
- 1 -

Imperial College of Science and Technology 

Department of Mathematics

QUASI-LIKELIHOOD ESTIMATION: EFFICIENCY

AND OTHER ASPECTS

by

David Firth

Thesis submitted to the University of London for the degree 

of Doctor of Philosophy (Ph.D.)

December 1986



- 2 -

ABSTRACT

A quasi-likelihood method has been proposed by Wedderburn 

(Biometrika 61 (1974) , 439-47) for the estimation of parameters in 

regression models when there is some assumed relationship between the 

mean and variance of each observation but not necessarily a fully 

specified likelihood. Some aspects of this method are studied, three main 

topics being efficiency, standard errors and the connections with some 

other recent developments.

If the underlying distribution comes from a natural exponential 

family the quasi-likelihood estimates maximize the likelihood and so have 

full asymptotic efficiency; under more general distributions this is not the 

case. The asymptotic efficiency of quasi-likelihood estimation is calculated 

under some particular distributions, and then more generally via an 

approximation for ‘small departures’ from the corresponding natural 

exponential family. The possibility of refinement of the quasi-likelihood 

approach, to incorporate additional information about the underlying 

distribution, is considered.

Standard errors for quasi-likelihood estimates are usually based on 

the covariance matrix of a large-sample normal approximation to their 

distribution. Under the same variance assumptions on which 

quasi-likelihood is based, the form of this covariance matrix is simple and 

well known. A ‘robust’ alternative is investigated, based on the asymptotic 

normal distribution of quasi-likelihood estimates under departures from the 

assumed second moment behaviour. Aspects discussed include bias 

correction and the relation of the method to a ‘partially Bayes’ approach.

A number of authors have recently proposed ‘approximate 

likelihood’ methods to allow comparison of different variance 

specifications. Connections between some of these methods are explored 

and made explicit.
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CHAPTER 1

Introduction: quasi-likelihood estimation

1.1 A class of models

Consider independent random variables y iv..,yn with

E(Y.) = ^(3) (/=i,...,«) (1.1)

and var(y) = m v $ 0=!,...,«). (1.2)

McCullagh & Nelder (1983, chapter 8) have called this a ‘quasi-likelihood 

model’. The first-moment specification (1.1) defines the parameters of 

prim ary interest, in general a vector 3=(30,...,3p); the functions jz.(.) are all 

known. The positive-valued variance function V(.) is taken as known, and 

<t»0 is a dispersion parameter whose value may be unknown but is not 

usually of primary interest. The model is ‘semi-parametric’ in that the 

form of the distribution of Y. as a function of is only partially 

specified.

In applications the functions Mj(.) often express dependence on 

explanatory variables x i0,...,Xj whose values are known. A form of 

dependence that has been found particularly useful is the generalized linear 

model, introduced by Nelder & Wedderburn (1972), in which

= E * ir3r 0  = 1 ( 1 . 3 )
r= 0

for some specified link function g(.). This type of model, in which the 

parameters 3 enter via a linear component, often has the advantages of 

ease of interpretation and computational simplicity, while retaining 

considerable flexibility through the choice of link function; for further 

discussion see, for example, McCullagh (1984).
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This thesis discusses aspects of methods for estimating the 

regression parameters 0 in models of the type given by (1.1) and (1.2), 

with the generalized linear form (1.3) being assumed when it helps to 

make arguments clearer or more concrete. A more general formulation, 

allowing correlation between observations, has been given by McCullagh

(1983), but this will not be considered here; as McCullagh & Nelder (1983, 

p i69) assert, ‘Apart from the multinomial case where dependence is induced 

by fixing the total, the most interesting class [of quasi-likelihood models] 

involves uncorrelated observations.’

Perhaps the simplest and most fam iliar example of a quasi-likelihood 

model is linear regression with constant error variance, in which

p
E(Y.) = il. = Z *ir0r

r= 0
(/ = 1,...,«) (1.4)

and var(yj) = o2 (/=!,...,«) ; (1.5)

in terms of the earlier notation this has g(jx)=pt, V ( il)= 1 and <f>=o2.

1.2 Estimation o f the regression parameters

1.2.1 Quasi-likelihood estimation

Given observations ylv. . j n from the constant variance linear 

regression in (1.4) and (1.5), least squares estimates for the parameters 

0=(0o,...,0p) are solutions of the equations

n
E ( y - r ^ i r  = 0 (r = 0,...,/?) . (1.6)

i= l

Wedderburn (1974) has shown how, in more general models of the type 

given by (1.1) and (1.2), the least squares equations (1.6) may be
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generalized to the quasi-likelihood equations

r (y-n■) . a<h _ 
i=i n n ,) 3Br

(r = 0,...,/?)

which in the case of a generalized linear model become

" (y  - ^  . * ir  =  0 
i=1 F(/£j) ^ ’ (Mi) (r = 0,...,/?) .

(1.7)

( 1.8)

The name ‘quasi-likelihood’ arises because (y-lL-)/V(ii.J behaves in many 

ways like a likelihood-based score function: see Wedderburn (1974,§3) for

details. In fact the equations are, in some important cases, the same as 

maximum likelihood equations based on a particular family of 

distributions. For example, quasi-likelihood equations with V(p)=l  are 

simply the least squares equations, i.e. maximum likelihood based on the 

assumption Similarly quasi-likelihood equations with V(ii)=p are

the same as maximum likelihood equations based on a Poisson(/^) 

distribution for y. ; and in general quasi-likelihood estimation based on 

solving (1.7) is the same as maximum likelihood based on the natural 

exponential fam ily  with variance function F(/z), when such a family exists.

Particularly important in what follows will be the large-sample 

behaviour of quasi-likelihood estimates, as n-*m with p fixed. Under the 

mean and variance assumptions (1.1) and (1.2), McCullagh (1983) has given 

conditions for the existence of a solution 3 of (1.7) which is consistent 

and asymptotically normal,

«D
^ ( 6 - 6 )  -  JVp+1[ 0 , n^D T diagU /F C ^D }-1 ] , (1.9)

where D=(9Mi/3 3 r) is the «x(p+1) m atrix of derivatives of jZj(3). The main 

condition needed is the existence of a (positive definite) lim iting value for 

the covariance matrix in (1.9). We will write

cov(3) = 0{DTdiag(l/F(Mi))D)-1 ( 1.10)
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to describe the asymptotic covariance matrix of 0, and similarly for other 

estimators. In the case of a generalized linear model this may be written 

as

cov(0) = ftxTdiagOv^X}-1 , ( U l )

where w. 1
nuiKg'Oii)}2 ( 1. 12)

and X=(xir) is the «x(p+1) matrix of explanatory variables.

The quasi-likelihood equations remain unbiased estimating 

equations for 0 in the sense of, for example, Godambe & Thompson (1978), 

even if the variance specification (1.2) is incorrect. Under some fairly  

mild extra conditions (e.g. Inagaki, 1973) 0 remains consistent for 0 in

(1.1) and asymptotically normal; writing the equations as zn(0)=O the 

asymptotic covariance matrix is A^1Sll(A^1)T where Sn= cov{zn(0)} and 

An=9£’{zn(0)}/90 evaluated at the true parameter value. If the true 

variance of Y. is #j, say, these quantities are easily calculated as

An = -D Tdiag{l/K(ji.)}D 

and Sn = DTdiag[<ii/{K(gi)}2]D

so the asymptotic covariance m atrix is

cov(B) = [DTdiag{l/F(Mi))D]-1DTdiag[0i/{F(gi))2]D[DTdiag{l/F(gi))D]-1; (1.13)

of course if 4>-=(pV(f£j) this agrees with (1.10) exactly.

Standard errors for quasi-likelihood estimates may be based on 

either (1.10) or (1.13); this will be discussed further in Chapter 3.



- 1 2 -

1.2.2 Least squares, Gaussian and maximum likelihood estimation

Some other possible methods for estimating the parameters B in

(1.1) are now discussed briefly.

A widely used method in regression problems is unweighted least 

squares, based on the estimating equations

This may also be thought of as maximum likelihood based on the 

assumption or as quasi-likelihood estimation based on variance

function F(ji)=constant. While estimates based on (1.14) are quite 

generally consistent and asymptotically normal, it is easily shown that, 

unless V(u) in (1.2) is constant, they are inferior, in the sense of 

asymptotic variance, to quasi-likelihood estimates based on the correct 

variance function; unweighted least squares estimation does not make use 

of (1.2) at all. In fact it may be shown that under (1.1) and (1.2) the 

quasi-likelihood equations are asymptotically optimal among unbiased 

estimating equations that are, like least squares, linear in the observations. 

General versions of this result are given by Morton (1981), Crowder (1982), 

McCullagh (1983) and Gourieroux, Monfort & Trognon (1984a). The 

optimality is most easily demonstrated using a model in which B is a 

single, scalar parameter; a general linear unbiased estimating equation may 

then be w ritten as

for some av ...,a which do not depend on the observations. The asymptotic 

variance of a consistent solution may be calculated as before, and is of

(r = 0,...,/?) . (1.14)

n
E fliO'-Mi(B)} = 0
i=l

the form
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a simple application of Cauchy’s inequality now shows that this is 

minimized when is proportional to {F(ji.)}-1(3/i./3/3), with minimum value

“  in (1.10).

based on y.~N(fi.,l); an obvious alternative method, which makes use of 

the mean-variance relationship (1.2), is maximum likelihood based on the 

assumption Y.~N(]l, , <PV(il.J) . This has been called Gaussian estimation, 

see e.g. Whittle (1961), and the estimating equations are

These equations, which provide estimates with full asymptotic efficiency 

when the underlying distribution is N(Mj , , remain unbiased

estimating equations under the weaker assumptions (1.1) and (1.2); they are 

not in general unbiased when (1.2) fails, and in this sense Gaussian 

estimation is less robust than quasi-likelihood estimation based on (1.7). 

Another consideration is that estimates based on (1.15), even when 

consistent and asymptotically normal, have an asymptotic covariance matrix 

that depends on the third and fourth moments of the underlying 

distribution; without further assumptions these are unknown, so the 

precision of Gaussian estimates may be d ifficu lt to assess.

methods, each based on some particular family of distributions satisfying 

the assumptions (1.1) and (1.2); the unbiasedness of the estimating equations 

(1.15) under only these assumptions is, however, untypical of this class. In 

general, maximum likelihood equations are not linear or quadratic in the 

observations, and so cannot be unbiased under assumptions about only the 

first two moments. On the other hand, maximum likelihood based on the 

true underlying distribution would not only be consistent but also

Unweighted least squares is the same as maximum likelihood

Gaussian estimation is one of a large class of maximum likelihood
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asymptotically efficient; while this is of no use in a practical sense 

because the precise form of the true distribution is not assumed known, it 

provides a means of assessing, theoretically, the efficiency of other 

methods, in particular quasi-likelihood estimation. This will be pursued 

further in Chapter 2.
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CHAPTER 2

Efficiency of quasi-likelihood estimation

2.1 Introduction

It was noted in Chapter 1 that the quasi-likelihood equations (1.7) 

are the same as maximum likelihood equations based on the natural 

exponential fam ily with variance function when such a family exists.

In the present chapter we study the loss of efficiency involved in 

quasi-likelihood estimation, relative to maximum likelihood, when the two 

methods d iffer, i.e. when the true distribution satisfies (1.1) and (1.2) but 

is not from a natural exponential family; the asymptotic covariance matrix 

of the quasi-likelihood estimate is compared with that of the maximum 

likelihood estimate based on the true underlying distribution. We focus on 

three types of problem in which quasi-likelihood methods seem to have 

been used most: first, in §2.2, we consider models with constant variance,

T7(fz)=l; section 2.3 then examines models with constant coefficient of 

variation, V(fi)=n2; and in §2.4 we investigate problems in which there is 

‘overdispersion’ relative to some natural exponential family. In each case 

we discuss also the possibility of extending the quasi-likelihood approach 

to incorporate intermediate knowledge about the underlying distribution, 

such as the form  of the third moment.

The arguments of this chapter are expressed in terms of the 

generalized linear model (1.3), as certain parts of the discussion are 

thereby made more concrete. Abstraction to the general regression (1.1), 

while straightforw ard, provides no additional insight.
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2.2 Models with constant variance

2.2.1 Asymptotic relative efficiency

Here we restrict attention to quasi-likelihood models with constant 

variance function, V(fi)= 1. Explicitly then, writing the regression as a 

generalized linear model, we assume

E{Y.)=il{ , g(fi.)=E x irBr and var(Tj) = 0 (i = 1,...,«) . (2.1)
r=0

The quasi-likelihood equations for estimating 0=J3Q,...,3p are now simply the 

least squares equations,

x.I  (y.—/£.) — 1L = 0
1=1 1 ' S ' W

(r = 0,...,/?) . (2.2)

In the special case where each Y. is from a normal distribution with mean 

IL and variance 0, these equations are maximum likelihood equations and 

so, subject to standard conditions, least squares estimation has full 

efficiency for fixed p as n-*m. In general, however, the underlying 

distribution may be non-normal and there is then some loss of efficiency.

The efficiency of least squares estimation in linear models with a 

constant error variance, i.e. models of the form (2.1) with g(p)=ii, has been 

investigated by Cox & Hinkley (1968). The development here, although a 

slight generalization, will be substantially the same as theirs: the main 

points will be sketched and an error will be corrected. We follow Cox & 

Hinkley in making the additional assumption that the distribution of

/£. is the same for all /, so that is simply a location parameter for 

the distribution of Y..

Consider first the situation where 0 is known. Write the log likelihood 

from a sample yp...,yn as

/(3,0) = I  log /(y^ ft ,0) = E /.(fi.,0) ,

say. Then, assuming sufficient regularity, the Fisher inform ation matrix has
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elements

£(-a’//a e raes) = Z E ( - a y a ^  ) •

This is simplified by the assumption that is a location parameter only, 

which implies that E(-d2li/dfi?)=A£, say, the same for all i= l , . . . ,«  . Thus

E(-d2//d B raes) = A e I  = ^ 6{XTdiag(Wi)X} (2.3)
i= l  U  (Mj)}

where >v. is as defined in (1.12). Under standard conditions, assumed
A

satisfied here, the maximum likelihood estimate 0 is asymptotically 

(/?+l)-variate normal with covariance matrix given by the inverse of (2.3).
A **

Comparison with (1.11) shows that cov(0) and cov(0) are proportional and 

there is a single measure of asymptotic relative efficiency,

ARE(6 : 6) = (4>A£)-‘ = $-l{E(-3*/1/ a n 1s)}*1, <2-4)

where /. is the true log likelihood for a single observation.

To extend the analysis to problems with <#> unknown it is convenient to 

assume that the general mean is included in the model and is not a parameter 

of prim ary interest; then, without loss of generality, suppose that

n
*i0 = 1 0=1,..♦,«) , E xir = 0 (r=l,...,/?) (2.5)

i= l

and take 0p —  ,0p as parameters of interest, orthogonal to the general 

mean. Again examining the Fisher inform ation matrix we find that

£(-32//9B r30) = Z £(-32/i/9n ia0) ( r = l , . . . ,p )  (2.6)
i= i S (Hj)

and £(-a2; / a e ras0) = z £(-a2/./an?) • (2.7)

The expectations E(d2l{/dfi.d<t>) and E{d2l.Jd\L2) here do not depend on 

/. Thus, provided g(fi)=p. , the identity link, the expressions in (2.6) and 

(2.7) all vanish on account of the orthogonality (2.5). The full inform ation 

matrix then partitions into the form
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Ii 0 
0 I2

( 2.8)

where Ix refers to 0O and <p, and I2 to 0lv..,0p ; the elements of I2 are still 

given by (2.3). So if we consider only the parameters of interest, 8=(81,...,0p),
A ~

the asymptotic covariance matrices of 8 and 0 remain proportional, and 

asymptotic relative efficiency is still given by the scalar quantity (<pAe)~\

In most applications of constant variance models the effects are 

taken as additive, i.e. the link function is the identity. In models with 

other link functions there is a problem with the above treatm ent for 

unknown <#>, for then there is some non-orthogonality between the two sets 

of parameters (0p . . . , 8 p) and (80,<f>). This in turn means that there is no 

single constant of proportionality between the asymptotic covariance
~  A -

matrices of 8 and 8. However use of (<M€)_1 as a measure of asymptotic 

relative efficiency can still be justified, particularly if 0O, the ‘intercept’ 

parameter, is large compared with the other effects. For when this is 

the case the link function g(fi) may be approximated by a linear function 

over the relevant range of jx-values; then g'(fi) is approximately constant 

over this range and the expectations (2.6) and (2.7) are close to zero. This 

argument could be made formal via an expansion of g'(ii) about ^0=^-1(80); 

the point is that there may still be approximate proportionality between the 

matrices cov(8) and cov(6), with (<Me) remaining an index of asymptotic 

relative efficiency.

We proceed now to calculate A € for some possible families of 

underlying distributions. For the Normal(/L,0) family, of course, 

E (-d 2l.Jd\j})=$~1, i.e. asymptotic efficiency is 1, since in this case least 

squares and maximum likelihood coincide. Cox & Hinkley consider two 

other special families, the Pearson Type VII and the log gamma, and then 

generalize the calculations by considering an Edgeworth series in which, in 

terms of a notional parameter N, the higher order standardized cumulants
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are assumed to behave as y 1=0(N~iĵ ), y 2=0(N~1), etc . This leads after 

appreciable calculation, see Appendix 1, to the approximation

E{-  a2/. /d u 2) = p H  i + \y \  + ( \ y \  -  \ y \ y 2 + \y \  ) + o ( N - 2) } (2.9)

which corrects an error in the 0(N~2) term of Cox & Hinkley’s expression 

(20). The quality of this approximation may be checked using the Type 

VII and log gamma distributions as examples; in both cases the 

‘non-normality’ parameter N  can be identified with the shape parameter of 

the distribution. The efficiency values given by Cox & Hinkley for the 

Type VII distribution remain unaffected by the above correction, since 

7 X=0 in that case. For the log gamma, Table 1 gives the exact efficiency 

and that based on the corrected approximation (2.9); the exact efficiency is 

(v 0 '(v ))-1, where v is the index of the underlying gamma distribution and 

0 '(.) is the trigamma function. The asymptotic formulae

0 '(v) = v-1{l + + gV'2 + o(v"2)}

0"(v) = - V 2{1 + v '1 + o(v-1)}

and 0 ^ (v ) = v_3{2 + 3V 1 + o(v-1)}

(Abramowitz & Stegun, 1965, p260) may be used as a check on (2.9): 

calculation from the exact efficiency gives

= v ^ ’(v) = 1 + &v_1 + | v “2 + o(V2) ; (2.10)

the log gamma distribution has 71=0"(v){0'(v))"3/ 2 and y 2=0^(v){0'(v)}-2, 

and the asymptotic approximation obtained by substituting these into (2.9) 

is easily seen to agree with (2.10). Table 1 shows that the approximation, 

taken either to order v '1 or to order v-2, is close even for v-values as

small as 1.0 .
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Table 1. Asymptotic efficiency o f least squares estimates when 
the errors have a log gamma distribution

V y2 Exact
efficiency

Efficiency from 
(2.9) to o ( y 2)

Efficiency from 
(2.9) to OtV1)

0 .5 -1 .535 4.000 0.405 0.360 0.463
1.0 -1 .140 2.400 0.608 0.601 0.606
2.5 -0 .688 0.931 0.816 0.818 0.809
5.0 -0 .469 0.437 0.904 0.904 0.902

10.0 -0 .324 0.210 0.951 0.951 0.950

Perhaps the main observation to be made about the form of (2.9)

in general is that the leading term involves only y j, suggesting that 

skewness is the most im portant factor affecting the efficiency of least 

squares, at least for small departures from normality. If y 1 is zero the 

leading term is of order N '2 and involves only y 2 , so kurtosis is then an 

appropriate index of the effect of non-normality.

