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1. INTRODUCTION 

Consider a pair of successive elections of the British type, where 

is divided into constituencies and each constituency returns 

member. In anyone constituency we know, for each election, the 

of people who voted for each party and the number that did not vote. 

we do not know, however, is how individual electors changed their vote 

the two elections, and this would clearly be of interest to students 

behaviour. For example, if the Liberal vote is seen to have 

the second election, one might ask how much of the Liberal 

's new support came from each of the other parties and how much from 

ners at the first election. Under secret ballot arrangements, this 

question cannot be answered precisely. One might attempt to provide 

by conducting some kind of sample survey where people are asked to 

their votes at the two elections, or even using a "panel" survey 

~here a group of electors is followed through the two elections and at each 

election is asked how they voted. However, it has been shown that the results 

of this type of survey are unreliable and prone to bias; see, for example, 

discussion by Miller (1972). 

The only alternative, then, is to use the voting totals in each 

constituency, which are aggregates of the quantities in which we are 

interested, to estimate the pattern of individual voting change. To do 

this we need the election results from several constituencies and we must 

make some assumptions about the inter-constituency structure of individual 

voting change; for example, we might assume that the pattern of change is 

the same in all constituencies, or that it depends on the strength of the 

Liberal Party in a constituency, or on some other constituency-related 

variable. Estimation of models of this type has been investigated by 

Hawkes (1969), Irwin and Meeter (1969), Miller (1972) and McCarthy and Ryan 

(1977). The aim of this project is to further investigate methods of 
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tion, and to examine the possibility of a "random effects" model 

variation in the pattern of change between constituencies. 
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2. VOTER TRANSITIONS THE UODELS TO BE CONSIDERED 

FORMULATION 

Suppose that there are 

constituencies, each of which has the same 

parties at the first election (including an imaginary "abstainers" 

party) and 

parties at the second election (again including an "abstainers" party) 

It is not necessary that I and J are equal; the parties themselves 

may even be different at the two elections, although it is 

necessary that, at anyone of the two elections, the party line-up 

is the same in all K constituencies.) 

Let Zik' 1 ~ i ~ I, 1 ~ k ~ K, be the number of people in constituency 

for party i at the first election; and let Y
jk

, 1 ~ j ~ J, 1 ~ k ~ K, 

be the number of people in constituency k voting for party j at the second 

Of those in constituency k who voted for party i at the first election, 

suppose that a proportion a, 'k subsequently vote for candidate j at the 
1J I 

second election; then we can write Y 
jk I: a" Z 

i=l 1Jk ik' 
j=l, ... ,J. 

This, of course, assumes that the electorate is stable - an assumption 

which will not be true in general, due to death, migration and coming of age. 

This may be overcome by supposing that: 

"At the time of the second election, the proportion of 

* the e·lectorate who would have voted for candidate i at (2.1) 

the last election, if they had been able to, is the 

same as the proportion who actually did so at the time." 

(* An assumption first stated by Hawkes (1969) ) 
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seems a reasonable supposition to make as long as the two elections 

too far separated in time and the franchise rules remain unchanged. 

of assuming (2.1) is that we merely scale the original Zik 

in constituency k have the same size, i.e. 

Zik by 

X
ik 

Z. E Y. E z. 
( 

J / I ) 
l.k j=l Jk i=l l.k 

I 
Y

jk 
E a . . X 

i=l l.Jk jk 

the condition 

J 
E a 

j=l ijk 
1 

I 
E T 

i=l ijk' say, 

~ i,k 

(2.2) 

(2.3) 

(2.4) 

In (2.3), T is the actual number of transitions from i to j in 
ijk 

This may be represented in a transition table: 

Ylk · ......... YJk 

X
lk Tllk ·~IJk 

(2.5) 

X1k I TIlk . . . . . . . . TIJk 

This is the table for constituency k; there are K such tables in all. 

2.2 MODEL A Fixed multinomial rows 

This model supposes that for each constituency, k, given the results 

(X , ... ,X ) of the first election, row i of the transition table (2.5) 
lk Ik 

has a multinomial distribution with 

{

index X'
k 

paramete:s (ITil,ITi2,···,ITiJ) 
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'I rows being distributed independently. 

have an I x J matrix 

IIll II12 · .. II1J 

IIIl IIIJ 

assumed constant over the K constituencies, 

~ I, 1 ~ j ~ J) is the probability that an elector who voted 

i at the first election will vote for party j at the second. 

