coordinate observations are similarly collected for multiple samples under each of the

two experimental regimes. Choosing to model the TACC3 paired point pattern data within this

framework, we have |I| = 28, I0 indexing observations under the control regime with |I0| = 13 and

I1 indexing observations under the treatment regime with |I1| = 15.

5.2 TACC3 data features

Using the notation introduced in Section 3.1.1, point patterns x are realisations of point processes,

X, obtained by reporting the locations of all points contained within a fixed observation windowW .
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EDA: First order statistics 
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• All means/medians are greater for treatment 
• Treated K-fibers are made up of a greater number of microtubules which are 

more closely separated within thicker K-fibers
• Weighted mean densities greater than unweighted means densities               

(i.e. K-fibers with greater numbers of microtubules are more tightly packed
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EDA: Second order statistics 
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• In each case the average separation distance is reduced for treatment observations
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are more tightly packed).
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EDA: Spatial functions
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• Some evidence of clustering at larger length scales 
• Effect of limitation of nnd in [25,105]
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Test statistics

Observations of exploratory analysis can be confirmed by formal testing.

All proposed test statistics show significant results:

Results remain significant after multiple testing adjustment of critical 
p-value (using Bonferroni).



What did we find?

• Microtubules are bound together (in K-fibers, by mesh-like structure) 

• TACC3 overexpression is associated with an impact on the mesh

• Detection of treatment effects not visible by eye

Figure 2: Sample microscope images taken perpendicular to the microtubule axis, left, and parallel

to the microtubule axis, right (Hepler et al., 1970). Arrows indicate the location intermicrotubule

bridges formed by mesh.

multiple samples under each of the two experimental regimes.

This report begins with an introduction to the problem and methodology, followed by a de-

scription of the data. A concise background on spatial point patterns is then given, after which the

methodology is described in detail. The following section describes the formulation and results of a

simulation study of the e↵ectiveness of the proposed methodology. After successful application to

simulations a set of biological data is analysed, sensitivity testing is carried out for the biological

data and conclusions are presented.

2 Data description

2.1 2D point patterns

We choose to investigate 2D coordinate locations obtained from imaging biological samples as point

patterns x 2 �2, where �2 is the set of all finite point patterns on R2. That is x = {x1, x2, . . . , xn(x)}
with xj 2 R2.

Multiple sets of coordinate locations produce a set of m point patterns x
i 2 �2 indexed by

i 2 I = {1, 2, . . . ,m}. The notation x
I = {xi : i 2 I} is used to represent the set of all 2D point

patterns. Two subsets of point patterns, indexed by A0(I) and A1(I) and denoted by x
A0(I) and

x
A1(I), are obtained by partitioning the set I

A0(I) [A1(I) = I A0(I) \A1(I) = �

where � denotes the empty set. Under this notation, xi
j is the location of the j

th point in the i
th

point pattern, xi.

Choosing to model the TACC3 2D point pattern data within this framework, we have |I| = m =

63, A0(I) indexing observations under the control regime with |A0(I)| = 26 and A1(I) indexing

observations under the treatment regime with |A1(I)| = 37.

3

Perpendicular to the microtubule axis Parallel view



About right and wrong

What are models for?  Prediction and explanation.  Answering questions…

Rephrase “how good”: 
How good is it at the task what you want it to do (prediction and/or explanation)?

“All models are wrong, some are useful.”
George Box, FRS (1919-2013) 
English statistician (quality control, time series, design of experiments, response 
surfaces, Bayesian inference etc)

How good is a model? 

“Far better an approximate answer to the right 
question, which is often vague, than the exact answer to the 
wrong question, which can always be made precise.”
John Tukey (1915-2000)  
American statistician (FFT, various statistical tests, EDA)



Relationship between two proteins over time

• Protein EB3 localises at the tip of growing microtubules during mitosis. 

• Relationship between TACC3 and EB3?

• Role of the protein TACC3 during that same process? 

• Confocal fluorescence microscopy images collected across seven samples at 
a total number of between 47 and 57 time points. 