2.2.2 Refinement o f least squares estimation

The least squares estimating equations are based only on 

second-moment assumptions ; we consider now the possibility of improved 

efficiency when there is information about higher moments of the 

underlying distribution.

The least squares equations for estimating 8Q, . . . , 8 p may be 

written as

L { 4 IO 8/n0'; = 0
( r = 0 , . . . , p )  (2.11)

where / N(y; m,0)=(27I0)' ^exp[-%(y-iL)2/4>) is the normal density; use of the true 

density f{y\ il$ )  in place of / N(y; would give the maximum likelihood 

equations. It has already been noted that, to first order, the loss of 

efficiency in using least squares depends on the skewness of the 

underlying distribution; if  we suppose the standardized skewness y l to be
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known then, subject to regular behaviour of higher order cumulants, the 

Edgeworth series approximation

f(y\ v,<t>) a  f N(y; 1 + l 7 tffs((y-u)/v<l>) ] (2.12)

should be closer than / n(km>0) > at least if y x is small. This suggests a 

refinement of least squares which replaces in (2.11) with an

approximation like (2.12) ; to avoid problems with negative values we shall 

in fact consider using

/*(y; M ) = / N(y; &<t>) exp [ (2 .1 3)

in place of / N in (2.11). Explicitly, then, the estimating equations become

Suppose first that <t> is known. The equations (2.14) are unbiased 

estimating equations for 0 and under standard conditions (e.g. Inagaki,

1973) they have a solution, 0* say, which is consistent and asymptotically 

normal with mean 0T, the true value; as in §1.2, if we write the equations 

as zn(/3)=0 the asymptotic covariance matrix is cov(0*)=A^1Sn(A'1)T, where 

Sn=cov{zn(0T)} and An=[9£{zn(0)}/30] evaluated at 0T . In the present case 

this gives

cov(B*) = 4>(1 ~ + \7 \7 2) {XTdiag(.vi)X)-1, (2.15)

proportional to cov(0). Comparison with the reciprocal of (2.9) gives the 

asymptotic efficiency of 0*, relative to the maximum likelihood estimator 

0, as

ARE(0* ; 0) =
1 - -T2 + 2 7 1 T ( \y\y - M  - \y\ ) + °(n -2)

— I y 2 + 2 71 r l̂ «y2<y471 h
(2.16)

= 1 -  J(72 -  372)2 + o(N~2) ,

where we assume 71= 0(W 72), 72=0(W 1) , etc., as before.
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The asymptotic efficiency of 0* should be compared with the 

numerator of (2.16), the asymptotic efficiency of the least squares estimate 

0. We see that exploitation of third moment inform ation reduces the loss 

of efficiency from 0(AT-1) to 0(N ~2) , and an index for the efficiency of 

0* relative to maximum likelihood is 72-37^ ; when this is zero the loss of 

efficiency is reduced still further to 0(N~3). As a numerical example

consider again the log gamma distribution; Table 2 gives the asymptotic 

efficiency of 0* at the same values of the shape parameter used in 

Table 1. Comparison with the efficiency of least squares shows the 

third-moment refinement to be very effective for small to moderate 

departures from normality, although least squares is more efficient when v 

is less than about 1 , which represents extreme non-normality.

Table 2. Asymptotic efficiency o f ‘refined least squares' estimates
under log gamma errors

v 0.5 1.0 2.5 5.0 10.0

ARE  (0* ; 0) 0.186 0.538 0.934 0.989 0.998

The equations (2.14) may be shown to have a certain optimality 

property among quadratic unbiased estimating equations. To illustrate, 

consider the ‘single sample’ model E{Y^=\l , var(7i)=0 with <p known.

Possible unbiased estimating equations for fi based on a single observation 

are y-fi=0  and (y.-/jt)2-0=O ; assuming symmetry, represent the combination 

of these over all observations as

n
E  [ M y - f O  + ( ! - * )  { ( y - K ) 2- * }  ] =  o ( - ■ » <  X < » )  ( 2 . 1 7 )
i= l

where X is a scalar weight. The asymptotic variance of a consistent

solution of (2.17) may be calculated as before and shown to be minimized at 

X°={2+72)/{2+72-(7 1/vr0)} with corresponding minimum variance 

; r 10{l^yj/(72+2)} = «"10{ 1“  §7i + !7 j7 2+0(W2)} ; this is the same, to 0(N ~2),
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as the variance given by (2.15), so the refined estimating equation (2.14) is 

‘optimal to second order’ among quadratic unbiased estimating equations.

Of course if  y 2 is also known we can use X=X° in (2.17) to achieve exact 

optimality within this class.

An interesting feature here is the behaviour of X°, the optimizing 

value of X, when y 1 is large. The fam iliar restriction on th ird and fourth 

cumulants,

y \ $ y 2 + 2

implies, in particular, that X°-*l as y 1~*±m . Thus it appears that, as 

skewness increases, the optimal quadratic estimating equation reverts 

towards least squares. However the asymptotic relative efficiency of these 

two methods is \-y* /(y2+2), which need not have a limiting value as 

in particular it does not, in general, converge to 1.

Solution of (2.14) generally requires iteration. It is illuminating, 

though, to consider a case where there is an explicit solution: in the

single sample problem with (f) known the solution of (2.17) with 

\=2y<p/(2v<p-y1) is of the form

n* = n -  {\yx/v<P) { n - 'U y - h 2- ®  + o(y\) , (2 .1 8 )

where in this case M is simply the sample mean. The form of (2.18) has 

intuitive appeal ; for example if y ±>0 and the sample variance exceeds the 

known population variance then we estimate the population mean to be less 

than the sample mean, reflecting the preference of outliers for the upper 

tail.

In problems where the variance is unknown, but still assumed 

constant, consider replacing <p in (2.14) by n"1E(^.—Mj)2=0, say. Then in 

the single sample model just discussed, the ‘refined’ estimating equation 

reverts to least squares, whatever the value of y x . However in more 

complicated models the assumption of constant variance may make
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knowledge of the standardized skewness more useful. To illustrate, consider 

regression through the origin, ; the estimating equation for 3 in this

case may be written as

{(y-Mi)2- ^  = 0 . (2.19)

Again writing €.=7^—fL , the two sums in (2.19) give the sample covariances 

of xj with and with €? ; equating either of these covariances 

individually to zero would yield an unbiased estimating equation for 3 , 

and (2.19) combines the two estimating functions in a way that makes use 

of the known skewness. Efficiency considerations parallel those in §2.2.1 

for maximum likelihood with 0 unknown; in particular it may be 

shown that, with the orthogonality relations (2.5) and the identity link, the 

asymptotic covariance matrix of 3*=(3*,. .  .,3*) is still given by (2.15).

In general the construction of refined estimators based on exact 

knowledge of the standardized third moment would seem to be mainly of 

theoretical interest, since in practice it is unlikely that y x can reasonably 

be specified at all precisely except possibly as zero. When there is 

imprecise inform ation about y x the particular refinement studied here has 

the advantage that the estimating equations remain unbiased even when an 

incorrect value of y ± is used; and, as shown in Appendix 2, the asymptotic 

covariance matrix (2.15) is unchanged if an estimate 71=71+Op(«"1/̂ ) replaces 

J x in (2.14).

If J 1 is known to be zero the Edgeworth series approximation 

/(y ;M ) ^  f N(y ;*£,</>)[ 1 + (y 2/24)H4{(y-fi)/v<t>} ] 

suggests, in the same way as before, ‘refined’ estimating equations

1 {(1 +1̂72)(7i-Mi) -  (72/60)(7i“ Mi)3) = 0 (r=0,. .  .,p) . (2.20)
i=l 8 UV

The asymptotic covariance m atrix of a consistent solution 3* is

cov(3*) = ( 1 -  y \ /6  + 0(N~Z) ) cov(3) ,
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and comparison with the reciprocal of (2.9) shows that the loss of 

asymptotic efficiency is reduced from 0(N~2) to 0(N~3) by incorporating 

inform ation about kurtosis in this way. In practice y 2 is not usually known 

but, as shown in Appendix 2, an estimate 72=^2+^>p^"1/̂  giyes the same 

asymptotic efficiency.
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2.3 Models with constant coefficient of variation

2.3.1 Asymptotic relative efficiency

In this section we consider quasi-likelihood models that have 

variance function F(ptj)=jx? , i.e. var(y.)=${2i(I,’i)}2, so that v<t> is a constant 

coefficient o f variation. A general discussion of this type of model is given, 

with examples, by McCullagh & Nelder (1983, chapter 7). One type of 

problem in which such models have found practical application is where 

data are in the form of continuous measurements whose variance increases 

with the mean. In particular, measurements with multiplicative error, 

Yi=ii.ei , where E(€j)=1 and var(€.)=<f> , have a constant coefficient of 

variation. A second application is in modelling waiting times with 

‘overdispersion’ relative to the standard assumption of an exponential 

distribution.

Here the quasi-likelihood equations are obtained by putting 

in (1.7); for positive observations they are the same as the maximum 

likelihood equations that would arise if we assumed each y. to have a 

gamma distribution with mean ptj and index v=^_1, i.e. to have density

exp(-yjV//i.) yY ~ l
f G( y { i  ^ » $ )  =  - - - - - - - - - - - - - - - - - - - - - - -  ( ^ > 0 ;  M i5v  > 0 ) .  ( 2 . 2 1 )

(Mi/v)v r(v)

When the true underlying family of distributions is not the gamma family 

the quasi-likelihood estimate remains, under certain conditions, consistent 

and asymptotically normal with covariance matrix given by (1.11), which 

we now compare with the asymptotic covariance matrix of the maximum 

likelihood estimate. To simplify the analysis, as in §2.2.1, we make an 

assumption limiting the extent to which the parameter /Xj affects the 

distribution of Y/. here it is assumed that the distribution of is

the same for all /, so that /x. is simply a scale parameter for the
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distribution of Y. . Then arguments leading to a single measure of 

efficiency closely parallel those given in §2.2.1 for the constant variance 

model.

Consider first the case when the value of the coefficient of variation is 

known. The log likelihood may be written as

/(0,0) = E ,0) = I  { h(er, <t>) -  log ptj} ,
i= l  i= l

where /i(€j ; 0) is the log-density of = Y.Jil{ ; the {€j} are assumed to be

identically distributed and so h(ei ; 0) does not depend on il. Again 

assuming that the usual regularity conditions are satisfied, the (r,s)th 

element of the Fisher information matrix is

E(-d 'l/d  0r00s) = - j

= -  E

= -  E

n V i s -/2,(6i;0)yi 1
U'O^)}2

V i s \yf

{*' (Mi)}2*
2
fc5”

1
S?

which can be written

£(-32//30r30s)
* ir * is

i f j  tfig'CnJY £{e2A"(€i; tf>)+2<=.*’(«. ;*) + !} (2.22)

since the distribution of €. is the same for all i. Now the asymptotic
A

covariance m atrix of 0, the maximum likelihood estimate, is given by the 

inverse of the inform ation matrix with elements (2.22). Comparison with
A ~

(1.11) shows immediately that cov(0) and cov(0) are proportional, with 

asymptotic relative efficiency given by the scalar quantity

ARE(0 ; 0) = [-*£{«.V(«. ; 0) + 2eih'Ui ; *) + 1) J'1 (2.23)

= m ^ - 1 ,
say, where now Ae=n?E(-d1li /dii?), which does not depend on i. It should 

be noted that the relative efficiency does not depend on either the model
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m atrix X or the link function g(.).

Consider now the case when <p is unknown. As in §2.2.1, it is 

convenient to assume the presence of an intercept term in the linear model, 

and the orthogonality relations (2.5). We can write

a2/ n *ir d?h(€i ;
33r 90 f=1 Hfi’Cu j) 1 3€j dip

„ -

and the expectation of the bracketed term here does not depend on i , so

£(-32//6Bra «  = 0 (r=\,...,p) , (2.24)

provided that i.c. provided we have the logarithmic link function

g(n)=log(M). The same conditions can be shown to imply also that

£(-92//00rdl30) = 0 (r=l,...,/>) , (2.25)

so that the information matrix for the full set of unknown parameters 

again partitions as in (2.8) into two parts, one part referring to the 

parameters (8lv..,8p) and the other part to (80,<f>). Thus if we consider the
A

parameters of interest to be we see that cov(0) is still given by

the inverse of the matrix with (r,5)th element as in (2.22), and the 

asymptotic relative efficiency for estimating these parameters is still 

ARE(0 ; GMiMg)-1 as in (2.23).

When <p is unknown and the link function is some function other 

than g(n)=log(fi), orthogonality between the two sets of parameters )

and (6O,0) no longer holds; this creates a problem for the above analysis,
A ~

since it implies that cov(0) is no longer proportional to cov(0) and so there 

can be no single measure of asymptotic relative efficiency. However, 

remarks corresponding to those made about the link function in §2.2.1 

also apply here. First, the log link is frequently the one used in practice; 

it gives a model with multiplicative effects, which seems appropriate when 

a constant coefficient of variation is assumed, particularly if that 

assumption is based on the notion of multiplicative errors mentioned above. 

Secondly, as explained in section 2, the orthogonality relations (2.24) and
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(2.25) may still hold approximately, especially if the intercept term 30 is 

large compared with the other terms in the linear model; this would imply
A —

approximate proportionality between the matrices cov(3) and cov(3), and 

(0/4 g)-1 would remain a suitable measure of asymptotic relative efficiency.

It now remains to calculate A e for some families of distributions 

satisfying E(Y.^=pi , var(7.)=0jxi2 Consider first just four illustrative 

examples; from now on, when convenient, the subscript i will be dropped 

so that y , p and / will refer, respectively, to an observation, its expectation 

and the corresponding log likelihood. The four examples are :

(i) a normal family, N(p, <pp2) , which has cumulants Kr=0 for all r> 2 ;

(ii) a lognormal family with density, on y>0 ,

{ Jflog(0+1) + log(y/p)}2 

2 log (0+1)

and higher order cumulants k3=m302(3+0), k4=/t403(16+150+602+03), etc.;

(iii) an inverse Gaussian family with density, on y>0 ,

f ( y :  &0) ={2ny2 log(0+l)}“^  exp

f ( y i  0 )  = (27T0y3/ p)~ ^  exp
p(y£ -  2 py + pr) 

2 <t>p2y

which has higher order cumulants Kr=^r0r_1(2r-3)!/{2r"2(r-2)!}; and

(iv) a mixture of exponential distributions in which 7-exponential with 

mean M, where M has an inverse gamma distribution with mean p 

and squared coefficient of variation ^ 0 —1), giving the Pareto density

8{( 8-1 )m}8
/O'; M ) = f ' n  , 6+1 0^0) , (2.26){y + (8-1)m}0+1

where 8=20/(0—1) and 0 is restricted here to be greater than 1.

The families (i) and (ii) are perhaps the most obvious alternatives to the 

gamma distribution as models for data with constant coefficient of 

variation; family (iii), a particular parameterization of the inverse Gaussian 

distribution, is rather less familiar; and family (iv) is an example of a
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family giving overdispersion relative to the exponential distribution. All 

four families satisfy the assumption that il is a scale parameter, i.e. the 

distribution of Y / il does not depend on pt ; calculation of A e gives

(i) for the normal distribution, A e = (1+20)/0 (0>0) ,

(ii) for the lognormal, A € = {log(l+0)}-1 (0>O) ,

(iii) for the inverse Gaussian, A e = (1+j 0)/0 (0>O) , and

(iv) for the mixed exponential, Ae = 0/(20—1) (0>1)

To generalize these results beyond the examples, first note that family 

(iv) is d ifferent from (i)-(iii) since it permits only 0>1 ; generalization of the 

calculations for family (iv) is deferred until §2.4, where a wider class of 

‘overdispersed’ distributions is discussed. The families (i)-(iii), however, have 

much in common, including limiting normality and a limiting value of 1 for 

the efficiency (<pAe)~1 as 0->O. The same properties are shared by the gamma 

family (2.21) which has, of course, (<pAe)"1=l for all 0>0 . A more specific 

observation may be made, about the behaviour of higher order cumulants as 

<p-*0, which may be summarized as

Kr = ( Tr + (r—1)1 }4>r- V  (r=3,4,. . .  ) , (2.27)

where the constants Tr depend on the particular distribution and are 0(1) as 

<p~*0 ; for the gamma distribution, Tr=0 for all r . Notice that the re-scaled 

variate Z=T/(ji0) has cumulants Kr={Tr+(r-l)!}0-1, so the behaviour (2.27) is 

connected with a sort of ‘approximate infin ite divisibility’.

The efficiency calculations for families (i)-(iii) are now 

generalized using the formal series expansion

/(y; n,<t>) = / G(y; n,4>) ( 1 + c3d 3a\ z )  + c4l (“)(z) + . . .  } (2.28)

of the true underlying density about the gamma density (2.21). Here £ )“'(.) 

is the generalized Laguerre polynomial of degree r , a=(0_1- l )  and z=y/(/z0). 

The polynomials { l /a)(z)} are orthogonal with respect to the gamma density
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fofyWiQ)* and so it is a straightforw ard task to show that the coefficients 

are, in terms of the constants {Tr} of (2.27),

Co = 02
(1 + 0)0 +20) (-T,) ,

C4 = 02
(1+0)( 1 +20)( 1+30) (t4 - 1 2 T3) ,

c5 04
(1+0)( 1 +20)( 1 +30)( 1 +40) ( Ts + 2074 12°Ts)

(1+0)( 1 +20)( 1 +3 0)( 1 +40)( 1 +5 0)
{IOT3 + 0(T6 -  30t5 + 300t4 -  1200t 3)} ,

and so on, with c7=0(<t>5), c8=0(<f)6), cQ=0(<p6), c10=O(<p7), etc. as <M) , 

assuming Tr=0(l) for all r. The evaluation of <pA£ from (2.28) proceeds by 

taking logarithms, differentiating twice with respect to pt and then taking 

expectations. A fter a rather large amount of calculation, details of which 

are given in Appendix 3, it is found that

<M6 = 4>iL2E(-d2l/dii2)

= 1 + *T2 + 
T 3

£2(156t 12
2 _36t3t4+2tJ + 1 2 OT3 —15t3t4 +21t  ̂ ) + o(<p2). (2.29)

The 0(<p) term here contains no contribution from terms in the expansion 

(2.28) higher than c3Z^a)(z) ; the 0(<p2) term involves taking (2.28) up to the 

term

The expression (2.29) is readily checked against our families (i)-(iii). 