II" are probabilities, the following must hold: 
1J 

-and 

o ~ II" ~ 1 
1J 

J 
L 

j=l 
II = 1 
ij 

(1 ~ i ~ I, 1 ~ j ~ J) (2.6) 

(l~i~I) (2.7) 

equations (2.7) imply that there are in fact only I x (J-l) free 

, and the estimation problem for this model is concerned with 

I x (J-l) parameters. 

"Random" multinomial rows 

Here we again suppose that row i of the transition table (2.5) for 

k has a multinomial distribution, this time with 

{

index X'k 

paramet:rs (II ilk , IIi2k,···,IIiJk) 

i.e. the transition probabilities are allowed to be different in 

constituencies. This model then assumes that the J-tuples 

(IIilk,IIi2k,···,IIiJk) (l~i~I) 

of the K constituencies are drawn independently from a Dirichlet 

parameters 

with 

(a i l' a i 2' ... , a iJ) 

a, , ~ 0 
1J "( i,j 

(l!Si!SI) 

(2.8) 

That is, in each constituency k, the transition vector (IIilk,IIi2k, ... ,IIiJk) 
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party i has probability density function a -I (;i -I a - \ 
il i2 iJ 

f(ITilk,ITi2k,···,ITiJk) f(ail+···+aiJ ) ITilk ITi2k···ITiJk (2.9) 
f(a

il
)f(ai2 )·· .f(a

iJ
) 

Thus, under this model, each row of the transition table (2.5) for 

a particular constituency has a Dirichlet-compound-multinomial distribution. 

The parameters of interest are now {a, , 1 ~ i ~ I, 1 ~ j ~ J}, the parameters 
1J 

underlying Dirichlet distributions, which are assumed constant 

K constituencies; so there are now I x J parameters to be estimated. 

2.4 THE ADVANTAGE OF MODEL B 

Model A, with the same transition probabilities assumed for each 

constituency, has been found to fit data from British General Elections 

very badly (see, for example, Hawkes (1969»; it has not been possible to 

find a reasonably large group of K constituencies with sufficient homogeneity 

to allow the same transition matrix to describe the changes occurring in all 

of the constituencies. 

Model B, however, allows some variation in the transition matrix between 

constituencies, so it might be expected to fit the data rather better. 

Moreover, the re-parameterisation from 

IT 

to 

a 

C"··· . ITIJ) 
IT . . . . IT 
Il IJ 

! all . 

~lJ 1 I 
f 

\ I 
I 
/ 

all' a
IJ 

with I constraints 
on the parameters 

with all parameters 
free 

(Model A) 

(Model B) 

does not cause any difficulty in interpretation; for under Model B, 

E(IT , 'k) 
1J 

a, , 

J 
E 

m=l 

1J 

a, 
1m 

p, " 
1J 

say e~i~I) 
l~j~J 

(2.10)* 

(*See, for example, Wilks (1962) for properties of the Dirichlet distribution) 
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J 
(l"( L a -a,,) 
~J m=l im ~J 

J 2 J 
(L a, ) (L a, +1) 
m=l ~m m=l lm 

(2.11)* 

So the ratios {p,,: 1 ~ i ~ I, 1 ~ j ~ J} are the "average" transition 
~J J 

probabilities across the K constituencies, whilst the sum A, = L a, 
~ m=l ~m 

good indication of the amount of variation in transition probabilities 

constituencies; the smaller the value of A" the more variation 
~ 

Despite the shortcomings of Model A, it will still be useful to estimate 

parameters for purposes of comparison. 

BRIEF OUTLINE OF THE TWO ESTIMATION PROCEDURES TO BE INVESTIGATED 

1. Maximum Likelihood, based on a multivariate normal approximation to 

distribution of the vectors ~k of results of the second election. 

This can be used to estimate the parameters of both models A and B. 