• Images are collected of live cells during mitosis with TACC3 tagged with a 
green fluorescing protein and EB3 tagged with a red fluorescent protein. 

Background and questions

Data

Is the protein TACC3 present in the same locations as the 
protein EB3 during the process of mitosis? 

Question that can be answered from images 



Dependencies between bulk movement patterns  

• Animals e.g. predator and prey (Mitchell and Lima, 2002) 

• Air particles, e.g. pollution

• Cellular structures (Chenouard 2014)

Modelling
• Measure for closeness of two spatial protein distributions 

• Comparing their evolution over time

What is the relationship between two bulk movement patterns?

Applications

Mathematical formulation of case study question



Tool: Colocalisation of proteins

http://www.olympusmicro.com/primer/techniques/confocal/applications/colocalization.html

Colocalization in the lateral 
optical plane of the 
cytoskeletal protein actin 
with vinculin, a protein 
associated with focal 
adhesion and adherens 
junctions.

Applications
• Detect physical location within cell

• Uncover functions of proteins based on location

• Unravel interactions, build networks, infer function

Example for (traditional) visual detection of colocalisation

http://www.olympusmicro.com/primer/techniques/confocal/applications/colocalization.html


Quantifying colocalisation (static)

rp =

P
i(Ai � a)(Bi � b)pP
i(Ai � a)2(Bi � b)2

(1)

where Ai and Bi are the voxel or pixel intensities (also called grey values) of
channels A and B, respectively, and a and b are the corresponding average inten-
sities over the entire image. Therefore, the values of the coe�cient range from
�1 to 1, with values tending to 1 representing complete positive correlation, 0
for no correlation and �1 for negative correlation. Nevertheless, in true biolog-
ical situations one cannot obtain values very close to �1, due to the underlying
similarity between two channels of the same image, as noted later. A major
advantage of this approach is that it considers the similarities between shapes,
but is not influenced by the average intensity of the signal. In other words, the
coe�cient is scaling invariant [15, 11]. This approach has been applied to study
the behaviour of DNA replication patterns in interphase nuclei [11, 12]. It has
been suggested that this method has significant drawbacks as well, such as the
fact that it cannot discriminate between partial colocalization and exclusion,
with values in the range of �0.5 to 0.5 providing ambiguous interpretations,
and sensitivity to noise, which are discussed below through analysing artificial
images [7, 22].

3.4 Manders’ coe�cients: M1 and M2

A major problem with having a single output value as the colocalization mea-
surement occurs when the amount in fluorescence intensities in both channels
di↵ers significantly. For instance, in the case of Pearson’s correlation coe�cient
the influence of the number of fluorescent objects in both components is con-
siderable and can cause ambiguity in the interpretation. A simple example of
this would be when one channel completely colocalizes with the other, but is
present in only a small proportion of the pixels that the other channel occupies,
a quarter say. In this case, Pearson’s coe�cient would give us a small positive
result that could be interpreted in a number of ways, without telling us what
the actual situation is. With the aim of overcoming this problem, Manders
developed two separate coe�cients,

M1 =

P
i AiIBiP

i Ai
,M2 =

P
i BiIAiP

i Bi
(2)

where IAi = 0 if Ai = 0 and IAi = 1 if Ai > 0 (analogously for Bi). Thus, M1

and M2 can be interpreted as the amount of signal intensities of colocalizing
objects in each channel, relative to the total signal intensity in that channel.
Hence, Manders’ coe�cients vary in the range from 0, representing no coinci-
dental objects, to 1, corresponding to 100% colocalization. It is immediate that
this pair of measures can be easily determined and interpreted even with dif-
ferent volumes of fluorescence [11]. Unfortunately, an obvious drawback is the
sensitivity of this method to background and noise, which requires the estima-
tion of a threshold, thus introducing bias [2]. On one hand Manders’ coe�cients
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(1)