For example, the N{il, <pn2) family has t3=- 2 and t4=—6 s o  (2.29) gives 

<M€ = 1+20+o(02) which is in accord with the exact value <pAe = 1+20 already
~  A -

calculated above. Table 3 gives values of ARE(0; 0)=(<M€) for the 

families (i)-(iii), at several values of <p. For the lognormal distribution, 

approximations based on the reciprocal of (2.29) are also given; for the 

normal and the inverse Gaussian the approximation is exact, even when



taken only to 0(0). The table shows that the approximations, both to O(02) 

and to 0(0) , are very close for the lognormal also.

Table 3. Asymptotic efficiency o f quasi-likelihood estimates under 
particular distributions with V(p) = il2

( i)  NORMAL ( i i )  LOGNORMAL ( i i i ) INVERSE

exact based on (2.29) based on (2.29) GAUSSIAN

to 0 (02) to 0(4>)

0 = 0.1 0.833 0.953 0.953 0.952 0.952
0 = 0.2 0.714 0.912 0.912 0.909 0.909
0 = 0.5 0.500 0.811 0.814 0.800 0.800
0 = 1.0 0.333 0.693 0.706 0.667 0.667
0 = 2.0 0.200 0.549 0.600 0.500 0.500

It is  c le a r  th a t th e  lo ss o f  e f f i c i e n c y  in c u r r e d  in  u s in g

quasi-likelihood estimation can be quite substantial, depending heavily on 

the true distribution as well as on 0, the squared coefficient of variation, 

whose value will depend on the context. Survival data often have a 

coefficient of variation of 1 or more. Most laboratory measurements, 

however, might be expected to have a smaller coefficient of variation, 

with a value of 0 less than, say, 0.1, at which quasi-likelihood estimation 

would have high efficiency in all of examples (i)-(iii).

The form of (2.29) shows that, to first order in 0 , the loss of 

efficiency depends only on T2={K3- K3(r)}2/ ( 04M6) , where k3(T) is the third 

cumulant of the gamma distribution. Thus a suitable first order index of 

the effect of departure from the gamma distribution is the difference in 

skewness between the true distribution and the gamma distribution. When 

the skewness of the true distribution is the same as that of the gamma, i.e. 

t3=0, the leading term in (2.29) is 0 (02) and depends only on 

T4={k4~ k4(O )2/(06M8) , so the difference in kurtosis is then the most 

important factor affecting efficiency, at least when 0 is small. It is 

interesting to compare these results with the discussion at the end of 

§2.2.1, where corresponding observations were made concerning the structure 

of small departures from normality.
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2.3.2 Refinement

Suppose now that some information is available about the value of 

t3. This is equivalent to knowledge about the relationship between the 

coefficient of variation and the standardized third moment, and could 

come from the sample or perhaps from experience with similar

sets of data; for discussion, see Cox & Oakes (1984, pp26-28).

In models with constant coefficient of variation, quasi-likelihood 

estimation uses the gamma density f G(y\ in place of the true density 

f(y; Proceeding by analogy with the refinement of least squares in 

§2.2.2 , if  t3 is known consider using instead the improved approximation 

f ( y ; &<t>) = f G(y \  &<t>) { 1 + czd za\ z ) }

based on (2.28). To avoid problems with negative values of {l+CgL^a)(z)} we 

appeal, as before, to the Taylor series expansion

log{ 1 + c^L ^X z)  } = czlX*Xz) -  xA c \{L ^{z)}2 + . . .

It is found, however, that terms in this expansion do not behave regularly 

as <M); in particular an approximation based on only the first term, as in 

(2.13), is of no use. To remove the 0(<t>) term from the loss of efficiency 

would in fact require three terms, and would lead to an estimating 

equation involving powers of y{ higher than the third; in addition to being 

cumbersome, such an equation would not be unbiased without the 

introduction of further assumptions.

A more promising approach is suggested by the alternative 

motivation for the refined least squares estimator of §2.2.2 , as an optimal 

quadratic unbiased estimating equation. If, with 0 known, we consider 

unbiased estimating equations of the form

£ [ + ( i—x) {(y-u-f-Q n?}/n?  ] - ,* ir = 0 (r=o,...,/?; -« < \< « ) (2.30)
i=i 8
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then the asymptotic covariance matrix of a consistent solution, J3*(\) say, 

may be calculated as before and is of the form 2?(X)cov(J3). The scalar B(\) 

is minimized at

X° = ( k4 -  20k3 + 2<t>2 ) / (  k4 -  20k3 -  k3 + 4<t>2 ) (2.31)

where here k is the rth cumulant of e.=Y./fi.: the minimum value isr l l ’

B(\°) = 1 -  K<t>T2 + M \ t 2t 4 -  4t3 + 2t"3) + 0(<p3) (2.32)

if  k3=0(<P2), k4=O(03), etc. An approximation to X° based only on t3 is 

X^=2/(2- t3)=X°+O(0) , and in fact B(\°)=B(\°)+0(<p3). Comparison of 

(2.32) with the reciprocal of (2.29) gives

ARE(B*(X°) ; B) = 1 - i  i>\Ti -  3t3(t3 + 3) }2 + O(tf)

so knowledge of t3 reduces the loss of efficiency from 0(<p) to 0(4>2) and 

an index for the efficiency of 6*(X°) is t4~3t3(t3+3) : when this is zero 

the loss of efficiency is reduced still further to 0((f>3). In practice it is 

unlikely that t3 will be known exactly, but it may be shown, see 

Appendix 2, that an estimate T3+Op(n~iŷ) allows the same asymptotic 

efficiency to be achieved. Whatever value of X is used, (2.30) are unbiased 

estimating equations provided that the assumption of constant coefficient 

of variation is true; the value X=1 gives the quasi-likelihood equations, and 

X=/£ gives maximum likelihood equations for the normal family, N ifi.^ii2).

Table 4 gives numerical values for the efficiency, under lognormal 

and inverse Gaussian distributions, of refinements based on (2.30). While, 

as expected, *=X^ gives an improvement over quasi-likelihood estimation 

when <t> is small, the approximation to X° deteriorates rapidly as <p 

increases, and in fact for <f> greater than about 0.18 the ‘refinem ent’ based 

on t3 is less efficient than quasi-likelihood estimation under these two 

distributions.



- 3 5 -

Table 4. Asymptotic efficiency, under lognormal and inverse Gaussian 
distributions, o f estimates based on (2.30)

Lognormal

d> X° x °
aa

Efficiency 
with X=1

Efficiency 
with X=X°

Efficiency 
with X=X^

0.025 1.83 2.05 0.988 0.9996 0.9994
0.05 1.71 2.11 0.976 0.999 0.997
0.075 1.61 2.16 0.964 0.997 0.990
0.1 1.54 2.22 0.953 0.994 0.977
0.125 1.48 2.29 0.942 0.992 0.955
0.15 1.43 2.35 0.932 0.988 0.921
0.175 1.39 2.42 0.922 0.985 0.872
0.2 1.36 2.50 0.912 0.981 0.806

Inverse Gaussian

X° x °*A Efficiency 
with X= 1

Efficiency 
with X=X°

Efficiency 
with X=X^

0.025 1.81 2.00 0.988 0.9991 0.9990
0.05 1.69 2.00 0.976 0.997 0.997
0.075 1.60 2.00 0.964 0.993 0.989
0.1 1.53 2.00 0.952 0.989 0.980
0.125 1.47 2.00 0.941 0.984 0.966
0.15 1.43 2.00 0.930 0.978 0.947
0.175 1.39 2.00 0.920 0.972 0.924
0.2 1.36 2.00 0.909 0.966 0.895

It is interesting to compare the efficiency of estimates based on 

X=X°, the optimal choice of X, with that of estimates based on X=l, i.e. 

quasi-likelihood estimates. The behaviour for small <p has already been 

discussed above, via the approximation (2.32). The exact asymptotic

relative efficiency is

ARE(0;e*(X0)) = B (X°) = l-4>T|/{2 + 0(2 + T4 -4T3)} ,

and in each of the examples (i)-(iii) this has a limiting value as 0-*00. 

Under the normal distribution, 3*(X°) is the maximum likelihood estimate 

and Z?(X°)-*0 as 0-*»; the limit values under the lognormal and the inverse 

Gaussian are 1 and y , respectively. Thus, while the improvement given

by the optimum quadratic estimating equation has a certain uniform ity
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when <t> is small, it varies, depending on the underlying distribution, 

between extremes when <p is large.

When <f> is unknown its place in (2.30) may be taken by, for 

example, n~1E(y.—ii.)2/ii? , and remarks corresponding to those made in §2.2.2 

apply here also.
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2.4 Overdispersion

2.4.1 Asymptotic relative efficiency

Consider now situations in which the quasi-likelihood model 

described by (1.1) and (1.2) arises from overdispersion, of a particular type, 

relative to the natural exponential family that has variance function V(/t). 

Because not all conceivable variance functions correspond to such a family, 

and for another reason that will become apparent, we restrict attention to 

the class of quadratic variance functions, and write V(p)=a+bfi+cfi2 . The 

natural exponential families defined by such variance functions have been 

discussed in detail by Morris (1982) under the name NEF-QVF, standing 

for Natural Exponential Family with Quadratic Variance Function; 

included are the normal, Poisson, gamma, binomial and negative binomial 

distributions.

More specifically, suppose each has conditional density, with 

respect to some measure, of the natural exponential family form

= expfy.a-ntaH ^yj)} ,

with m'(0.) = E(Y{ |M .) = Af., say,

and «"(a) = var (F. | M .) = V(M.) ,

and suppose that the conditional means {AT } are themselves random

variables, unobserved, drawn independently from a family of distributions

with

E(Afj) = , var(Af j) = F(Mj) (0-1)/(1+c) . (2.33)

Then, unconditionally,

E{Y{ ) = E(E(Yi | Afj)) = Mi

and var(F j) = £(var(F. \m { )) + var(£(F. |Mj ))

= E(a + bMi + cM?) + ( +  bp{ + cp?)/(\+ c)

= a+bfLi+c[\2Lr(Mi )+{E(Af} )}2] + (0-lXa+hMj+CMf )/(l+c)

= mVLi) ,
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where <t> is now restricted to be greater than 1. The restriction to variance 

functions that are quadratic is necessary here to ensure the desired form 

<PV(il.J for the unconditional variance of Y. .

The mixture model described above is a useful mechanism for 

overdispersion, allowing some ‘random heterogeneity’ in the mean 

parameter.

Again dropping the subscript i for convenience, our general 

mixture family is illustrated by some well known examples :

(i) Y  | M ~ Poisson(M) , M ~ gamma(jjt,vpi), leads to the negative binomial

pr(Y=y)= r(y+v/x)vv /̂{ y!r(v/i)(l+v)^+v^} 

with V(ii)=fi and <£=(v+l)/v;

(ii) Y\M  ~ binomial ( r , M /r) , M/r ~beta (p,q) , leads to the ‘beta-binomial’ 

with E(Y)=p=rp/(p+q) , var(y)=M{l-( li/r )}(p+q+r )/(p+q+l) ,

so here V(iL)=p{l-{fL/r)) and <P=(p+q+r)/(p+q+1) ;

(iii) the mixed exponential which was example (iv) in §2.3.1, with

Y\M  ~ exponential(mean M) ,

M  ~ inverse gamma [mean pt, coefficient of variation {(0-l)/2}^ ] 

gives the density (2.26); here V(fi)= \l2.

Consider first, as an illustration, the case V(p)=ii2, in which the 

underlying natural exponential family is the exponential distribution, 

f Q(y \M)=M~ 1e~ y/M ' \yr ite the unconditional log likelihood as

/(3,0) = I  log f(y i ,0) = I  (̂*£.,0) , 

say, where f(y i ; fi{ ,0) = E i M . ^ e ' ^ ' J ), the expectation here being over 

the mixing distribution. The quasi-likelihood estimate in this case is the 

maximum likelihood estimate based on the exponential density h

and the arguments of §2.3.1 identify (<M€)" \ where A €=fi2E(-d2li/d fi2) , as a 

measure of asymptotic efficiency relative to maximum likelihood estimation 

based on the true likelihood. Again dropping the subscript /, write
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/(y;*i,0) = E ( *Tle~y^ )  + \(M -\i)2̂ - 2{\L~le~y / iL) + ...J (2.34)

Now = ii~̂ r+1̂ e~ y^ ( —\ ) Tr\L r(y/ii) where L r(.) is the Laguerre

polynomial of degree r ; thus (2.34) becomes

/(K  M,0) = V ^ {  1 + c2L 2(y/ii) + czLz{y/v) + c4L4(y/v) + . . .  } (2.35)

with, from (2.33), c2=var(M )//i2 = ^(0-1), and in general c = ( - l ) r{/£(0-l)}r/2pr 

where pr is the standardized rth central moment of the mixing distribution.

Use of the expansion (2.35) to obtain an approximation to (<M6)_1 

requires some assumptions about the form of the mixing distribution as its 

coefficient of variation tends to zero. Writing 0 for (0-1), consider two 

types of behaviour :

Ca) ‘limiting normality’, with cumulants k3=O(02), k4=<9(03), etc.; and

(b) ‘constant shape’, with pr (r=3,4,...) not depending on 0.

Calculation of the expected second derivative of the logarithm of (2.35) 

then gives

<pAe = <t>fi2E(-d2l/dii2) = 1 + 02 -  60c3 -  803 + o(03) ; (2.36)

see Appendix 4 for details. The term involving c3 is 0(03) under 

assumption («), and 0(05/ 2) under (b).

The form of (2.36) may be checked against a particular mixing 

distribution such as the inverse gamma, example (iii) above, which has 

cumulant behaviour of type (a). Exact calculation from the density (2.26) 

gives

<PA€ = 02/(20—1) . (2.37)

The inverse gamma with coefficient of variation (5̂ (0—1 )}^ has third 

cumulant k3=2pt3(0—1)2/ ( 3—0) , and substitution into (2.36) yields

(pA g =  1 +  0 2 -  2 0 3 +  o ( 0 3) , (2.38)
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which is the same as the Taylor series expansion of (2.37). Table 5 gives 

values of (0/l€)-1 based on (2.37) and on the approximation (2.38), and 

shows that quasi-likelihood estimation retains high efficiency under 

moderate overdispersion. The approximation based on (2.38) taken to 

0 (02) is w ithin 10% of the exact value when 0 is less than about 1.5 ; 

when taken to 0(03) the approximation is improved at values of 0 close 

to 1 but becomes unreliable when 0 is greater than about 1.4 .

Table 5. Asymptotic efficiency of quasi-likelihood estimates under the 
exponential with inverse gamma mean, (2.26)

Exact, (2.37) Approximation 
(2.38) toO(02)

Approximation 
(2.38) to O(03)

Efficiency of 
refinement 
based on (2.43)

0 = 1.1 0.992 0.990 0.992 0.998
0 = 1.2 0.972 0.962 0.977 0.942
0= 1.3 0.947 0.917 0.965 0.641
0= 1.4 0.918 0.862 0.969 0.197
0= 1.5 0.889 0.800 1.000 0.025
0= 2.0 0.750 0.500 CO 0

The main points to note about the form of the approximation 

(2.36) in general are that there is no O(ip) term and that, to <9(02), 0Ae 

depends only on 0 and not on the shape of the mixing distribution. Thus 

Table 5 suggests that, for any mixing distribution with regular cumulant 

behaviour, quasi-likelihood estimation has efficiency greater than 90% if 0 

is not greater than about 1.3.

It would of course have been possible here, as in §2.3.1, to obtain 

the approximation (2.36) via an expansion of the form (2.28) about the 

gamma distribution with coefficient of variation v<P, rather than about the 

exponential distribution as in (2.35). Expansion about the exponential 

distribution was used here because it may be generalized, as shown below, 

to mixtures of other NEF-QVF distributions. It would be surprising, 

though, if the first few terms in (2.36) did not have an interpretation, as 

in §2.3.1, in terms of differences between low order cumulants of the
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gamma distribution and of the underlying mixed exponential. With this in 

mind, it is illuminating to consider the cumulant generating function, 

log2?{(l“i7A/)_1}, of a mixture of exponential distributions, the expectation 

here being over the mixing distribution; a straightforw ard Taylor series 

expansion then gives the cumulants of the mixture, e.g.

K3(y) = fi3 { 2 + 60 + 6p3(^0)3/2} .

If, as under assumption (a) or (b) above, the standardized central moments 

{pr} of the mixing distribution are 0(1) as 0-0, this may be written as 

k3(Y) = ^  [ 2  + 60 + o(0)} ,

which should be compared with the th ird  cumulant of the gamma 

distribution,

k3(T) = 2n3<p2 = ii3 {2 + 40 + o(0)} .

As 0-0, then, K3(y)-K3(r) has leading term 2pt30, which does not depend on 

the shape of the mixing distribution. Similarly the respective fourth 

cumulants are

k4(F) = fi* (6  + 360 + o(0)}

and K4(r) = 6fi403 = U4{6 + 180 + o(0)} ,

and again the leading term in the difference does not depend on the shape 

of the mixing distribution; the same pattern holds for differences between 

fifth , sixth and higher order cumulants. It is not at all surprising, then, 

that the leading term in (2.36) depends only on 0 and not on the shape of 

the mixing distribution.

The above development is now generalized to mixtures of NEF-QVF 

distributions other than the exponential. In the general case write the 

density for a single observation as

{ *v3/2->
(<7 ‘lc ) J T  yo0° , l'i) + -  (2-39)

where denotes drf Q/diir and pr is the standardized rth moment of the mixing 

distribution as before. Now define
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p tO', n)= v'(tL)ftXy\ii)/f0(y\ii) (r=0,i,...) ;

Morris (1982) has shown that Pr (y,M) is a polynomial of degree r in both y 

and fi, and that {PT : r=0,l,2,... } is a set of orthogonal polynomials with 

respect to f 0(y\ii). Explicitly,

P0(y,n)=i , P J y ^ h y - n  , P2(y,v)=(y-n)2- V ’(n)(y-n)-V(n) , etc. , 

and the general class includes as special cases the Hermite and Laguerre 

polynomials used previously. The expansion (2.39) may be w ritten in 

terms of these polynomials as

f(y; &<t>) = f 0(y\v)[  1 + c2P 2(y9 n )/v (n ) + c3P3(y, H) /{K(m)}3/2 + . . . ]  (2.40)

where cr = {0/(1 +c))T̂ 2pr /r\ (r=2,3,— ) . We assume, as before, regular

behaviour of higher order cumulants of the mixing distribution, for 

example as in (a) or (b) above, as 0->O ; the standardized central moments 

{pr} are also assumed not to depend on g. . A straightforw ard calculation, 

some details of which are given in Appendix 5, then gives

<M€ = 1 +KiJ)2{V'(n))2/{(l+c)V(ii)) + o(4>2) , (2.41)

where now A e=V(ii)E(-d2l/dti2); this generalizes (2.36) as far as the 0(02) 

term. Again there is no O(ip) term and the 0(ip2) term depends only on the 

variance function and not on the shape of the mixing distribution.