Why use an approximation? Take, for example, model A; in each 

constituency the rows of transition table (2.5) are multinomial, with prob-

distribution 

Pr {Tilk,Ti2k, ... ,TiJk!Xik} X ~ IT i' , J ~ /ijk\ 
ik, , 

J=l Tijk . ) 
(2.12) 

The I rows of the transition table are independently distributed, so 

probability of any particular transition table is 

pdT, 'k 
~J 

l~j~I, I( J IT Ti'k)~ 1 ~ j ~ J ! X
k

} = IT X , k ~ IT ( i j J 
i=l ~ J' =1\ T ' 

ijk· 

(2.13) 

Let ~k be the set of all possible transition tables that could have 

resul ted in the observed election totals X and YThen 
"'k "'k. 

Pr(Y Ix ) 
"'k -k ~k 

I J T 
,~ (Xik~ IT (ITi j ijk)~ 
~-l j =1 ----"'T--' -I) 

ijk· 

(2.14 ) 

(*See, for example, Wilks (1962) for properties of the Dirichlet distribution) 
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Now constituencies behave independently, so the likelihood function 

constituencies is 

I 

TI (x ' 
i=l ik· 

L (Il) ~ (L 
k=l fr'k 

J (TI Ti .k)\)\ 
j~l · ~~ .k ~ ~) 

lJ 

(2.15) 

a product of a sum of products. It would, in theory, be possible to 

maximum likelihood estimates from this exact likelihood, but the 

of computation involved would be enormous. 

we seek a suitable approximation to the likelihood; the vote 

Y
jk 

may be thought of as the sum of a very large number of variables, 

which takes the value 0 or 1, and so by central limit theory are 

to have a distribution that is approximately normal. Therefore we 

the distribution of the vectors ~k with a multivariate normal 

ibution, and ~aximise the likelihood given by that approximation. 

Details of the method are given in Chapter 3. 

2. The Expectation-Maximisation (E-M) Algorithm Dempster, Laird and 

(1977) describe the E-M algorithm as "a broadly applicable algorithm 

maximum likelihood estimates from incomplete data". The 

transition matrices from election totals can be regarded as 

problem; for the "complete" data here would be the 

elements T
ijk 

of the transition table for each constituency, from 

would be a simple matter, at least in the cast of model A, to obtain 

likelihood estimates for the elements of the matrix TI. We have at 
I 

only aggregate, or "incomplete" data, namely the sums Y.
k 

r T .. k. 
J i=l lJ 

In this particular situation, estimating the parameters TI of model A, 

algorithm proceeds as follows: 

(E-step) 

(~l-step) 

(i) Start with an initial estimate of TI 

(ii) Calculate Tijk=E (Tijklxk,Y~,1T) i, j ,k 

(iii) Re-estimate TI by maximum likelihood, treating the 

T .. k as if they were the true entries in the transition 
lJ 

table. 

"'" 

":, 
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(iv) Check for convergence of the sequence of IT's and 

return to (ii) if not converged. 

Details of the method are given in Chapter 4. 

.fl 

, 

to 
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3. MAXIMUM LIKELIHOOD ESTDmTION BASED ON A 

NORMAL APPROXIMATION 

THE NORMAL APPROXIMATION 

I 
(1 ~ j ~ J, 1 ~ k ~ K) We have Y

jk 

Under model A: 

E(Y
jk

) 

var(Y
jk

) = 

= 

L T 
, 1 ijk 
1= 

LX'kIT , , , 1 1J 
1 

) Lvar(T
ijk 

i 

LX'kIT " (l-IT, . ) 
i 1 1J 1J 

(Y 'k ,Y . "'k) cov~T. ·k,i:.T . . "'k) 
J J i 1J ~ 1J 

Under model B: 

= L cov (Tijk,Tij"'k) 
i 

= - ~ XikITijITij'" 
1 

(j F j"') 

As in (2.10) write Pij ex. . ./Lex. . . 
1J j 1J 

(l:si:sI, l :s j~J) 

Then 

E(Y
jk

) 

var(Yj~ 

and cov (yjk,Y j ... k ) 

L Xik Pij 
i 

L X . (Xik + . 1k 
1 --' 

1 + 

" ex. .. \ (l-p.) t: 1J ). P ij iJ ~J_ 

Lex. .. 
. 1J 
J 

" (X. k + Lex. . . ) . .J. .... -L.X'
k 

1 j 1J p .. P ..... (J r J ) 
i 1 1J 1J 

1 + Lex. . . 
. 1J 
J 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(See, for example, Johnson and Kotz (1969) for properties of the compound 

multinomial distribution). 