where Ai and Bi are the voxel or pixel intensities (also called grey values) of
channels A and B, respectively, and a and b are the corresponding average inten-
sities over the entire image. Therefore, the values of the coe�cient range from
�1 to 1, with values tending to 1 representing complete positive correlation, 0
for no correlation and �1 for negative correlation. Nevertheless, in true biolog-
ical situations one cannot obtain values very close to �1, due to the underlying
similarity between two channels of the same image, as noted later. A major
advantage of this approach is that it considers the similarities between shapes,
but is not influenced by the average intensity of the signal. In other words, the
coe�cient is scaling invariant [15, 11]. This approach has been applied to study
the behaviour of DNA replication patterns in interphase nuclei [11, 12]. It has
been suggested that this method has significant drawbacks as well, such as the
fact that it cannot discriminate between partial colocalization and exclusion,
with values in the range of �0.5 to 0.5 providing ambiguous interpretations,
and sensitivity to noise, which are discussed below through analysing artificial
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(2)

where IAi = 0 if Ai = 0 and IAi = 1 if Ai > 0 (analogously for Bi). Thus, M1

and M2 can be interpreted as the amount of signal intensities of colocalizing
objects in each channel, relative to the total signal intensity in that channel.
Hence, Manders’ coe�cients vary in the range from 0, representing no coinci-
dental objects, to 1, corresponding to 100% colocalization. It is immediate that
this pair of measures can be easily determined and interpreted even with dif-
ferent volumes of fluorescence [11]. Unfortunately, an obvious drawback is the
sensitivity of this method to background and noise, which requires the estima-
tion of a threshold, thus introducing bias [2]. On one hand Manders’ coe�cients
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• Scaling invariant
• Costes’ threshold to deal with noise
• Ongoing area of research, e.g. Wang et al. (2018) for automatic segmentation



Quantifying colocalisation: Illustration

Correlation examples (simulations) for hypothetical proteins X and Y

r=0.908

r=0.103

r=0.100

r=0.438



Intuitive check:  
Colocalisation for consecutive time points
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Figure 6: Boxplots to display the distribution of values of Pearson’s correlation coe�cient across

all pairs of consecutive time points for each of the sample comparisons considered.

5.2 Exploratory data analysis

Intensities related to EB3 are in general greater than that of the TACC3 channel due to expression

of TACC3 at a lower level. Greater expression of TACC3 is avoided, as it results in a brighter image

but also aggregation of TACC3 away from microtubule tips, and consequently away from EB3,

which could obscure the ability to investigate interaction between TACC3 and EB3. Estimation

of movement patterns for TACC3 is therefore expected to be more challenging as intensities are in

some cases on a similar scale to background noise. Consistent scaling of intensity in a subregion,

m( ), by a positive constant across time points s and t results in an identical scaling of the summary

statistic, Ŝ 
s,t
, and a change to the comparison score Ĝ , 

s,t
. However, if the scaling is consistent

across all subregions and all time points then the impact on test results should be minimal.

As an exploratory investigation, colocalisation between image pairs may be quantified using

Person’s correlation coe�cient, the results of which are displayed in Figure 6. Calculations are

made for comparison pairs EB3 ⇥ TACC3, for which we are interested in the degree of similarity,

and EB3 ⇥ TACC3* and TACC3 ⇥ TACC3*, where TACC3* is the vertical reflection of TACC3

and we expect to see only coincidental similarity. For each of the seven samples correlation values

are greater for EB3 ⇥ TACC3 than the alternatives, indicating that there is more than coinci-

dental similarity between EB3 and TACC3. However, without a methodology for quantifying the

significance of obtained correlation values, it is impossible to conclude that there is dependence

between the distribution of EB3 and TACC3.

A major foundation of the estimator F̂ 
s,t

is that ms( ) and mt( ) represent distributions of

approximately the same masses at two di↵erent time points. In the context of the EB3 and TACC3

image data this equates to minimal changes in intensity on a subregion by subregion basis, caused

30

Colocalisation of protein distribution between consecutive time points 
for each sample combination of TACC3, TACC3 (vertical reflection), and EB3.

Colocalisation of EB3 with TACC3 is always higher than any of the 
other combinations.