Notice that if  F(pt)=constant the leading term in (2.41) is o(02) and 

will depend on the shape of the mixing distribution. This is no surprise; 

the ‘parent’ exponential family in this case is the normal, y. | Af.-A^Af^o2) , 

and if we consider the particular mixing distribution then,

unconditionally, Y ^ N if i^ o 2) . Thus the ‘overdispersed’ distribution is still 

in the natural exponential family and so quasi-likelihood estimation has 

full efficiency; it follows that (2.41) cannot have a term dependent only 

on the dispersion factor, 0.

If F(ji)=constant or V(ii)<*il2 the quantity ((Mg)"1 has been shown in
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§§2.2 and 2.3 to have a clear interpretation as the asymptotic efficiency, 

based on proportionality of asymptotic covariance matrices. More generally

depending on /; this holds for the single sample model with /^constan t, 

but not in general. There may, however, be approximate proportionality in 

particular instances. For example if p, is approximately constant, as in a 

model with an intercept parameter that is large compared with other 

effects, changes in V(p.)E(-d2l.Jdp}) may be small. Alternatively 

V(p.)E(-d2l.Jdp2) may depend only weakly on /Xj ; for example the leading 

term in (2.41) depends on p via {V'(p)}2/V(p)=(b+2cp)2/(a+bp+cp2), which has 

a constant lim it as p-+m if c>0, so V(pi )E(—d2li/dp2) is approximately 

constant if values of p{ are sufficiently large that V(pi) is dominated by 

the p2 term.

2.4.2 Refinement

In models of the type just discussed, quasi-likelihood estimation is 

maximum likelihood based on the ‘parent’ exponential family approximation 

f Q(y | p). Given the additional inform ation that the true distribution is a 

mixture 2s{/0(y|M)}, with M having mean-variance relationship as in (2.33),

is suggested by (2.40). To avoid problems with negative values, consider in 

fact using

to form a ‘refined’ quasi-likelihood. The resulting estimating equations are

cov(0) and cov(S) are proportional if V{p.)E{—Q2l.J dp}) is a constant, not

a better approximation

/(y;pt,0) £ f Q(y\p){l + c2P2(y, p)/V(p)}

= f Q(y | P) exp {c2P2(y,p)/V(p))

( r=0,...,p)
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and it is easily shown, writing now just V for V(ii), that

|  log f ( y ;  M 0 =  - ^  + L T|_ 5F2]{K’K + (3;-/1)(K'2-2F-FK")-(y-(1)2K'} (2.42)

As an example, consider again f Q(y | the exponential

‘parent’. This has V(n)=u? so (2.42) becomes

^  log f*(y; fi,<p) = (y-n)/iL2 -  \  il){(y~n)2-fi2}/H3

= CrrO/M2 -  \  0{O>-M)2-0Ai2 ) / m3 + O(02) . (2.43)

If the 0(ip2) term is ignored, (2.43) gives a quadratic unbiased estimating 

equation of exactly the type discussed in §2.3.2 ; in terms of the form

(2.30) it has \=2/(3-$), which is \°+<9(02) where X° is the optimizing value

(2.31) . The estimating equation is ‘close to optimal’ in this sense, and may 

be shown to remove the 0(4>2) term from the loss of efficiency. In cases 

where the th ird or fourth cumulant of the mixture increases rapidly these 

advantages for ‘small overdispersion’ may be lost quite quickly as <t> 

increases; for a numerical illustration of this see the last column of Table 5.
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2.5 Discussion and remarks

2.5.1 Strength o f departure from the exponential family

The numerical results in §§2.2.1, 2.3.1 and 2.4.1 suggest that 

quasi-likelihood estimation retains fairly  high efficiency under ‘moderate’ 

departures from the corresponding natural exponential family. The notion 

of strength of departure has been made more explicit in the somewhat 

d ifferent asymptotic analysis of Cox (1983) which investigates mixture 

models like those discussed in §2.4 and concludes that quasi-likelihood 

estimation is likely to have high efficiency when overdispersion is ‘on the 

borderline of detectibility’.

It might be expected that the efficiency of quasi-likelihood 

estimation would be related to E fron’s (1975) measure of the ‘statistical 

curvature’ of a family of distributions, since both quantities reflect 

departure from the exponential family. The examples of §2.3 may be used 

to demonstrate that curvature, while certainly making a contribution, does 

not determine the asymptotic efficiency of quasi-likelihood estimation; see 

Table 6. The normal and inverse Gaussian here are curved exponential 

families. The lognormal family is a full exponential family and so has 

zero curvature; however quasi-likelihood estimation does not have full 

efficiency because the ‘natural observation’ is not y but logy.

T a b l e  6. Asymptotic efficiency o f quasi-likelihood estimates, and Efron's
curvature, for some families with constant coefficient o f variation

Family A RE(0; 3) Curvature, J ‘

Gamma 1 0

Normal H02(0+fc)-3

Inverse Gaussian 2(0+2)'1 402(0+2)"3

Lognormal 4>"1log(l+0) 0
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2.5.2. A comparison arising from the connection between additive 

and multiplicative models

There is a well known correspondence between multiplicative 

models for positive observations and additive models for their logarithms. 

For if

Y{ = HjC . (2.44)

p
with log //. = 0n + E 0 and e. iid with £’(6.)=1, then

w i u i r r  l x r  7
r = l

log Y. = v. + n. (2.45)

p
with v. = {0o + £(log €j)} + E .x.r0r and iid with E(n.J=0.

r = l

Thus, provided Exir=0 (r=l,...,/?), the non-intercept parameters

0i,...,0p are equivalently estimated from either (2.44) or (2.45). Now in 

§2.2.1 we investigated the efficiency of estimation in (2.45) based on the 

normal likelihood for {>?.}. In particular, Table 1 gives the efficiency 

when the {hj} are actually log gamma random variables. By the above 

correspondence, this is the same as the efficiency of lognormal-based 

estimates in (2.44) when the (€j) are actually gamma distributed. An 

immediate comparison may be made with the efficiency, calculated in 

§2.3.1, of gamma-based estimates when the {€j} are actually lognormal 

random variables: Table 7 gives some numerical values.

Table 7. Reciprocal comparison o f efficiencies in the 
multiplicative model (2.44)

<D log(l+<f>)/<£ <f>/{0’(l/0)}
= variance = asymptotic efficiency = asymptotic efficiency

Of {€j} of gamma MLE under 
lognormal errors

of lognormal MLE 
under gamma errors

0.1 0.953 0.9510.2 0.912 0.9040.5 0.811 0.775
1.0 0.693 0.6082.0 0.549 0.405
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The differences in Table 7 are not large, particularly when 4> is 

small, but there is an indication that quasi-likelihood estimation, i.e. 

maximum likelihood based on the gamma distribution, is ‘safer’ than 

maximum likelihood based on the lognormal in the sense that it is more 

efficient under reciprocal misspecification. An intuitive explanation for this 

could be that the lognormal estimate involves logarithms of observations 

whose propensity to be small increases, as the variance increases, more 

rapidly under the gamma distribution than under the lognormal.

By the correspondence described above, the same table may also 

be used to compare estimation based on the normal and log gamma 

likelihoods in the additive model (2.45).

2.5.3 Behaviour o f quasi-likelihood estimates under nonstandard conditions

It has been implicitly assumed throughout this chapter that 

conditions necessary for the results of McCullagh (1983), concerning 

consistency and asymptotic normality of quasi-likelihood estimates, are 

satisfied. In particular, it has been assumed that the mean and variance 

specifications (1.1) and (1.2), on which the quasi-likelihood equations (1.7) 

are based, are correct. While the regression specified at (1.1) is taken to 

define the parameters of interest, and in that sense is not in question, the 

mean-variance relationship (1.2) is often a secondary aspect of the model, 

based perhaps on empirical experience and assumed for pragmatic reasons 

such as increased precision of estimation. As already noted in §1.2.1, 

quasi-likelihood estimates remain, subject to some conditions, consistent and 

asymptotically normal even when (1.2) fails. The asymptotic covariance 

m atrix is given by (1.13). In general the efficiency of quasi-likelihood 

estimates based on an incorrect variance function depends heavily on the 

regression model as well as on the shape of the underlying distribution; in
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the ‘single sample’ model with the quasi-likelihood estimate based on

any variance function is just y , the sample mean, but in more complex 

models estimates based on different variance functions may d iffer 

considerably. The structure of (1.13) in some particular cases has been 

investigated by Gourieroux, Monfort & Trognon (1984a,b).

Crowder (1986a) has constructed examples of models which violate 

the usual conditions to the extent that quasi-likelihood estimates have 

asymptotic efficiency zero or are even inconsistent.

2.5.4 Problems with ‘refined ' quasi-likelihood estimators in practice

The quadratic estimating equations of §§2.2.2, 2.3.2 and 2.4.2 were 

motivated prim arily by the need to assess the extent to which, under only 

the mean and variance assumptions (1.1) and (1.2), it is possible to improve 

upon the (asymptotic) performance of linear estimating equations. Though 

they serve this theoretical purpose well, their practical utility  is less clear. 

Four aspects that will be discussed briefly here are the existence of 

solutions, efficiency in finite samples, standard errors and robustness.

The asymptotic existence of a consistent solution to unbiased 

estimating equations like those discussed in this chapter is not in question: 

general results such as those of Crowder (1986b) apply directly. In finite 

samples, however, the existence of a solution is not always guaranteed even 

when the estimating equations are linear in the observations. Wedderburn 

(1976) discusses the existence of solutions to quasi-likelihood equations 

based on four particular variance functions. Preliminary considerations 

suggest that a more general treatment would be very complicated; here we 

merely use a simple example to illustrate that a quadratic estimating 

equation may fail where a linear one does not. Consider, then, the general 

quadratic estimating equation (2.17) in the ‘single sample’ model with 

constant, known variance <p. The value \=1 gives the least squares
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equation, linear in the observations, which has a unique real solution in 

every possible sample. However any other value of X gives a quadratic 

equation that has a positive probability of no real root; the discrim inant is

which, although positive with increasing probability as n increases if  X*0, 

may be negative in any given sample.

efficiency’ relative to the maximum likelihood estimate. Efficiency in 

fin ite  samples has not been explicitly considered. A source of concern in 

this respect must be the use of sample-based estimates for th ird or fourth 

moments in the ‘refined’ estimating equations of §§2.2.2 and 2.3.2. While 

the arguments of Appendix 2 show that substitution of a v/i-consistent 

estimate for the true value achieves the same asymptotic efficiency, poor 

performance is to be expected in all but very large samples. A systematic 

study of this has not been attempted. Here we give a numerical 

illustration based on a simple example; in the single sample model with 

constant, known variance 0=1, a small modification of (2.18) gives, 

replacing y 1 by the sample ^-statistic k z , the estimate

Consider behaviour under the normal distribution, N(p, 1); p** is unbiased

and may be shown to have variance

The estimate with y x known to be zero would be simply y, the sample 

mean, with variance n~l. Table 8 gives the relative efficiency at some

n2 [ X2 —4(1—\)2{ y 2—y 2 — <t>] ] ,

Throughout this chapter, ‘efficiency’ has meant ‘asymptotic

^ * = ^ - ^ 3(^- 1) .

values of n.
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T a b l e  8. Finite-sample efficiency o f p** under the normal distribution

n Efficiency={«var(/i**)}_1 ‘Equivalent’ fixed value of y x

3 0.011 ± 10.82
5 0.084 ± 4.18

10 0.37 ± 1.75
20 0.70 ± 0.89

100 0.96 ± 0.28

The asymptotic efficiency is 1, since k 3 is i/n-consistent for y v 

In small and even moderate-sized samples, estimation of y x inflates the 

variance considerably. The third column of Table 8 gives the value of y x 

which, if taken as the known value and used in place of k3 , would give 

an estimator with the same variance as p**. Thus, for example, use of 

any fixed value of in the range [-0.89,0.89] is preferable, under 

normality, to the sample-based estimate k3 in samples of size less than 20.

Remarks made in §1.2.2 about standard errors and robustness of 

Gaussian estimates apply here more generally. Standard errors for 

solutions of quadratic estimating equations will involve third and fourth 

moments, and may be unreliable if these have to be estimated. It has 

already been noted in §1.2.2 that, under the mean and variance 

assumptions (1.1) and (1.2), the quasi-likelihood equations (1.7) are 

asymptotically optimal among estimating equations that are linear in the 

observations y v ...,y . Thus any refinement must be non-linear; to remain 

unbiased under only (1.1) and (1.2) it must in fact, like the refinements 

suggested in §§2.2.2, 2.3.2 and 2.4.2, be quadratic. Such quadratic 

estimating equations require, for consistency, that the assumed variance 

function is correct; the quasi-likelihood estimates are consistent more 

generally, and in this sense refinement involves a certain sacrifice of

robustness.
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2.5.5 A link with robust estimation

The cubic estimating equations (2.20) of §2.2.2, designed to allow 

for kurtosis in the underlying distribution when skewness is known to be 

zero, bear some sim ilarity to certain ‘M-estimators’ fam iliar in the 

literature on robustness. To simplify the discussion, consider the ‘single 

sample’ model with E(Y.J=il and var(F.)=0 for all i ; then (2.20) may be 

written as

n
E Zj W^j) = 0 , (2.46)
i=l

where zi = ( y ^ / V ^

and w(z) = (1+J*y2) -  Jy 2z2 .

The equation is of a general type (Green, 1984) which may be solved for 

IL by the method of iteratively reweighted least squares, with (w(Zj)} as 

iterative ‘weights’.

Consider the estimating equation (2.46) with y2>0 ; this 

‘refinem ent’ has been shown in §2.2.2 to provide an improvement in 

efficiency, over ordinary least squares, when the underlying distribution 

has zero skewness and small positive kurtosis y 2 . This local, asymptotic 

property does not, however, imply robustness in the commonly used sense 

of resistance to gross errors; not only is >v(z) unbounded, but it actually 

becomes negative for z2 >3+6y"1 , which is clearly absurd. A possible 

remedy is to replace w(z) by

w*(z) = max{>v(z),0} ;

this is not only bounded, but is zero outside a finite range so that grossly 

discrepant observations are rejected completely. Weight functions like w*{z) 

are said to define redescending M-estimators; many others have been 

suggested in the context of robust estimation, perhaps the most fam iliar
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being the biweight family, suggested by J.W.Tukey,

wb(z)
' (r2- z 2)2 

0

if z 2$r2 

otherwise
(2.47)

indexed by the scalar r. A weight function is defined only up to a 

constant of proportionality, and we may write, mimicking (2.47),

w*(z)
r2- z 2

0
if z 2$r2 

otherwise
(2.48)

where r2 = 3 + 6 7 " 1 ; thus every w*(z) may be derived as the square root 

of a biweight function. The form (2.48) has also been discussed by Stigler 

(1980), who shows that an early robust estimator due to Smith (1888) is in 

fact a redescending Af-estimator with precisely such a weight function.

The functions w* and ivb are qualitatively very similar, both to 

one another and to many others suggested in the literature on robustness. 

Andrews et al (1972) compare the performances of estimators based on 

several such weight functions, including wh but not vv*; it would be 

interesting to study w* in the same way, via asymptotic calculation and 

extensive simulation, but this is outside the scope of the present work.

One possibly appealing feature of weight functions of the type 

(2.48) is the interpretation of r in terms of y 2 . Each such weight 

function might thus be thought of as being aimed at some ‘target kurtosis’, 

and choice of a particular r could be based either on prior knowledge of 

72 or on a data-based estimate such as the sample kurtosis. The latter, 

‘kurtosis-adaptive’ approach would be similar in spirit to some estimators 

proposed for the Princeton Robustness Study by R.V.Hogg, in which a 

choice among four estimators with d ifferen t but well-understood 

characteristics is made on the basis of sample kurtosis. However it is 

found by Andrews et al (1972) that even the best of Hogg’s
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kurtosis-adaptive estimators is largely out-performed by non-adaptive 

methods; it seems likely that M-estimates based on an adaptively chosen 

weight function w* would actually be somewhat less stable in finite 

samples than those of Hogg, so this adaptive approach appears to offer 

little promise as a robust method.
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CHAPTER 3

Standard errors for quasi-likelihood estimates

3.1 Introduction : two types of estimated standard error

3.1.1 ‘Model-based’ standard errors

Estimation of the covariance matrix of 0, the vector of solutions 

of (1.7), is usually based on a large-sample (/?+l)-variate normal 

approximation to its distribution. Under the mean and variance 

assumptions (1.1) and (1.2) the asymptotic covariance m atrix is given by 

(1.10); the standard procedure is to replace ^  by il , where ^.=^(13), and 

to estimate <p, if it is unknown, by

0 = (n-q)-1Z{(y.-i£.)2/V(n;)} = C/(n~q) , say, (3.1)

where q=p+l. Other estimates of <p are possible: see McCullagh & Nelder 

(1983, ppl72-73). In this chapter, as in the previous one, everything will 

be expressed in terms of the generalized linear form (1.3) for ji.(3); 

discussion in terms of a more general nonlinear regression, while 

straightforw ard, seems rather less revealing. For quasi-likelihood estimates 

in a generalized linear model, then, the ‘model-based’ covariance matrix 

estimate is derived from (1.11) as

c o v m (B) = ^xTdiagfw^X}-1 = 0L '1 , (3.2)

say, where with Wjfii.) as in (1.12). Estimated standard errors are

calculated from the diagonal elements of this matrix by taking square

roots.
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3.1.2 ‘Robust’ standard errors

A ‘model robust’ alternative to the covariance estimate (3.2) is

covR(S) = L‘1{XTdiag(ci2 w^X}!,-1 , (3.3)

where c?=(y~/x.)2/F((i.) is the contribution of the zth observation to C. 

Motivating arguments for this estimate, and references to previous work in 

which the same or similar estimates have been suggested, are given by 

Royall (1986). Essentially, covR(|3) is designed to provide a consistent 

estimate, when the {yj} have general variances {0j}, of the matrix (1.13), 

which in the case of a generalized linear model is

{XTdiag()vi)X)-1[XTdiag{wi«i/F ( (ii)}X](XTdiag(ivi)X}-1 . (3.4)

Thus covR(0) is consistent for cov(0), or more correctly «covR(0) is 

consistent for ncov(J3), under failure of the variance assumption (1.2); this 

‘robustness’ property is not shared by the model-based estimate (3.2).