If we write 

{

IT, . 
p = 1J 
ij 

ex. . . /Lex. .. 
1J . 1J 

J 

(model A) 

(model B) 

(1 :s i :s I) 
1,j:sJ 

(3.8) 

j' 

" I. , 
i 
I , , 

J 
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W \ 1 
(model A) l~i~I (3.9) 

ik 1 ~ j ~ J 
Xik 

+ Ea .. 
j ~J (model B) 

1 + Ea . . 
j ~J 

expectations, variances and covariances have the same form for 

i.e. 

E(Y
jk

) EX·kP . . 
(3.10) 

i ~ ~J 

var(Y
jk

) = EX.kW.kP .. (l-p .. ) 
(3.11) 

i ~ ~ ~J ~J 

(Y
jk

, Yj .-ok) = -EX · kW·kP .. P . .... (j F j"') (3.12) 
i ~ ~ ~J ~J 

J 
Since E Y '

k 
is fixed by the size of the electorate in constituency k, 

j=l J 

only consider the first (J-l) variables; define 

*T 
1k (Ylk , Y2k '···'Y(J-l),k) 

(3.13) 

* P, , (~ll' .... ~l'J-l) 
P ..... P 1 11 I,J-

(3.14) 

* and let r
k 

be the variance-covariance matrix of Y* 
-k 

Then from (3.11) 

and (3.12) we have 

* r
k 

Diag [p*Tl'J 
T 

P* Diag LS'k] P* (3.15) 

where U
ik XikWik 

(1 ~ i ~ I, 1 ~ k ~ K) (3.16) 

Now, from central limit theory, Y * has (asymptotically) a multi­
~k 

variate normal distribution, 

Y * ---+ N (p*Tx..,r *) 
_k as J-l ";;'lc k (3.17) 

The log-likelihood function for this distribution is 

L (P*, ~l' ~2' •.. '~k I :£1* ,X2 *, ... 'Xx *) 

K(J-l) log(2II)-! E log Ir *I-!E(Y *_p*TX )Tr *-1 (Y *_p*TX ) 
2 2 k k 2 k -k "'k k -k "'k 

(3.18) 

We now wish to maximise this function 

,I.-r 
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(i) over {P .. } (l~i:::I, l~j:::J-l) 
1J 

in the case of of model A and (ii) 

over {a . J (1 ::: i ::: I, 1::: j ~ J) 
1J 

or, equivalently, 

over {po . } (1 ~ i ~ I, 1 ~ j ~ J-l) and 
1J 

THE PROGRAMS 

J 
L a 

j=l ij 
(l ~ i~I) 

in the case 

of model B 

To find the maximum likelihood estimates, two programs were written 

in FORTRAN, one to estimate model A and the other to estimate model B. 

programs incorporate NAG routine E04UAF (see Numerical Algorithms 

1981) to minimise 

E log I r * I + L (Y * - p*TX ) Tr *-1 (Y * _ p*TX ) 
k k k "'k Nk k ...,k "'k 

(equivalent to maximising (3.18) ) 

subject to the I inequality constraints 

Pij ~ 0 , 
J-l 

L 
j=l 

p .. ~ 1 
1J 

(l~i~I) 

(3.19) 

(3.20) 

Routine E04UAF uses a sequential al,:lgmented Lagrangian method, the minimis-

ation subproblems involved being solved by a quasi-Newton method. No 

derivatives are required - for discussion of this point see section 3.6. 

The programs were written for the case 1= 4, J = 4 and K = NCONST, 

a variable in the program to be set before running. 

Accuracy - the parameter XTOL in routine E04UAF was set at 0.0001, 

ensuring that the maximum likelihood estimates are accurate to at least 

three decimal places. 

Details of the programs are given in Appendix 1 and Appendix 2. 

J; 



~?'< 

....... 

- 13 -

GOODNESS OF FIT 

The likelihood-ratio statistic is 

T T -1 T r (Y * - P* X ) r * (Y * - P* x. ) (3.21) 
k "'k ",k k "'k ~-k 

{

K(J-l) - I (J-l) degrees of freedom on 

K(J-l) - IJ degrees of freedom 

(model A) 

(model B) . 

The quantity (3.21) is calculated as part of (3.19) at each iteration 

the maximisation routine and so is readily available for checking 

goodness of fit at any stage. 