TACC3* and TACC3: only coincidental similarity expected



Model for bulk movement patterns

Observed pixel intensity values m0
(x) and m1

(x) across ROI:

 
⇤ ✓  = {1, 2, . . . , n1}⇥ {1, 2, . . . , n2}

Spatio-temporal process M denoted by Mt(x) (x 2  , t 2 ⌥).

Fs,t(x, y) mass moving from location x at time s to y at time t.

Direct dependency of movement patterns F 0
and F 1

:

Mass F 0
s,t(x, y) positively associated with F 1

s,t(x, y)

(across all pairs of locations and times).

Use earth movers distance (EMD) (Kantorovich-Wasserstein metric).

Need to have a model the captures the evolution rather than individual time points.

Idea: Find minimal transportations costs



Earth mover’s distance (EMD)

Non-negative spatial processes m0 and m1 over �0 and �1.

EMD(m0,m1) =

P
x2�0,y2�1 f̂(x, y)d(x, y)
P

x2�0,y2�1 f̂(x, y)

f̂ = argminf2⌘(m0,m1)f(x, y)d(x, y),

for cost function d(x, y) and ⌘(m0,m1) the set of f for which

f(x, y) � 0 8x 2 �0, y 2 �1

X

x2�0

f(x, y)  m1(y) 8y 2 �1

X

y2�1

f(x, y)  m0(x) 8x 2 �0

X

x2�0,y2�1

f(x, y) = min

0

@
X

x2�0

m0(x),
X

y2�1

m1(y)

1

A .

Work normalised 
by the total flow

Flow that minimises overall cost



Movement summary statistics

• Built on EMD

• Discretisation into 8 directions

• Subregions (to avoid unintuitive results from large spaces)

• Specification of Null hypothesis

• Permutation test set up

• Simulation study
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Figure 4: Illustration of observations ms, top left, mt, top right, estimated F̂s,t and true Fs,t,

bottom left, for a single simulation. A scale is provided in the bottom right. Simulated movements

are represented by green arrows, with grey arrows used to represent estimated movements of varying

quantities of mass and mass distributions displayed as shades of red for ms and blue for mt. The

background image of the bottom left plot displays ms�min{ms,mt} in red and mt�min{ms,mt}
in blue, the information on which movements are estimated.
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Null comprised of 3 statements

1. Between-sample independence of local bulk movement patterns:

{S 1,0
s,t , S 2,0

s,t , . . . , S w,0
s,t } independent of {S 1,1

s,t , S 2,1
s,t , . . . , S w,1

s,t }.

2. Specify set of operations ⇤.

3. Within-sample independence of local bulk movement patterns:

S
 j

s,t is independent of S k
s,t for j 6= k

(required to ensure exchangeability under the action of � 2 ⇤).

• Isotropic: rotation, reflection, reordering

• Homogeneous: reordering

• Symmetric: rotation, reflecting (limited)

• Horizontal reflection

Example hypotheses



Simulated data

Noise

t = 1 t = 2 t = 3 t = 4 t = 5

Isotropic

t = 1 t = 2 t = 3 t = 4 t = 5

Homogeneous

t = 1 t = 2 t = 3 t = 4 t = 5

Symmetric

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 3: Examples of simulated data. Pixel intensities correspond to values of m, linearly scaled

such that the maximum value of m across all time points is black and the value m = 0 is white.
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Simulation results

• mostly confirms theoretical method

• some issues with composite hypothesis

• higher rate of incorrect rejections

• evidence for validity of omnibus hypothesis approach

Independent movement

Dependent movement



Study II:  
Evolution of bulk movement patterns

Does the protein TACC3 evolve spatially colocalised with the protein EB3 
during the process of mitosis? 

Question

Analysis
Compare movement patterns of TACC3 and EB3 during mitosis using EMD.

Results
Omnibus null hypothesis consistently rejected at 5%.

• Movement patterns of EB3 and TACC3 are dependent

• Potentially through their localisation on the tips of growing microtubules

Conclusions
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