Extensive study has been made, particularly in the econometrics 

literature, of the case {V(ii)=1, g(fz)=M}, i.e. linear models with error 

variance assumed, tacitly at least, to be constant. Here J3 is the ordinary 

least squares estimate, and the usual ‘model-based’ covariance estimate is

covm(B) = SkxTx)’1 . (3.5)

The ‘robust’ alternative is

covR(B) = (XTX)-1{XTd iag (^ -^ i)2X)(XTX)-1 , (3.6)

which provides protection against heteroscedasticity of the errors : see

Eicker (1963) or White (1980) for details, including regularity conditions.

This chapter explores certain aspects of the ‘robust’ covariance 

estimate (3.3) and some variants. First, in §3.2, the calculation and 

interpretation of robust standard errors are illustrated using a log-linear
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model for some data on ship damage; for a further illustration, based on 

some bioassay data, see Pregibon (1983). Section 3.3 discusses briefly the 

conflicting considerations of robustness and efficiency, and in §3.4 a 

‘compromise’ is derived by arguments that are ‘partially Bayesian’ in the 

sense of Cox (1975). Finally, in §3.5, some remarks are made about fin ite 

sample bias, which has been a topic of very recent interest in 

econometrics.
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3.2 Illustrative application : ship damage data

The data in Table 9 on damage to ships by waves were presented 

by McCullagh & Nelder (1983, pl37). Ships are classified by type (A-E), 

year of construction (1960-64, 1965-69, 1970-74, 1975-79) and period of 

operation (1960-74, 1975-79). We are given the aggregate months in 

service, , and the number of damage incidents, y^=ynt > where r

represents type, s represents year and t represents period of operation. Of 

the 40(=5x4x2) conceivable categories, six had no ships and so give no 

information; five of these are in fact logically impossible. Note that a 

single ship may have been damaged more than once and some ships will 

have operated both before and after 1974.

Simple arguments motivate McCullagh & Nelder towards a 

log-linear model of the form

loS ^rst = eo + loS "2rst + ?r + 5s + €t (r=l,...,5; 5 = 1 , . . . ,4; /=1,2) , (3.7)

i.e. a ‘main effects’ model including a term to make the expected number 

of damage incidents in a particular category proportional to the aggregate 

months in service in that category. The parameters of interest are 

0=(3o,72,...,75,52,...,64,€2) ; note that y v  8X and are set equal to zero to 

avoid redundancy in the parameterization. Clearly (3.7) is a generalized 

linear model; in terms of the general notation (1.3) it has g(y.)=\og fi and a 

model matrix X consisting of ‘dummy variables’, viz.

ship type B 

otherwise , 

ship type C 

otherwise ,

period of operation 1975-79

*io =

=' i l

="i2

* i9  =

1 ,
1
0
1

0
1

etc., up to
0 otherwise .
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T a b l e  9. Number o f reported damage incidents and aggregate months o f
service by ship type, year o f construction and period o f operation.

i
Ship
type

Year o f  
construction

Period 
o f operation

Aggregate 
months service

Number o f  
damage incidents

1 A 1960-64 1960-74 127 0
2 A 1960-64 1975-79 63 0
3 A 1965-69 1960-74 1095 3
4 A 1965-69 1975-79 1095 4
5 A 1970-74 1960-74 1512 6
6 A 1970-74 1975-79 3353 18
7 A 1975-79 1960-74 0 0*
8 A 1975-79 1975-79 2244 11

9 B 1960-64 1960-74 44882 39
10 B 1960-64 1975-79 17176 29
11 B 1965-69 1960-74 28609 58
12 B 1965-69 1975-79 20370 53
13 B 1970-74 1960-74 7064 12
14 B 1970-74 1975-79 13099 44
15 B 1975-79 1960-74 0 0*
16 B 1975-79 1975-79 7117 18

17 C 1960-64 1960-74 1179 1
18 C 1960-64 1975-79 552 1
19 C 1965-69 1960-74 781 0
20 C 1965-69 1975-79 676 1
21 C 1970-74 1960-74 783 6
22 C 1970-74 1975-79 1948 2
23 C 1975-79 1960-74 0 0*
24 C 1975-79 1975-79 274 1

25 D 1960-64 1960-74 251 0
26 D 1960-64 1975-79 105 0
27 D 1965-69 1960-74 288 0
28 D 1965-69 1975-79 192 0
29 D 1970-74 1960-74 349 2
30 D 1970-74 1975-79 1208 11
31 D 1975-79 1960-74 0 0*
32 D 1975-79 1975-79 2051 4

33 E 1960-64 1960-74 45 0
34 E 1960-64 1975-79 0 0*
35 E 1965-69 1960-74 789 7
36 E 1965-69 1975-79 437 7
37 E 1970-74 1960-74 1157 5
38 E 1970-74 1975-79 2161 12
39 E 1975-79 1960-74 0 0*
40 E 1975-79 1975-79 542 1

* Necessarily empty cells.
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The known adjustment term, m{i is easily incorporated as an ‘offset’.

In their analysis, McCullagh & Nelder estimate the parameters 

of (3.7) using quasi-likelihood equations based on the variance function 

V(ii)=fJL The motivation for this is clear: the quasi-likelihood equations

are precisely the same as maximum likelihood equations derived from the 

‘usual’ assumption, for ‘counts’ data of this type, of an underlying Poisson

distribution. The estimates, 0, are given in column (i) of Table 10.

T a b l e  10. Ship damage: parameter estimates 
errors for the main effects model

and estimated standard

Parameter Estimates Standard errors
l

(i)
Full
data

(ii)
Obs. no. 21 

deleted

' (iii)
Poisson-

based
(0=1)

(iv)
‘Model- 
based'

(0=1.69)

(v)
‘Robust’,

(3.12)

i
(Vi) 

‘Bias- 
corrected 

robust’

60 -6 .4 1 -6 .4 1 0.22 0.28 0.12 0.16

-0 .5 4 -0 .5 5 0.18 0.23 0.09 0.12

y 3 -0 .6 9 -1 .2 6 0.33 0.43 0.49 0.67

?4 -0 .0 8 -0 .0 8 0.29 0.38 0.37 0.51

0.33 0.33 0.24 0.31 0.24 0.32

52 0.70 0.76 0.15 0.19 0.11 0.15

83 0.82 0.76 0.17 0.22 0.14 0.19

64 0.45 0.41 0.23 0.30 0.20 0.27

€2 0.38 0.44 0.12 0.15 0.10 0.14

The Pearson chi-square statistic for the fitted  model is C=42.2 

on (34-9)=25 degrees of freedom. This is large enough to cast doubt on 

the standard Poisson assumption, and suggests in particular that 

Poisson-based standard errors might be too small. McCullagh & Nelder 

base their standard errors instead on the ‘overdispersed Poisson’ assumption
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var(T.) = (/=l,...,n) , (3.8)

with <p estimated by $=(42.2/25)=1.69; this leads to the ‘model-based’ 

covariance m atrix (3.2), which in the present case is

covM(0) = ${XTdiag(/zi)X}"1 . (3.9)

The corresponding standard errors are given in column (iv) of Table 10; 

they are simply v( 1.69)= 1.30 times the Poisson-based standard errors, which 

are given in column (iii).

The covariance estimate (3.9) is not generally consistent under 

failure of the mean-variance relationship (3.8). With this in mind, it is 

interesting to study the squared ‘standardized Pearson residuals’ (McCullagh 

& Nelder, 1983, p211), defined by

r\ = (y-x-v -)2/{VL£i -/tji)} 0 = 1 , ,  (3.10)

where h{i is the ith diagonal element of the approximate ‘hat’ matrix

H = WJiX(XTWX)-1X TW^ , (3.11)

with W = diag()Vj) = diag(jli.) in this case. Under (3.8), E(r?) is 

approximately <p, for all i . The {r?} are given in Table 11, and plotted 

in Figure 1 against the fitted  values {/l}. Observation no. 21 stands out, 

with observed value 6, fitted value 1.47 and squared standardized Pearson 

residual 16.1 . The plot also suggests a possible relationship between /*. and 

£(/*?), with large values of r? being more likely when is small. While 

this is far from conclusive evidence against (3.8), it nevertheless casts some 

doubt on the validity of standard errors based on (3.9).

The proposed robust alternative to (3.9) is, directly from (3.3),

c o v r (B) = {XTdiag(/zi)X}‘I{XTdiag(y-fii)2X}(XTdiag(jz.)X}'1 . (3.12)
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F i g u r e  1 . Ship damage data, main effects model: squared standardized 

Pearson residuals versus fitted values

r? -+■i III
16.0 I 

I 
I I 
I

14.4 I 
I I 
I I

12.8 I

I
11.2 I I I 

I 
I

9.6 I I I 
I 
I8.0 I I I
II

6.4 I

II
4.8 I 

I 
I 
I 
I

3.2 I r
I I I I 
I 
I 
I

observation 21

1.6

123 * AA A A I
13 * A A A I
- +----
0 6 12 18 24 30 36 42 48 54 60

Fitted value, ^

*
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Standard errors based on this covariance matrix estimate are given in 

column (v) of Table 10.

Table 11. Ship damage: squared standardized Pearson residuals r? from  
the fitted main effects model.

Period o f operation I960--74 1975-79

Year o f construction 60-64 65-69 70-74 75-79 60-64 65-69 70-74 75-79

Ship A 0.21 0.13 0.03 - 0.15 0.42 0.02 1.15
type B 1.26 0.42 1.08 - 1.85 1.06 0.27 0.70

C 0.00 1.49 16.1 - 0.17 0.31 4.00 0.45
D 0.40 0.95 0.57 - 0.24 0.93 6.54 3.00
E 0.10 3.76 0.22 - 6.43 2.72 1.47

On comparing columns (iv) and (v) of Table 10 the most 

prominent feature is that, with only one exception, the robust standard 

errors are smaller than those from (3.9). There is in fact considerable bias 

present in the robust covariance estimate (3.12), due to the fact that 

( y —ti)2 is not an unbiased estimate of var(Tj). A simple correction, 

implemented in column (vi) of Table 10, is to multiply covR(0) by n/(n-q ); 

while this does not completely remove the bias, it has the appeal of 

making covR(3) agree exactly with covM(0) in the single sample problem, in 

which /£. is the same for all i and so the form of K(ptj) is irrelevant. More 

generally, the bias correction n/(n-q) should be reasonably effective 

provided that the {/zu} are all close to q/n. When the (A..) vary greatly, 

unbiasedness may be more nearly achieved by replacing each (y.—ji.)2 in 

(3.12) with (y.—#i.)2/(l-/!..), although this may have an adverse effect on the 

stability of covR(|3); this point will be discussed further in §3.5 .

The differences between columns (iv) and (vi) of Table 10 are 

concentrated mainly in the standard errors for the estimated ‘ship type’ 

effects 72,.. . ,75 ; recall that these parameters measure the differences in 

accident-proneness between ship type A and types B, C, D and E. The 

robust standard errors for y3 and J 4 are much larger than their
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model-based counterparts, while those for y 2 and 0Q are smaller, even, than 

the corresponding Poisson-based standard errors. The standard errors for 

62, 63, 84 and € 2 do not change much, but are all slightly smaller in column 

(vi) than in column (iv).

These differences reflect the complex nature of the observed 

pattern of dispersion, relative to the simple ‘constant overdispersion’ model 

(3.8). Evidence of this pattern is to be found in Table 11. Of the large 

values of r?, say those greater than 3, none is to be found in a position 

corresponding to ship type A or B, or corresponding to years of 

construction 1960-1964. The relevant parameter estimates are 30 and 72, 

standard errors for both of which are much smaller in column (vi) than 

under the ‘constant overdispersion’ assumption of column (iv). However, 

unless there is some reason to expect sub-Poisson variation here, the 

fact that the robust standard errors are also smaller than those in column 

(iii) is suspicious.

Ship types C and D have the two largest values of r?, and 

standard errors for the corresponding estimates y 3 and y 4 are increased 

accordingly; Table 11 itself does not, however, explain why these increases 

are so large, and in particular why the standard errors for y 3 and y4 are 

increased while those for y5, 82, 84, and especially for 83, change so little 

between column (iv) and column (vi) of Table 10.

Clearly observation 21 is very important. Its contribution to C 

is 13.9, or 33% of the total. To explore its influence a little further, 

consider re-fitting the same ‘main effects’ model but with observation 21 

deleted completely from the data; the chi-square statistic for the re-fitted 

model is C=27.5 on 24 degrees on freedom, and parameter estimates are 

given in column (ii) of Table 10. Comparison of columns (i) and (ii) 

reveals that the influence of observation 21 is concentrated almost entirely 

on the determination of y 3 , the estimated ‘ship type C’ effect. Note that
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it would be surprising to find any major differences between columns (i) 

and (ii) that were not also represented in the comparison between columns

(iv) and (vi) : roughly speaking, differences between columns (i) and (ii)

represent uncertainty due to doubt about the applicability of the model to 

observation 21; if the regression (3.7) is assumed to hold for all 

observations this means doubt about the applicability of the variance 

assumption (3.8) to observation 21. The robust covariance matrix estimate 

(3.12) is designed to allow for failure of (3.8) more generally.

The interpretation of the squared standardized Pearson residual, 

r?, as a measure of the contribution of observation i to the discrepancy 

between model-based and robust standard errors may be made more explicit 

by considering

trace [covR(B){covM(3)}_1] .

In terms of the general definitions (3.2) and (3.3) this is 

(0)_1trace [ L ^X ^iag fc^v^X  ] , 

which may be re-expressed as

(0)"1 I  c?wi4xi(XTWX)"1* ^ / ^  = (J)"1Tc?/zii ; 
i=l i=l

here x { is the ith row of X. Thus the zth observation contributes an 

amount

to trace [cov^BJfcov^B)}'1] .

A final remark concerns the computation of covR(B). While 

computer packages such as GLIM produce covM(B) as a ‘by-product’ of the 

algorithm used to solve the quasi-likelihood equations, a little more 

calculation is needed for covR(0). The required matrix manipulations are 

not possible in GLIM. All of the calculations for this section were easily
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carried out using the GENSTAT package, which incorporates most of the 

facilities of GLIM  as well as general matrix handling.
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3.3 Robustness versus efficiency

The simple example that will be discussed here will demonstrate 

the potential loss of efficiency involved in using covR(0) when the assumed 

variance function is in fact correct, and will allow the trade-off between 

robustness and efficiency to be illustrated numerically.

Consider a single sample Yv ...,Yn , independent and identically 

distributed, with parameter of interest pc=2s(y) and assumed mean-variance 

relationship

var(T) = fi . (3.13)

The quasi-likelihood estimate corresponding to variance function V(il)=il is 

li=n~1'Lyi , the sample mean. The model-based and robust variance 

estimates are, from (3.2) and (3.3),

covM(*i) = n'lL

and covR(pt) = / r 2E(y-pi)2 .

We consider the behaviour of these two variance estimates under two 

particular distributions:

(i) y. ~ Poisson(pi)

and (ii) Y{ ~ negative binomial with mean pt and variance ii/a (0<a<\) . 

The first is probably the most fam iliar distribution satisfying the variance 

assumption (3.13). The second, which does not satisfy (3.13), is often used 

to represent overdispersion relative to the Poisson distribution.

Under the Poisson distribution (i), the two variance estimates 

are both consistent for var(pt)=pt/n, and their respective variances are

var{covM(pt)} = p0*3

and var{covR(p*)} = [(« -l)2{p[(l+3pt)}-(n~ l)(n -3)ii2]/n5 .
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Thus covM(pt) is more efficient than covR(/i). The asymptotic relative 

efficiency is (l+2pt)-1, so the loss of efficiency incurred by using the 

robust variance estimate is severe when [i is large.

Under the negative binomial distribution (ii), we have

£{c o v m (ji)} = n/n ,

var{covM(j£)} = n/(n3a) ,

E{covr(il)} = (n -l)n /(n2a)

and var{covR(ji)} = [n(\+4b+b2)/(na3) + 2fi2/{(n -l)a2}] (n~l)2/n 4 ,

where b=\~a. The true variance of il is iL/(na), so cov m (m ) is inconsistent. 

Both cov m (m ) and covR(/i) have variances that are 0 { \/n z)\ both are biased, 

but the bias of covR(n) is 0(1 /n 2) and therefore unim portant as n-*m. The 

bias of covM(pt) is 0 (l/« ). In terms of mean squared error, then, there is 

some smallest sample size, n*(iL,a) say, such that cov r (m ) performs better 

than c o v m (ji) for all n>n*\ a close approximation to n* may be found by 

solving

li/{n3a) + b2iL2/{n2a2) = {ii(\+4b+b2)/a3 + 2fi2/a 2}/?i3

to obtain

n*(H,a) 3  (2X +  6 6 )/(6 2 X) , ( 3 .14 )

where \= iia , and b=\-a as before. Table 12 gives some numerical values.

The values of n* are not very revealing in isolation: some 

reference scale is required. A suitable reference value might be the 

number of observations necessary for the overdispersion, relative to (3.13), 

to be ‘detectible’ in some sense. As a rough guide, consider the value, «D 

say, that solves

£ -{E ( K r ^ 2/ ( i }  -  (» —1)  -  2 v { 2 { n - l ) )  ,
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so that for n>nD the expectation of the Pearson chi-square statistic is more 

than two approximate standard deviations away from its approximate mean 

under the null, i.e. Poisson, hypothesis. The further approximation 

E{ I (Y.~ii)2/fi}  z (n - l) /a  now yields

«D a  1 + 8/(a_1—l)2 , (3.15)

and values based on (3.15) are given in the last row of Table 12. Note 

that the approximations made here improve as X increases.

T a b l e  12. Approximation to n*(iL,a) based on (3.14)

\=pa a = 0.5 0.6 0.7 0.8 0.9 1 . 0

0.25 56.0 72.5 102.2 170.0 440.0 CO

1 20.0 27.5 42.2 80.0 260.0 00
5 10.4 15.5 26.2 56.0 212.0 00
20 8.6 13.3 23.2 51.5 203.0 oo

1000 8.0 12.5 22.2 50.0 200.1 00
CO 8.0 12.5 22.2 50.0 200.0 oo

«D from (3.15) 9.0 19.0 44.6 129.0 649.0 CO

The numerical values in Table 12 indicate that the ‘cross-over’ 

sample size /!*, although possibly very large, need not be so large that 

failure of (3.13) is readily detectible. From this point of view the 

advantages of covR(ji) under failure of (3.13) are not unim portant in 

practice.

In choosing between the two variance estimates, then, the 

non-robustness of covM(pt) must be weighed against the potentially large 

loss of efficiency involved in using covR(/i). The example given here is 

not particularly special, and the same considerations will apply more 

generally. In principle, at least, the above calculations could be extended 

to a more general setting; it is not clear, however, that mean squared
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error is necessarily a good criterion by which to judge variance estimates. 