TESTING THE PROCEDURE FOR MODEL A 

In all of this work the data used was extracted from the results of 

two British General Elections in February and October 1974. In those 

elections there were 244 constituencies, from a total of 635, in which the 

Conservative, Labour and Liberal parties all contested both elections and 

no other parties were involved. For these 244 constituencies, then, we 

I = J = 4 and the above programs can be applied. 

Let i' j. n Conservative 
Labour 
Liberal 
No vote 

(i.) Testing on simulated data 

From the 244 constituencies above, 20 were selected at random. From 

the results of the February election in these constituencies, "results" 

for the second election were simulated using a random sample generated 

from a particular model A, with parameters 

0.64 0.01 0.16 0.19 

0.01 0.80 0.06 0.13 (3.22) 
P 

0.22 0.03 0.32 0.43 

0.02 0.05 0.02 0.91 

Details of the generation of the random sample are given in Appendix 4 . 
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The results of the test were as follows: from starting values {po . } 
1J 

in (3.22), the maximisation algorithm coverged in 42 iterations to the 

ix 

0.6405 0.0095 0.1569 0.1931 

0.0072 0.7998 0.0632 0.1298 (3.23) 

p (42) 
0.2196 0.0268 0.3310 0.4226 

0.0235 0.0533 0.0088 0.9144 

with goodness-of-fit statistic 47.87 on 48 degrees of freedom. 

(ii) Testing on real data 

McCarthy and Ryan (1977) also analysed the results of the two 1974 

They found only 240 constituencies with the property described 

the discrepancy of 4 remains a mystery, but is possibly due to 

in the categorisation of "independent Liberal" and other such 

candidates. One of the classifications used by McCarthy and Ryan to 

240 constituencies into smaller homogeneous groups was by 

Liberal strength; they defined Liberal strength for a constituency as the 

percentage of the electorate who voted Liberal at the February election. 

This enabled them to divide the 240 constituencies into three groups of 80, 

comprising "Low", "Medium" and "High" Liberal strength. As test data, we 

will use the results from the 80 constituencies (out of 244) with lowest 

Liberal strength; the Liberal strengths for this group range from 8.9% 

to 17.5% of the electorate. 

The results of the test were as follows from starting values 

0.90 0.05 0.03 0.02 

0.10 0.80 0.05 0.05 

PrO) =1 0.03 0.02 0.90 0.05 

0.02 0.02 0.02 0.94 

the maximisation algorithm converged in 71 iterations to 

,_. 
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0.7904 0 0.1246 0.0850 

0 0.8623 0.0253 0.1124 (3.24) 

P (71) \ 0.1677 0.2013 0.4616 0.1694 

0.0120 0.0682 0 0.9198 

This matrix will be compared in Chapter 5 with the matrix obtained 

using a quadratic programming technique by McCarthy and Ryan (1977) . 

The goodness-of-fi t statistic for this matrix is 70443.8 on 228 

degrees of freedom, so model A is clearly not a good fit to these data. 

TESTING THE PROCEDURE FOR MODEL B 

On simulated data 

The simulated data used here were based on the 80 constituencies of 

lowest Liberal strength as described in section 3.4. In each of these 

constituencies the results of the first election were taken and combined 

with computer-generated random samples from I (= 4) particular compound 

multinomial distributions to give simulated results for the second election. 

Details of the computer generation are given in Appendix 5; the parameters 

supplied for the 4 compound multinomtal distributions were 

41 1 6 5 

2 16 3 1 (3.25) 

Cl = (Cl
ij

) 
1 1 12 3 

5 3 4 43 

In terms of p .. 's and LCl .. 'S this is equivalent to 
~J j ~J 

P* = / 0.774 0.019 0.113 A 53 \ (3.26) 

0.091 0.727 0.136 22 

0.059 0.059 0.706 17 

0.091 0.055 0.073 55 

J 
where A. 