Perhaps a more relevant comparison between model-based and robust 

standard errors would be in terms of the coverage properties of 

approximate confidence intervals based on them, but such a comparison has 

not been attempted.
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3.4 A ‘partially Bayes’ approach

3.4.1 Compromise

The conflict, illustrated in the previous section, between 

considerations of robustness and efficiency suggests a natural ‘compromise’ 

covariance estimate of the form

covx(B) = (1-\)c o v m (3)+ Xc o v r (§) , (3.16)

with \€[0,1]. In the context of such a family of estimates, two questions 

that immediately arise are: (i) what interpretation should be given to 

d ifferent values of X? and (ii) how might X be chosen, if a single choice 

is necessary? These questions are, of course, related.

Here we show how a limited, but nevertheless revealing answer 

may be derived from a ‘partially Bayes’ viewpoint, in a spirit similar to 

that of Cox (1975): the approach is introduced in a fully parametric

setting in §3.4.2, and extension to quasi-likelihood models using ‘linear 

Bayes’ methods is discussed in §3.4.3.

3.4.2 ‘Partially Bayes’ derivation : normal errors

It will be shown here how a covariance estimate of the type 

(3.16) may be derived from a model in which the error variance varies 

randomly among observations. A key step will be an application of Bayes’ 

theorem, requiring much stronger distributional assumptions than the 

second-moment assumptions of quasi-likelihood models.

Consider the following, very specific formulation, which is 

convenient in allowing explicit calculations. Observations are made on a 

vector of random variables Ir:=(yi,...,y ) having a conditional w-variate 

normal distribution

Y |(0 r ...,4>„) ~  -Vn{ x e , diag(^)} , (3.17)
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with the conditional variances themselves unobserved and distributed 

independently and identically as

50:1 ~ x j  (/=1,...,«) , (3.18)

where 6>0 and v>2. The vector of regression parameters, B=(30,...,3p), is 

regarded as fixed and unknown. Our interest is in the least squares 

estimate

3 = (X T X ^ x T y  , (3.19)

which is also the quasi-likelihood estimate based on an assumption of 

constant variance. Consider the ‘sampling’ properties of 3 in (hypothetical) 

repeated realizations of the vector y=(y'1,...,y ) from the conditional 

distribution (3.17); it is well known that 3 |(0 lv..,0n) is (p+l)-variate 

normally distributed, with

= 6

and cov(S |*r ...,*n) = (XTX)-1XTdiag(<£i)X(XTX)-1 . (3.20)

This is of no immediate use because the conditional variances {0lv..,#n) are 

unknown. However, some inform ation about these variances is available, 

both from the sample y=(yv ...,y j and from the ‘prior’ (3.18); a simple 

application of Bayes’ theorem shows that, a posteriori, the variances 

{015...,0 } are distributed independently as

(«:1|r=y) ~ (i=1,...,h) , (3.21)

where p.=£x. 3 . In particular, this means thati ir r

E(^\Y= y) = (8+(Xj—dj)2}/(V“ l) (/=1 n) , (3.22)

so that {015...,0n} may be eliminated from (3.20) by taking the posterior 

expectation
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E (<t>i,...,<pn | Y=y)(cov(^ | V A ) )  = (XTX)-1XTdiag[{6+(j;i-Mi)2}/(v-l)]X (X TX)-1.

43.23)

To derive an estimate from (3.23), make the substitutions

0 = 0  (3.24)

and 6 /(v—2) = 5> (3.25)

so that (3.23) becomes

(XTX)-1XTdiag[{$(v-2)+(y-Hi)2}/(v-l )]X(XTX)-1 .

Then the ‘compromise’ estimate (3.16) is formally recovered by putting 

\= l / ( v l ) .

The motivation for (3.24) is obvious, and (3.25) arises naturally 

from an ‘empirical Bayes’ type of argument. For it is easily shown that

£{(7-;L)2|0 1,...,0n} = 0. -  20./tii + h.QhJ (3.26)

where h.y is the ith row and the ?th diagonal element of the ‘hat’

m atrix H=X(XTX)“1XT, and $ is the diagonal matrix with entries {0j}. 

Hence, unconditionally,

= (1 -h~)E&.) = (l-/Iii)6/(v-2)

and so, since , $ = ( n - li)2 is an unbiased estimate of

the ‘prior mean’ 8/(v—2).

Thus the indexing parameter X of the family of ‘compromise’ 

estimates (3.16) has an interpretation in terms of the shape parameter of 

an assumed underlying distribution for the variances The

‘model-based’ estimate covM(0) and the ‘robust’ estimate covR(0) are both 

extreme limiting cases: the value X=0 corresponds to

0:1 ^ lim^ooXy/6 (6/(v-2) fixed)

which has zero variance; and X=1 corresponds to
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0 : 1 ^ limv_2 x5 / 6  (5 /(v -2) fixed},

t
which iS irtprcper. Intermediate values of X correspond to

‘degrees of freedom’ v=X_1+l in the mixing distribution (3.18).

An alternative calibration, which w ill be useful in generalizing 

this approach, is in terms of the coefficient of variation of the distribution 

of {0 j}; as a function of v, the squared coefficient of variation is 

2 / ( v - 4 ) = t? 0 ,  say, provided v>4. Thus a given value of X corresponds to 

tf(j)=2X/(l-3X), a particular implication being that only values of X less than 

5 correspond to a finite variance for {0 .}.

If a single choice of X is required, the interpretation in terms of 

the distribution of (0 j) again suggests estimation based on the distribution 

of the squared residuals, whose first moment gave (3.25). An estimate of 

v, and hence a value for X, may be derived by equating the sample 

variance of the {(yj- ^ )2} to its theoretical value. A point to note in this 

connection is that the variance of 0j exists only for v>4, so this procedure 

never gives a X-value greater than or equal to J . An important practical 

limitation is likely to be imposed by finite sample size; while a detailed 

study has not been attempted, preliminary considerations suggest that a 

value of X calculated from the sample fourth moment of the residuals 

would be poorly determined in all but very large samples, and it would 

usually be preferable, if  a choice has to be made, to choose X on other 

grounds.

3.4.3 Generalization via ‘linear Bayes’ approximation

In the previous section it was shown how, in the case of the 

unweighted least squares estimate in a linear model with normal errors, the 

‘compromise’ estimate (3.16) may be derived from a ‘partially empirical



- 7 4 -

partially Bayes’ approach based on a particular distributional form for the 

error variances. The crucial feature was the expression, in (3.22), of the 

‘posterior expectation’ of $. as a linear function of the ith squared error.

It is immediately apparent that the same approach cannot be 

directly extended to quasi-likelihood models, specified only in terms of the 

first two moments, because such a specification is insufficient for 

application of Bayes’ theorem. Moreover, even with a fully specified  

parametric form for the conditional distribution of Y given (0r ...,<f>n), the 

existence of a ‘prior’ that gives rise to a linear form of posterior 

expectation like (3.22) is exceptional: the normal/inverse-x2 combination of

(3.17) and (3.18) is rather special in this respect.

However, a degree of generalization is possible using the ‘linear 

Bayes’ methods of Hartigan (1969), also discussed by Mouchart & Simar 

(1982). The key idea is that of the linear expectation, defined for scalar 

random variables X  and 0 as

£ (e |;r ) = E(e) + cov(e,jr) X̂-E{X)} . (3.27)1 var(A0

A possible interpretation of £(e|A 0 is as a best, in the sense of least 

squares, approximation of £ ( e |x )  by a linear function of X.

Consider first the formulation of §3.4.2, but without the 

restriction to normal errors. That is, (3.17) is replaced by the moment 

specification

£(y|0lf...,0n) = XB
cov(T | 0 p...,0 n) = diag(0 j) .

(3.28)

In place of the fully parametric specification (3.18) for the distribution of 

{<!>.}, write

m-) =
var(<f>.) = •

(3.29)
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The conditional covariance matrix of the least squares estimate, 0, is still 

given by (3.20); its exact posterior expectation can no longer be calculated. 

However, if  we note that

cov{0 . , (Y-ii.)2} = cov[</>., 10 .}]

= var(0 j) =

and = E[E{(Y-\l.)2 10.}] = ^  ,

and assume that the conditional standardized fourth moment of Y. ,

p 4  =  £ { ( 1 ^ ) 4 | * . } / * »  ,

exists and is the same for all /, then

v a r{(r -/ii)2) = E[var{(r.-|£.)2 10.)] + var[E{(7-Mi)2 10.)]

= (P4- 1)£ (0?) + var(0 j)

= (P4* 0  + P4 " 1 ) 4  ’ (3-3°)

and so, from (3.27),

^{0 i |(^ i-Mi)2=(yi-Mi)2) = V<p + ^0{(7-Mi)2-M0)/(p4^0+P4- l )

= { ^ ( p 4"i)(^ 0 +i) + ^<p(y-^ )2)/(p4̂ (p+p4- 1) • (3.31)

The normal/inverse-x2 combination considered in §3.4.2 has p4=3 and 

i?0 =2 / ( v - 4 ) (provided v>4), and it is easily verified that the exact posterior 

expectation (3.22) and the linear version (3.31) are identical in that case.

A more general version of (3.23) now follows in an obvious way, 

by replacing each in (3.20) with its linear expectation (3.31). An 

estimate of cov(0 ) is derived by making the natural substitutions 0 = 0  and 

jx^=0, and the ‘compromise’ estimate (3.16) is formally recovered by 

putting
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* = ( V 0 ’ P4>J) * (3-32)

The form of (3.32) is interesting. As a function of , at fixed  

p4 , X is strictly increasing and converges to l /p 4 as recall that this

upper limit, a consequence of assuming finite second moment in the 

distribution of {fy}, was |  under normality. As a function of p4 , at fixed  

X is strictly decreasing to a limit value (as p4->°°) of zero. Thus 

increasing kurtosis and increasing heteroscedasticity have conflicting effects  

on the determination of X, and kurtosis is dominant in the sense that, no 

matter how large is, X is bounded above by l /p 4 .

If a sample-based choice of X is required, the sample variance of 

the may still be used provided at least one of p4 and is

known; the same reservations expressed at the end of §3.4.2 apply also 

here. If p4 and are both unknown there is a problem in that unless, 

for example, there exist identifiable groups of observations within which 0 . 

can be assumed constant, kurtosis and heteroscedasticity are not separately 

identifiable; from (3.30) the estimable quantity is essentially P4̂ (p+P4 , 

which does not determine a value for X .

We have shown, then, how the approach of §3.4.2 may be 

extended, using the idea of a linear expectation, from the normality (3.17) 

to a wider fam ily of error distributions indexed by the fourth moment.

To conclude this section, we indicate how the development may be 

generalized to situations where /z.(0 ) is a non-linear model and 0  is the 

quasi-likelihood estimate based on some more general variance function  

By analogy with (3.28), assume

and c o v (y .|0 1,...,0n) = diag{0 .K(f£.)} .

An exact expression for cov(0 1 <Pv ...,<Pn), corresponding to (3.20), is not now
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generally available, but the same arguments as before apply directly to the 

asymptotic approximation (1.13). The only change necessary is to replace 

by ( Y . - n J / { V throughout. In particular, the ‘compromise’ 

covariance estimate (3.16) is still derived by making the substitutions 3=3, 

lL̂ =i> and ^=^0 /(p 4^ + P 4- l) in the linear expectation of cov(0 1 4>v ...t4>n)9 

but now with

p4 = El(Y.-n.)*/[V(n^ ) 2 1 *,] /*? .

Provided that p4 exists, and is constant over observations, the 

generalization is complete.
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3.5 A remark about bias correction

As noted in §3.2 , the robust covariance estimate covR(B) is 

biased in fin ite samples. A major component of the bias arises from the 

fact that is not an unbiased estimate of var(y.).

Consider the case {V(fi)=l , # (m)=m}, i.e. unweighted least squares 

estimation in linear models. In addition to being the most common 

application of quasi-likelihood estimation, this case has the advantage of 

allowing exact bias-correction; here the tendency to underestimate v a r ^ )  is 

the only source of bias. Explicitly, suppose that

E(Y) = XB

and cov(7) = $ ,

where $=diag(^j) as before. The least squares estimator is

B = (XTX )-1X Tr

with exact covariance matrix

cov(B) = (X T x ^ X ^ X tx T X )-1 . (3.33)

The robust covariance estimate (3.6) simply replaces each in (3.33) with 

(^i- Mi)2. Its expectation under homoscedasticity, with 4>.=<p for all /, is

£ { c o v r ( B ) }  =  (f(XTX )-1X Tdiag(W !ii)X(XTX )-1 , (3.34)

where h-. is the jth diagonal element of H=X(XTX )X T; consistency is 

based on standard assumptions that include h.r*0 for all / as n-** In 

fin ite samples need not be small for all i and the bias in covR(B), even 

under homoscedasticity, can be severe. Chesher & Jewitt (1984, 1986) give 

examples and calculate bounds, based on max{/z..}, for the bias.

Two bias-corrected versions that have been suggested in the

literature are
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A = {n/(n-q)) covR(g)

and B = (X TX )-1X Td i a g { ( ^ i)2/ ( l - / i ii)}X(XTX )-1 .

The ‘degrees of freedom’ corrected estimate A was derived as a jackknife 

estimate by Hinkley (1977); it is exactly unbiased when <p{ and h~ are 

both constant, i.e. for balanced designs under homoscedasticity. The 

estimate B has been suggested by Chesher & Jewitt (1984) and by 

MacKinnon & White (1985); by (3.26) it is unbiased under 

homoscedasticity, regardless of {/i-}. An implicit assumption here is that 

max{/Zjj}<l.

A third possibility is the ‘direct’ bias-correction 

C = covR(g)-^is(covR(g)}xcov(g) ,

which is well-defined, and unbiased, under homoscedasticity; here ‘̂ ’ and 

‘x* act element-by-element on the matrices concerned.

The matrices A, B and C coincide in the balanced case when the 

{/jh} are all equal to q/n.

The point to be made here is simply that division of (y-^j)2 by 

( l- / iH) ,  although bias-correcting, is also variance-inflating. As a result the 

variability of estimate B may be rather large, particularly when max{/z..} is 

close to 1.

To illustrate, consider a highly unbalanced nx2 model matrix X

with

o II (/=1,...,«) ,

'o 0*=1,...,«—2)

II 5 (i=n-l)

/---
-

U=n) ,

and n'Z3. The diagonal elements of the ‘hat’ matrix in this case are
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'(82+l ) /d (/=1,...,«—2)

K  -  • {(«—1) 82—2 8+1 }/<i (7=77- 1)

{ 82—2 8+(«—1 )} /d 0'=«) a

where d  = det(XTX) = n(82+ l)-(8 + l)2. When 8 is small, is close to 1.

In this example the ‘slope’ estimate has true variance, under

homoscedasticity,

var(B1) = $>n/d , (3.35)

which has a limit value of <pn/(n—1) as 8-*0. The corresponding element of

C° VR(0) is

n-2  ̂ „
[(5+ l)2Z (y-*L)2 + {8(n—1)—1 }2(yn_1—̂ n.j)2 + (8-H+l)2(yn“ Mn)2]/^ 2 , (3.36)

i=l

with expectation

<Kn~2)[ (5+ l)2{(62+ l)(n-2)-26) + {S(«—1)—l}2 + 82(8-7i+l)2 ] / d z , (3.37)

which has a limit value of <p(n-2)/(n—l ) 2 as 6->0. So covR(0) is subject to 

substantial bias when 6 is small.

Bias-correction, under homoscedasticity, is provided by either B 

or C above. The element of B corresponding to var(01), call it bn , is 

derived by dividing each ( y f i i ) 2 in (3.36) by (Wijj). The corresponding 

element of C, call it cn , is calculated by multiplying (3.36) by the ratio of 

(3.35) to (3.37). Both bn  and cn  are quadratic in the observations, so 

their variances depend on the shape of the error distribution. Some 

indication of the general behaviour comes from calculation under an 

assumption of normality for the {Tj-pc.}: the main feature is that, whereas

the variance of (Tn-f£n)2 is 0 (8 4) as 8->0, (I^ -m̂ V U - ^ )  has a constant 

variance of 202, and as a consequence it may be shown that 

var(6n ) = 2<t>2[l + l / ( ( « - l ) 2(n-2)}] + 0(8) 

var(cjj) = 202n2/{(n—l) 2(n—2)} + 0(5) .and
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For small 5, then, bn  is much more variable than clv  even when n is 

quite small.

This rather extreme example serves to illustrate the general point. 

While B and C may both be thought of as generalizations of A to the 

unbalanced case, their behaviour can d iffer greatly; in particular, the 

stability of C when m a x ^ }  is close to 1 is not shared by B. It seems 

preferable, in unbalanced situations, to apply bias-correction after the 

squared residuals have been ‘smoothed’ into covR(8).

While the focus here has been on the case (V(fi)=l, g(fi)=fi), it is 

immediately apparent that ‘bias-corrected’ estimates analogous to A, B and 

C may be defined more widely. Although exact unbiasedness is not 

usually possible in the context of non-linear models or estimates other than 

least squares, the same general considerations apply.
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CHAPTER 4

Extended quasi-likelihood and double exponential families

4.1 Introduction

between two recently proposed constructions, these being the extended 

quasi-likelihood of Nelder & Pregibon (1983) and the double exponential 

families of Efron (1986). The motivation for, and use of, these ideas will 

be mentioned only briefly, for they are extensively described in the 

aforementioned references. Rather, the aim here will be to give some 

specific details of the similarities, mentioned in the rejoinder of Diaconis 

& Efron (1985) and again in Efron (1986), between the two constructions.

4.2 Extended quasi-likelihood

An important function, related to a given variance function V(fi), 

is the deviance, defined for a single observation as

The deviance measures the discrepancy between an observation y  and its 

expected value //, and is useful in comparing d ifferent regression models 

for the same data; in particular, if Hr and Hs are two hypotheses 

of dimension r<s, Hr nested within Hs, then under Hr

This short chapter will explore and make explicit the relationship

(4.1)
y

n n
E D(iAs\ii[r>>) = E -  D(y.;/ip))}
i= l i = l

has an asymptotic X̂ _r distribution (McCullagh, 1983).

Nelder & Pregibon (1983), see also McCullagh & Nelder

(1983, pp212-14), consider the problem of comparing d ifferent variance
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functions on the same set of data, pointing out that the variance function 

determines the scale on which D{y\p) is measured, so that differencing 

across variance functions is unhelpful. With the aim of making the 

deviance behave more like a log-likelihood, Nelder & Pregibon (1983) 

define an extended quasi-likelihood

a(y;f£,<p) = exp[-ttlog{2n<pV(y))-%D(y;fi)/<l>] ; (4.2)

Nelder & Pregibon (1983) use the notation Q+(y;ii), and McCullagh & 

Nelder (1983, equation 11.2) use / ' ,  in both cases to stand for log{fl(y;ji,0)}. 

Problems of definition when F(y)=0 are discussed by Nelder & Pregibon 

(1983) and by McCullagh & Nelder (1983, p214).

Nelder & Pregibon (1983) and McCullagh & Nelder (1983, p213) 

use (4.2) as an approximate likelihood for inference in the context of a 

parametric family of variance functions, e.g. {F(m)=/^: -®<X<00), and give 

examples of its application.

4.3 Double exponential fam ilies

Diaconis & Efron (1985,§5) introduce a generalization of natural 

exponential families, discussed also by Efron (1986) under the name double 

exponential families. In Efron’s (1986) notation our interest here is in 

f  \l 0"1 iOO; we shall write this as

Z)*(y;pt,0) =  JS(M ,0)0"^/(y;y)exp{-J/^D(y;/i)/0} (4.3)

= B(fi,<p)b(y;/i,<p) , say.

Here

f ( y \ v )  = PO >)exp{ye-w(0)} (4.4)

is a one-parameter natural exponential family with respect to measure F(y), 

taken here to be either Lebesgue or counting measure. The mean and
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variance are respectively fz=u'(9) and V(ii)=u"(B). The deviance D(y;n) is 

defined as in (4.1), and B(il,<P) is a normalizing constant. E fron’s (1986) 

g^iiy)*  [ ^ ( y ) ]  and c(/z,0-1 , l ) are respectively f(y\v)/p{y), p(y)[a?F(y)] and 

BC&tp) in our notation.

Diaconis & Efron’s (1985) original motivation for (4.3) was to 

provide a ‘random effects’ interpretation, analogous to variance components 

in the normal case, for heterogeneity among means in the context of other 

exponential families. Efron (1986) gives examples of the use of ^(y.;#*., .̂) 

as an approximate likelihood in regression models for both mean and 

dispersion, i.e. in models with

E(Y.) = /£.(0) (/=1,...,«) (4.5)

and var(T.) = ^ (7 ( /= W 0  , (4.6)

with V(.) known, and jl(.), 0j(.) known functions of a few unknown 

parameters. West (1985) considers a similar type of model, but with the 

‘determ inistic’ specification of the {0j} in (4.6) replaced by an assumption 

that {0r ...,0n} is a random sample from a distribution with a few unknown 

parameters; the function b(y;ii,<p) is precisely the approximate likelihood, his 

(2.4), used by West as the basis of a Bayesian approach.

4.4 Comparison

4.4.1 Existence

The extended quasi-likelihood (4.2) is defined, apart from possible 

problems when V(y)=0, for any given variance function V(ii). The same is 

not true of the double exponential family (4.3), which requires the 

existence of a natural exponential family f(y;ii), as in (4.4), having mean 11



- 8 5 -

and variance V(fi). The existence of such families has been a topic of 

considerable recent interest: Morris (1982) finds the natural exponential

families corresponding to all quadratic variance functions, while Tweedie

(1984) and Jorgensen (1987) consider variance functions of the form 

V(fi)=n\  a particular result being that there is no natural exponential 

family corresponding to powers \€(0,1).

For a general then, the existence of a corresponding natural

exponential family, and hence a double exponential family, is not 

guaranteed. In the remainder of this chapter attention is restricted to 

variance functions for which both extended quasi-likelihood and double 

exponential family are defined; some examples are given in §4.4.3.

4.4.2 Suggested use

The original motivation for a(y;n,<p), to enable comparison of 

d ifferent variance functions, and that for b*(y;f£,<p) as a ‘random effects’ 

model, are seemingly unconnected. However the use by West (1985) and 

Efron (1986) of the unnormalized form b(y;n,<p) as an approximate 

likelihood in models like {(4.5),(4.6)} has much in common with Nelder & 

Pregibon’s (1983) use of a(y;(L,<p) in models with a parametric fam ily of 

variance functions. Indeed, the Nelder-Pregibon type of variance 

specification

var(Ti) = 0F*(Mj;X)

is formally included in the general form (4.6) by writing, for example, 

V iV ih V * ^ # )  and 0i(7)=0F*(//i;X)/F,c(Mi;O) so that 7={0,X,0). Pregibon (1984) 

has suggested that aiy .^ ii^)  be used as an approximate likelihood for 

models with the general type of variance specification (4.6).
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4.4.3 Comparison o f approximate likelihoods

Here we consider, in cases where both are defined, the functions 

a(y;pt,0) = exp[-,/&og{2n0K(y)}-J4DO>;fi)/0] 

and b(y;ii,<t>) = 0"^/(y;y)exp{^DO;;tf)/0} ,

whose ratio is

b(y;n,<P)/a(y;iJL,<p) = Ay;y){2nV(y)fi , (4.7)

a function of y only. An immediate conclusion to be drawn is that the 

functions <at(.yi;Mi,0i) and ^O^M-ify), considered as approximate likelihood 

functions, lead to the same maximum likelihood estimates.

It remains to investigate the behaviour of (4.7) as a function of 

y. Efron (1986) points out that an assumption of asymptotic normality for 

f{y\\L) as some notional parameter, N say, tends to infin ity , implies in 

particular that

f ( y \ y )  {2nV{y)Y^ for all y, as N-*°> , 

which suggests that the ratio (4.7) may be approximately equal to 1. 

Consider the nature of this approximation in some particular cases:

(i) Vk(p)=k, (k>0, not depending on ji)

f k (y\V) = (277fc)_i*exp{-4*(y-j£)2A} (-°°<y,ft<m),
Dk(y\v) = (y-ii)2/k ,

ak(yW,<P) = bk (y\iL,$) = (277#fc)-1/̂ exp{-^y—/x)2/(0&)};

— f <f)k̂
(ii) V(p)=fL, f(y;p) = fiV̂ /y! (M>0, y=0,l,2,...),

D(y\p) = 2{ylog(y/n)-(y-H)}, 

a ( y ’,&<t>) = (2770y)'^exp{-^D(y;^)/0), 

b ( y \ m $ )  = 0"^(yV>7.v!)expH/^(y;ix)/0}, 

so b{y\mi>)/a(y\m$) = yy e~y {Iny)^/  y\\



A y\v )  =
N (u/N)y(\-n/N)N -y (0<H<N, y=0,l,...,AO,

£>(>>;/*) = 2[ylogO>/m)+(N—y)log{(N—y)/(iV—/i))L 

a(y;&4>) = {277<^N -y)/A ^exp{^^(y;ji)/0},

t o M )  = 0_1V (y /A O y(l-y /A O ^ /{ ^ (^ )!} ]ex p { -to (j;;/i) /0 } , 

so b/a  = { 2 ^ ( ^ ) /^ iV ! ( y / iV ) y ( l r y /A O ^ /0 '! ( ^ ) ! } ;

(iv) Vk(tL)=kn2 (k>0),

/& ta )  = ^"1(3;/ ^ ) 1/ke x p (-y /^ ) /r( l //c )  (y,M>0),

Dfciyw) = 2{(j-/i)/M-log(y/M)}/^, 

ak(y;n,<l>) = (2nQky2)m̂exp{-MDk(y\n)/0}, 

bk (y;&<P) = <f>"1̂ _1( ^ ) _1/k{r(lA )} '1e x p { - ^ A;(j;;M)/0}, 

so 6/fl = (2nkyl\ek)~1̂ k{Y(1 //c)}"1; and

(v) Vk(fi)=kfi3 (k>0),

= (2nfcy3)A x p H y - ^ ) 2/(2fc/i2y)} (y,/*>0),

^ f c to )  = (y~u)2/(kiJ.2y), 

ak(y;n,4>) = bk(y;&<p) = f ^ k{y\u) .

Some points to note are:

(a) b{y\iL, 1) = /(y;fi) exactly, always;

(b) in the ‘normal’ and ‘inverse Gaussian’ cases (i) and (v), 

ak (y\iL$)=bk(y\iL,$)=f^k(y;n) exactly, for all &, <p, y  and fi;

(c) in both of the discrete examples (ii) and (fii), substitution of the 

Stirling approximation

x! ~ (2nx)^xx e~x

for all factorials makes b(y\\L$) equal to a(y;ii,<p); and

(d) in the ‘gamma’ case (iv), b/a depends only on k and is approximately 

equal to 1, at least for small k\ the approximation here is given by the 

slightly d ifferent Stirling formula

r(x) ~ (2nx)^xx ~^e~x (4.8)
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applied at x= l/k . Moreover, use of the approximation (4.8) at x=\/(<pk) 

gives f  Qk(y\v) /  ak(y\iL,$)2i!• In this sense ak and bk are both close to the 

gamma likelihood f ^ k . Note, however, that while f$ k (y\v) and ak(y;f̂ (t>) 

both depend on <p and k only through the product <pk, this property is 

not shared by bk(y;fi,<p); a consequence is that the approximate likelihoods 

(bk (y;ii,(p/k): k>0), all of which represent the same variance specification 

var(yj)=0#i?, are not the same for all k. Indeed, the ratio 

bi(y;̂ <P)/bk(y;n,(p/k)

is unbounded as k-*m. However this ambiguity, although a rather curious 

feature, is not a problem in practice since ‘approximate likelihood ratios’ 

relevant to the comparison of two hypothesised coefficients of variation,

V<t> and v4> say, have the form

bk{y\lL̂ /k)/bk{y\^/k\ 

which does not depend on the choice of k.

Nelder & Pregibon (1983) point out that in all of the above 

examples, and more generally, a(y;ii,<p) is the (unnormalized) saddlepoint 

approximation to the natural exponential family distribution with 

var(Y)=<f>V(fz), when such a family exists. In the notation used above, then, 

a(y;n,<p) is the unnormalized saddlepoint approximation to b^(y\iL, 1) when 

b^iyiii, 1) is defined.

4.4.4 A remark about estimation

In the previous section it was found that approximate likelihoods 

based on and on ^ O ^J^ j) are equivalent as far as estimation is

concerned. Estimating equations, e.g. for 3 and J  in models like {(4.5),(4.6)}, 

may be based on the approximate score functions

9(log a)/diL = 6(log b)/diL = (y~n)/{<pV(ii)} (4.9)
and 6(loga)/d<t> = 9(logb)/d$  = xA{D(y\ii) -  <p)/<p2. (4.10)



If /3=(j3o,...,0p) and 7=(70,...,7t), say> are distinct sets ° f  parameters, the 

estimating equations are

y  yr>h = 0 (r=0,...,/?) (4.11)
i=i W

and
n , f D{y.‘\i.) Y 0-1J
M  ' l  *1

-  1

s
 s

CD

(5=0,..., t) . (4.12)

Here we note that, while (4.11) are unbiased estimating equations on 

account of (4.9) having zero expectation, the equations (4.12) are not, in 

general, unbiased under {(4.5),(4.6)}. From (4.10) we see that the equations 

(4.12) will generally yield estimates that are consistent for y  in the 

specification

£ [£ ( 7 ^ ) ]  = 0t(7) (*=1,...,») , (4.13)

which is generally different from (4.6).

A possible basis for assuming the two specifications (4.6) and (4.13) 

to be approximately the same is the Taylor series approximation

E[D(Y;il)] £  + JSZ>"(/£,/£)var(y) ,

where D"(y\v:) is the second derivative of D(y;n) with respect to y ; since
mU

D(fi,ti)=0 and D'{y\ii)=—2\ {1 /V(u))dut so that D”(n,n)=2/V(ii), this becomes 

E[D(y;n)] £ var(Y)/V(fi).

However, this approximation may be poor in particular instances. As a 

simple illustration, take V(n)=v? and 0j(7)=0, an unknown constant, and 

consider behaviour under the lognormal distribution, which was one of the 

examples of §2.3.1. The deviance for a single observation is

D{y\\L) = 2{(y-fL)/fi — log(y//i)}

with expectation, under the lognormal,
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E[D{Y\v)] = 2{log/i-£(logF)} = log(l+0) .

Thus <p given by solving (4.12) is consistent not for <f) but for log(l+<J>); 

clearly the approximation deteriorates as <t> increases, e.g. <f>=l has 

log(l+<f>)=0.69. The lognormal here was not chosen as an extreme case, 

rather for algebraic simplicity: behaviour in the other examples of §2.3.1

is qualitatively the same.

Often the parameters J  are nuisance parameters, 3 being the 

object of primary interest. When the estimating equations are ‘separate’ as 

in (4.11) and (4.12), 3 is still consistently estimated; however, inconsistent 

estimation of 7 will usually affect the ‘weights’ in (4.11), and so reduce 

the efficiency with which 3 is estimated.

More generally, when 3 and J  do not represent distinct sets of 

parameters, the relationship of consistently-estimated quantities to 

parameters of interest is ill-defined without further assumptions.

4.4.5 Normalized versions

Consider now the normalized densities

b*(y;&4>) = B(&<p)b(y;fJL,<l))

and, by analogy,

a*(y;&<P) = A(fi,<f))a(y;iJL,<p),

the normalization in both cases being with respect to the same dominating 

measure, F(y), used in defining b*. It is immediately apparent that 

B(fi, 1)=1 for all il since, as pointed out in §4.4.3, b{y\iLt\)=f{y\iii) exactly. 

More generally, though, the normalizing constants A and B are not unity 

and depend on both il and <p.

Efron (1986) argues that 6(y;^0) is appropriate for use as an 

approximate likelihood, in models like {(4.5),(4.6)}, on the grounds that
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(1) B M )  *  1 ,

(2) E(Y) * v ,

and (3) var(Y) £ <PV(il) ,

the expectation and variance here being with respect to b*(y;fj.,<p). The 

approximations are justified by asymptotic arguments based on an 

assumption that is essentially limiting normality of b*(y;ii,<p) as some 

parameter, N  say, tends to infinity. In non-normal situations, however, 

these approximations may be poor.

For a specific, and practically important, example, consider the 

‘Poisson’ case, V(fi)=fi, for which a(y;n,(f>) and b(y;fJL,<p) are given in §4.4.3. 

Numerical normalization with respect to counting measure on {0,1,2,...} 

yields the results given in Table 13; in calculating a(y;fi,<p) we follow the 

suggestion of McCullagh & Nelder (1983, p214) to use V(y)=y+$ rather than 

V(y)=y9 thereby avoiding difficulty  at y=0. Three values of ii are 

considered (m=10.0, 1.0, 0.1) and three values of 0 (1.0, 2.0 and 3.0).

From Table 13 we see that the normalizing constant, mean and 

standard deviation for a* are close, at every value of (fi,<p), to the 

corresponding values for b*. Moreover, at fi=\0 there is also close 

agreement with the ‘theoretical’ values given by the approximations (l)-(3) 

above; in fact the values for b* in part (i) of Table 13 are given by 

Efron (1986, Table 2) in support of these approximations. However, the 

quality of all three approximations clearly deteriorates as fi decreases and 

as 0 increases; for example with ji=0.1 and <p=2 the means of a* and b* 

are respectively 0.238 and 0.233, more than twice their common ‘theoretical’ 

value of 0.1.

Parallel calculations, not reported in detail here, for the ‘binomial’ 

variance function V(n)=n(N~ii)/N yield qualitatively similar results: a* and

b* are close to each other but not necessarily to the ‘theoretical’ mean and 

variance. Here the approximations (l)-(3) are good when 0 is close to 1
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Table 13. Normalizing constant, mean and standard deviation for
and b*(y;iJLi<p) in the case V(fi)=iJ.

(i) /£=10.0 0 = 1.0 2.0 3.0

{̂(pi,̂)}"1 1.000 1.012 1.025
{BM))-1 1.000 1.012 1.026

Mean 10.000 9.969 9.919
10.000 9.968 9.916

Standard deviation 3.162 4.481 5.479
3.162 4.482 5.480

‘Theoretical’ s.d. = ^(100) 3.162 4.472 5.477

(ii) #£=1-0

MCft'Wr1 0.993 0.986 0.940
1.000 0.995 0.948

Mean 1.009 1.143 1.326
1.000 1.132 1.313

Standard deviation 0.999 1.354 1.659
1.000 1.353 1.657

‘Theoretical’ s.d. = v<t> 1.000 1.414 1.732

(iii) #£=0.1

0.980 0.816 0.735
Wx,*)}-1 1.000 0.831 0.747

Mean 0.102 0.238 0.361
0.100 0.233 0.354

Standard deviation 0.320 0.533 0.717
0.316 0.528 0.712

‘Theoretical’ s.d. = 10) 0.316 0.447 0.548

(In each position the upper figur&relates to a* 

to b*.)

and the lower (italic) figure
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and m and N~il are both large, but deteriorate as <P increases and as i£ 

approaches the extremes, 0 and N.

4.5 Remarks

The calculations of §4.4.5 show that the ‘approximate likelihood’ 

functions a(y;n,<t>) and b(y;fi,<p) do not necessarily correspond, even 

approximately, to a distribution having the required mean, ji, and variance, 

In particular, the models

and

y. - ^*0^(8),<^(7)) (/=1,...,«)

although close to one another, may be very different from the mean and 

variance specification {(4.5),(4.6)}. The practical implications of this are 

not clear, though, since when a(y;f£,(p), or equivalently 6(y;jz,0), is used as 

an approximate likelihood the normalizing factor is ignored.

The remarks of §4.4.4, on the other hand, are more readily 

interpreted: use of «(y;^,0), or equivalently b(y;fi,<p), as an approximate

likelihood seems more appropriate to a model specification of the form

and

E(Y.) = Mj(3)

E^y.;/^)] = 0j(7) (/=!,...,«), as in (4.13),

than to a model specified in the manner of {(4.5),(4.6)}. As shown in 

§4.4.4, sometimes the two specifications (4.6) and (4.13) are approximately 

the same. In fact there exist at least two particular families of 

distributions, namely the normal and inverse Gaussian examples (i) and (v) 

of §4.4.3, that allow both specifications to be met exactly. In general, 

though, as illustrated in §4.4.4, the two specifications cannot be considered 

equivalent, or even approximately so. An important question that arises,
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then, is whether specification of a model for the expected deviance, which 

apparently has theoretical advantages, can reasonably be made in practice. 

The alternative, a model for the ratio of the variance to some known 

function of the mean, seems more appealing because of the fam iliarity  of 

the ideas involved. However it is not clear which, if  either, of the two 

types of specification is the more ‘natural’.
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The source of the error in expression (20) of Cox & Hinkley 

(1968) is not clear. Their (19) contains a misplaced bracket: at the 

beginning of the third line, ‘ +720^4 ’ should read ‘ +(720^4 ’ ’ but this 

could be a printer’s error. The major part of the calculation, after 

expanding the logarithm of the Edgeworth series and differentiating twice, 

is to evaluate expectations of Hermite polynomials and their products. 

Those expectations relevant to the order of (2.9) are given here, with just 

Hr standing for Hr(e):

E{HZ) = 7,;

E(Ha) = y2;

= 72;

E(H2H3) = 6 7  j + 7 3;

E(Hl) = 2  + 72;

£ (//3/ /4) = 367! + 357,7! + 1273 + o(/V2);

E(Hl) = 6 + 107? + 97, + 74;
E(H3H3) = 1507? + 6072 + 357? + 56737 i + 1574 + o(N' 2) ;

B f l W  = 47j + 73 ;

E(H3Ha) = 1 0 7 ? + 87, + 74 ;

£ ( //j/ /6) = 357,7i + 673 + o(N~2) ;

E(H*) = 24 + o(l);

E(H2) = 1 2 0  + 0(1);

E(H3H3) = 207i + 35727 i + 1073 + o(N'2);

E (H ji§  = 547i + 35727 i + 1573 + o(W2) ;

E(H3Hl) = 36 + o(l);

£ (// |f f ,)  = 216 + o(l);

E i H ^ H J  = 24 + o(l);

A P P E N D I X  1

D e t a i l s  o f  t h e  c a l c u l a t i o n  l e a d i n g  t o  a p p r o x i m a t i o n  (2.9)
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E{H\HZ) = 62yx + o {N ~ \

E(H2HzHz) = 120 + o(l);

E i f f e l )  = 324 + o(l);

E(H\H2z,) = 372 + o(l);

E{H\Ha) = 24 + o(l);

E{HXH J I^  = E(H2H6) = o(l) .

Terms are collected to give (2.9); to O^N'1) only one term, that involving 

E(H2), is required.
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A property o f a family o f unbiased estimating equations, 

and a connection with parameter orthogonality

A P P E N D I X  2

Cox & Reid (1987, §2.2) consider some consequences of 

orthogonality,

E ^ K M / d m }  = o for all tp,\ , (A2.1)

in a regular parametric family of distributions {/Y(y;0,X)} for a «xl vector 

7, where /(0,X)=log/Y(y;0,X); here ‘E^ ^  means expectation with respect to 

the density / Y(,y;0,X). Particularly important is their property (iv), stated 

as ‘ the maximum likelihood estimate of <p when X is given, varies 

only slowly with X.’ Specifically it is shown that ^ - $ = 0 p(«_1), where tp is 

the unrestricted maximum likelihood estimate; the result is ‘local’ in that if 

X here is fixed it must be the true value, otherwise it must be within 

0(n~ o f  the true value. The proof given by Cox & Reid proceeds via an 

expansion of /(tp,\) near (i>,X); a slightly more direct approach, based on an 

expansion of the score function u(t/>,X)=6/(</>,X)/6t/> , has applications also 

when the likelihood function is not available.

Consider, then, the local linearization

u ( M  = w($>,X) +
dtp (x-x)t m )

+ o  (iie-^ii2)p

where Q=(tp,\), etc.; substituting tp= g i v e s

(<K"4)irdtp
= (X-X) &Lm  ax

+ o  (iie-§u2) ,
( « )  P

(A2.2)

and the rest of the argument is then much as in Cox & Reid (1987). 

Under orthogonality, (du/d\)  \)=Op(n/b as «-*°°. Quite generally

(X -\)=0 («~^), ($^-J>)=0 (n~^) and the remainder term in (A2.2) is 0  (1);

also du/dtp is typically a sum of n terms of non-zero expectation, so
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/ i{ ( a w /a 0 ) |^ p -1=(9p(l). Hence ^ - ^ O ^ n ' 1).

The result may be extended in two stages. First it may be made 

less ‘local’ by restricting attention to likelihoods that satisfy

£</,5j-{d2/(<k>0/W>0 = 0 for all 0, X,

which is a much stronger condition than the orthogonality (A2.1); it 

implies, in particular, that

= 0 for all 0, X,

i.e. the score equation 9/(0,X)/90=0 is an unbiased estimating equation for 0 

at every X. A simple example is the bivariate normal family

with / y(K<KO = (27r)-1( l - ^ 2)"^exp[-J/̂ { (y1- 0)2- 2 U^1- 0)y2+y2) / ( 1 -^2)] ;

for any given X€(-l,l), the score equation

a/(0,X)/90 = {(y1-0)_ Xy2}/(l-X 2) = 0

is an unbiased estimating equation for 0, regardless of the true value of £.

Now take X to be an arbitrary  value, rather than the true value 

as before; and suppose that X, rather than being the maximum likelihood 

estimate, is such that \ —\=Op(n~^). Then, with the behaviour of all

quantities in (A2.2) is as before, and in particular

An immediate further extension is to the situation where 

(n(0,X) : XelR} is a more general family of estimating functions for 0, 

not necessarily likelihood-based score functions; the required property is 

still

£0{«(&x)} = 0 for all 0, X,

i.e. n(0,X)=O is an unbiased estimating equation for 0 at every value of X.
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The result (n-1) implies in particular that the asymptotic (normal)

distribution of a solution based on any fixed value X is the same as that 

of a solution based on a data-dependent value X, provided X-X=Op(«_1/̂ ).

For a specific example, consider the family of estimating 

equations (2.17) from §2.2.2: the asymptotically optimal value

Xo=(2+72)/{2+72~(71/^0)} is unknown under only second-moment assumptions 

but may be ✓ n-consistently estimated, by X say, from sample third and 

fourth moments. Thus solution of (2.17) with X=X yields an estimate for //, 

say, that has the same first order asymptotic efficiency as would ji^o .

Similar arguments hold throughout when 0 and X are vectors, and 

application to the other families of ‘refined’ estimating equations of §§2.2.2,2.3.2 

is straightforward.
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The second derivative of the logarithm of (2.28) is

a w  = a’iog/ w 2 + (1 + ̂ K
(1+Ecr£,t)2

where here, and from now on, we write just Lr for L ^ { z ) .  The 

numerator of the second term here has, for r,s£3 (rts), 

coefficient o f cr : {r(r+l)Lr —2r(r+<x)LT _ 1+(r+or-l)(r+a)Lr _ 2)

coefficient o f c*: {rL*+(r+a~l)(r+<x)Lr _2Lr -{r+d)2 L? _ x}

coefficient o f c c :  [{r(r+l)+s(5+l)-2rs}L La +2(s-r)(r+a)L . Lr s r s r - l  s

+2(r-s)Cs+oc)Z,s _ ± Lf +(r+oc-l )(r+a)Lr _ 2 Ls+(s+cx—1 )(s+a)L& _ 2 Lr 

-2(r+a)(j+a)Lr l Lg _J

The well known differential relation between generalized Laguerre 

polynomials (Abramowitz & Stegun, 1965, p783) proves useful here. This 

numerator must be multiplied by

(l+ E c rLr )-2 = 1 - 2 Ecr£ r + 3(EcrLr)2 -  4(EcrZ,r)3 + . . .

The rest of the calculation consists mostly of evaluation of expectations of 

the form

E(Lr L r . .  ,L r ) . (A3.1)
' l  ' 2  r k

One helpful fact, when discounting terms of high order in <p, is that

E(L L r . .  .L r ) = o ( 0 “ <r i + r 2+ - + r k + 1 ) )  . 
r i r2 rk

Also, on account of the fact that E(L*) = (—1 )Tiir , where pr is the rth central 

moment of z, the following expressions prove very useful:

L 2 = 'A{L\ + 2LX -  (a+1)};

L s = \{L \ + 6L\ + 3 ( l-a )£ 1 -  4(1+a)};

A P P E N D IX  3

D e t a i l s  o f  t h e  c a l c u l a t i o n  l e a d i n g  t o  a p p r o x i m a t i o n  (2 .29 )



- 1 0 1 -

L4 = \&L\  + 12Li + (30-6 ol)L\ -  (4+28a)L1 -  (15-3a)(a+l)};

L 5 = rZff(Li + 20Li + (110—10a)Lj + (140—100a)L2 -  (95+200oc-15a2)L1

-  (56—40a)(a+l)};

Lq = j^ { L \  + 30 L\ + (285-15a)L\ + (940-260a)L3 + (555-1200a+45a2)L2

-  (906+1296or-330a2)L1 -  (185-400a+15a2)(a+l)};

L7 = {L\ + 42L® + (609—21a)Lj + (3640-560a)L\ + (7875-4620a+105a2)L3 

+ (714—12936a+1470a2)L2 -  (7637+7567cr-5005a2+105a3)L1

-  (204—3696a+420a2)(a+l)} .

In calculating £(92//9 ji2) to 0(1) only one of the expectations 

(A3.1) makes a contribution, namely

E (L \) = i , r 2{6 + 3<Kt4-4 t3+2) + O(02)) .

To 0(0), the following make a contribution:

E(LZ) = lc3(a+l)(cc+2)(o+3)

E(LJ = ^ c4(a+l)(a+2)(o+3)(a+4) 

£ ( L j L 3) =  ^4>-\2T t-12T3+ o m  

E ^ L J  = {2r 2{-2T3+O(0)} 

E(L2L3) = l2r 2(-6T3+O(0)}

E(L\) = 22r 3{2+0(<»}

E(LsLt ) = }2r 3{-3T3+O(<f0)

E(Li) =

E(L2L,) =

E(L\) = ^ ^ { l+ O ^ ) }

£ (L ji |)  = i 2*-3{-18T3-12+0(«} 

E(L\L3) = i 20-3(-3lT3-24+O(^)}

e(l 3l \> = 2̂r 4{6+ o m

E d ^ )  = 22r 4{3+O(0)}

E(LlLl) = i 2r 5{31+O(40)

E(L\L4) = i 2«-5{3+O(0)}

E iL^l)  = i 2r 5{ 18+0(4))}

E i L ^ L J  = y20_4{2+O(0)} 

E(L2L3Ls) = i 2r 5(l+0(4>)} .

The approximation (2.29) 

follows, at length, by 

collecting terms; an interesting 

feature is that terms 

involving c5 all cancel out.



- 1 0 2 -

A P P E N D IX  4

D e t a i l s  o f  t h e  c a l c u l a t i o n  l e a d i n g  t o  a p p r o x i m a t i o n  (2 .36)

The coefficients {cr} of (2.35) are given here in terms of the 

cumulants of the mixing distribution, along with their order of magnitude 

as ip-+0 under both (a) ‘limiting norm ality’ and (b) ‘constant shape’:

(a) (b)

C2 Hip 0(0) O(ip)

C3 ~ K3 O(02) 0(03/ 2)

C4 K4 + 3 k* O(02) 0(ip2)

C5 - k5 -  1 0 k3 k2 0(0*) 0(ip5/ 2)

C6 ic6 + 15k4k2 + 10k2 + 15k:* 0(0*) o(ip 3)

etc. Now E(d2l/dii2) is as in Appendix 3i; on taking expectations, terms

involving c5 and higher are o(ip3) and, to the order of (2.36), only the 

following expectations are needed:

E(L2) = 5*0;

E(L\) = 1  + 5 0 + o(0); 

E(L\L2) = 2 + 0(1); 

E (L \L J  = -4  + o(l); 

E(L§  = 10 + o(l);

E(L\) = 1 + 0 + o(0); 

E i L ^ )  = —20 + o(0) .

only these two contribute to the ip2 term

On collecting terms, those involving c4 cancel out to this order and (2.36)

results.



- 1 0 3 -

To the order given by (2.41), terms in (2.40) involving c3 and 

higher may be disregarded. If we write

t*(y i &<t>) =  log/0(y |/i) + log{l + c2P2(y,ii)/V(iJL)}

then, using the d ifferential relation between the polynomials {Pr} (Morris, 

1982), it is easily shown that

a2/*/ 3m2 = a2log/0/3/i2 + c2[( 1 + c 2P 2/ V ) { V 2( 2 (  1 + c) V —V " P 2) + 2 V V '  (2( 1 +c)VPJ+V' P2)}

-  c 2{2( 1 +c)VP1+ V ‘ P2)2] /  [F 2( l  +c2P2/ V ) f

where we have w ritten F, V  and P r for F(n), V' ( p)  and Pr(y,M) 

respectively. A fter expanding the denominator of the second term here, 

only the following expectations make a contribution to terms of the 

required order:

E(P2) = (0-l)F ;

E(P\)  = 2(1 +c)V2 + o(l) .

A P P E N D IX  5

D e t a i l s  o f  t h e  c a l c u l a t i o n  l e a d i n g  t o  a p p r o x i m a t i o n  (2 .41)

On collection of terms, (2.41) follows easily.



- 1 0 4 -

References

Abramowitz, M. & Stegun, I.A. (1965), eds. Handbook o f Mathematical 

Functions , National Bureau of Standards, U.S. Government Printing 

Office, Washington, D.C.

Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., R ogers, W.H., & 

Tukey, J.W. (1972). Robust estimates o f location: survey and advances. 

Princeton, N.J.: Princeton University Press.

Chesher, A.D. & Jewitt, I. (1984). Finite sample properties of least 

squares covariance m atrix estimators. Discussion Paper 84/163, Dept. 

Economics, Bristol University.

Chesher, A.D. & Jewitt, I. (1986). The bias of the heteroskedasticity 

consistent covariance matrix estimator. Discussion Paper 86/176, Dept. 

Economics, Bristol University. To appear in Econometrica.

Cox, D.R. (1975). A note on partially Bayes inference and the linear 

model. Biometrika 62 , 651-54.

Cox, D.R. (1983). Some remarks on overdispersion. Biometrika 70 , 269-74.

Cox, D.R. & Hinkley, D.V. (1968). A note on the efficiency of least-squares 

estimates. J. R. Statist. Soc. B 30 , 284-89.

Cox, D.R. & Oakes, D. (1984). Analysis o f Survival Data. London:

Chapman and Hall

Cox, D.R. & R eid, N. (1987). Parameter orthogonality and approximate 

conditional inference. J.R. Statist. Soc. B , to appear.

Crowder, M.J. (1982). On weighted least-squares and some variants. 

Technical Report No. 13, Dept. Mathematics, Surrey University.



- 1 0 5 -

Crowd er, M J. (1986a). On linear and quadratic estimating functions. 

Unpublished report, Surrey University.

Crowder, M.J. (1986b). On consistency and inconsistency of estimating 

equations. Econometric Theory 3 (to appear).

D iaconis, P. & Efron, B. (1985). Testing for independence in a two-way 

table: new interpretations of the chi-square statistic (with discussion). 

Ann. Statist. 13, 845-913.

Efron, B. (1975). Defining the curvature of a statistical problem (with 

applications to second order efficiency). Ann. Statist. 3 , 1189-1242.

Efron, B. (1986). Double exponential families and their use in generalized 

linear regression. J. Amer. Statist. Assoc. 81, 709-21.

Eicker, F. (1963). Asymptotic normality and consistency of the least 

squares estimators for families of linear regressions. Ann. Math. Statist.

34 , 447-56.

Godambe, V.P. & Thompson, M.E. (1978). Some aspects of the theory of 

estimating equations. J. Statist. Plan. Infer. 2 , 95-104.

Gourieroux, C., Monfort, A & Trognon, A. (1984a). Pseudo maximum 

likelihood methods: theory. Econometrica 52 , 681-700.

Gourieroux, C., Monfort, A & Trognon, A. (1984b). Pseudo maximum 

likelihood methods: application to Poisson models. Econometrica 52,701-20.

Green, P.J. (1984). Iteratively reweighted least squares for maximum 

likelihood estimation, and some robust and resistant alternatives.

J.R. Statist. Soc. B 46 , 149-192.



- 1 0 6 -

Hartigan, J.A. (1969). Linear Bayesian methods. J.R. Statist. Soc. B 31 , 

446-54.

Hinkley, D.V. (1977). Jackknifing in unbalanced situations. Technometrics 

19 , 285-292.

Inagaki, N. (1973). Asymptotic relations between the likelihood estimating 

functions and the maximum likelihood estimator. Ann. Inst. Statist. Math. 

25, 1-26.

Jorgensen, B. (1987). Exponential dispersion models. J. R. Statist. Soc. B 

(to appear).

Mackinnon, J.G. & White, H. (1985). Some heteroskedasticity-consistent 

covariance matrix estimators with improved finite sample properties. 

Journal o f Econometrics 29 , 305-25.

McCullagh, P. (1983). Quasi-likelihood functions. Ann. Statist. 11 , 59-67.

McCullagh, P. (1984). Generalized linear models. Eur. J. Op. Res. 16 , 

285-292.

McCullagh, P. & Nelder, J.A. (1983). Generalized Linear Models. London: 

Chapman and Hall.

M orris, C.N. (1982). Natural exponential families with quadratic variance 
functions. Ann. Statist. 10 , 65-80.

Morton, R. (1981). Efficiency of estimating equations and the use of 

pivots. Biometrika 68 , 227-233.



- 1 0 7 -

Mouchart, M. & Simar, L. (1982). Theory and applications of least 

squares approximation in Bayesian analysis. In Specifying Statistical 

Models , ed. J.P. Florens, M. Mouchart, J.P. Raoult, L. Simar & 

A.F.M. Smith : Springer-Verlag Lecture Notes in Statistics, no. 16.

N elder, J.A. & Pregibon, D. (1983). Quasi-likelihood models and data 

analysis. Technical report, AT&T Bell Laboratories, Murray Hill NJ.

N elder, J.A. & Wedderburn, R.W.M. (1972). Generalized linear models.

J.R. Statist. Soc. A 135 , 370-84.

Pregibon, D. (1983). An alternative covariance estimated for generalised 

linear models. GLIM Newsletter No. 6 , 51-55.

Pregibon, D. (1984). Review of Generalized Linear Models, by P.McCullagh 

& J.A.Nelder. Ann. Statist. 12, 1589-96.

R oyall, R.M. (1986). Model robust confidence intervals using maximum 

likelihood estimators. Int. Statist. Review 54, 221-26.

Smith, R.H. (1888). True average of observations? Nature 37, 464.

Stigler, S.M. (1980). R.H. Smith, a Victorian interested in robustness. 

Biometrika 67 , 217-21.

Tweedie, M.C.K. (1984). An index which distinguishes between some

important exponential families. In Proceedings o f the Indian Statistical 

Institute Golden Jubilee Conference on Statistics: Applications and New 

Directions, eds. J.K.Ghosh & J.Roy, pp579-604. Calcutta: Indian Statistical 

Institute.

Wedderburn, R.W.M (1974). Quasi-likelihood functions, generalized linear 

models, and the Gauss-Newton method. Biometrika 61 , 439-47.



- 1 0 8 -

Wedderburn, R.W.M. (1976). On the existence and uniqueness of the 

maximum likelihood estimates for certain generalized linear models. 

Biometrika 63 , 27-32.

West, M  (1985). Generalized linear models: scale parameters, outlier 

accommodation and prior distributions. Bayesian Statistics 2, 531-58. 

Amsterdam: North-Holland.

White, H. (1980). A heteroskedasticity-consistent covariance matrix 

estimator and a direct test for heteroskedasticity. Econometrica 48 , 

817-38.

Whittle, P. (1961). Gaussian estimation in stationary time series. Bull. 

Int. Stat. Inst. 39, 1-26.