1. 
L (l .. 

j=l ~J 
(i = 1,2,3,4) 

.... 
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The starting values supplied to the maximisation algorithm were those 

(3.26). After 90 iterations the algorithm had failed to converge to a 

to the required accuracy and the program was stopped. The values 

after 90 iterations were 

p* (90) O.SOl o 0.120 ! (90) 5S.6 (3.27) 

0.OS9 0.733 0.140 

0.029 0.101 0.706 

0 . 056 0.07S 0.035 17.7 

It was observed that over the last few iterations the values in the 

first two rows of P* and A, i.e. the parameters for transitions from 
N 

Conservative and Labour, had changed very little; their values after 90 

iterations are also very close to those expected from (3.26). The third 

fourth rows, however, were still changing quite a lot when the algorithm 

stopped, and their values after 90 iterations are not as close to those 

have expected. These rows contain the parameters for transitions 

the Liberals and Non-voters. 

A likely explanation for this apparent indeterminacy in the third and 

rows lies in the nature of the SO constituencies under consideration 

The abstention rate is roughly constant in all the constituencies 

these particular SO constituencies so is the Liberal strength, varying 

between S.9% and 17.5% of the electorate. This gives a very narrow 

for estimation in these rows, so we might expect the parameter estimates 

to be ill-determined. The Conservative and Labour parties, however, each 

have a wide range of strengths represented in these SO constituencies, so 

we would expect estimates of parameters for transitions from these parties 

to be somewhat more precise. 

(H) On real data 

Here the actual results at both elections for the same SO constituencies 
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low Liberal strength were used. The starting values supplied were 

P* (0) =! 0.905 0.005 0.084\ • ~(O) = /100 

i 0.935 0.001 100 i 0.001 

\ 0.001 
0.131 0.610 I 100 

0.001 0.001 0.001/ \ 100 

The algorithm found maximum likelihood estimates after 125 iterations. 

Again it was noticed that the parameters in the last two rows of p* and A, 

those for transitions from the Liberals and Non-voters, were slow to 

be determined, causing the maximisation to require so many iterations. The 

estimates were 

* = P (125) 0.8755 o , ~(125) 26.2 (3.28) 

o 0.9358 o 97.0 

a .1348 25.0 

a a o 

These estimates are analysed further in Chapter 5. 

Note that the presence of a zero in any row of P = (p .. ) indicates an 
1.J 

.improper Dirichlet distribution. This causes no problems where there are 

least two non-zero elements in a row, because of the following theorem: 

If (x , ... ,x ) 
1 r 

is a random variable having the r-variate Dirichlet 

Zl 

Z2 

Z 
S 

D(V
l

,v
2

,,,·· ,vr v r +1 ) then the random variable (zl,z2'·· .,zs) 

x + . .. + x 
1 r 

1 

x 1 + ... + x r
l

+ r
l
+r

2 

x 1 + ... + x r 1+r
2
+···+rs _ l + r 1+r

2
+···+r

s 

r
l 

+ r
2 

+ ... + r 2 ~ r 

s-variate Dirichlet distribution D(v(l) , ... ,v(s)j v(S+l» 
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VI + ... + V r
l 

V + ... + V 
rl+r + +r 1 +1 r +r + ... +r 

2 s- 1 2 s 

V r +r + ... +r +1 + ... + V 
1 2 s r+l 

For proof of this theorem see, for example, Wilks (1962). 

The implication of this theorem is that, as long as at least two of the 

in a particular row i are non-zero, any problem of improper random 

resolved by pooling elements. For example, in row 1 of 

the first two elements 0.8755 and 0 can be added together. In row 4, 

, there are three zero elements, the fourth element being P44 1. 

improper distribution cannot be resolved by pooling; the result 

is that 4 
L Cl 

j=l 4j 

Cl ? A 
44 4 

is completely undetermined. 

POSSIBLE ACCELERATION OF THE METHOD 

It has been observed that the optimisation routine E04UAF has taken 

42 and 125 iterations to find a maximum to the required accuracy. 

this is not a ridiculously large number of iterations, neither is 

t very quick. 

These figures were achieved without first derivatives. It is commonly 

that if analytical first derivatives are supplied in an optimisation 

computational efficiency is likely to be improved. We wish to 

L = 1 I lIT T -1 T - L log r * - - L (Y *-P* X ) r * (Y *-P* X ) 
2k k 2k k k k k k 

(3.29) 

When estimating model A, for example, we maximise Lover {p.. 1 ~ i ~ I, 
~J 

The matrix of partial derivatives in this case is given by 
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( [ 
T -1 -1 ] -1:. L .ask!. Diag(rk * )-2 Diag(~)P*rk* 

2 k 
T 

_ 1:.2 L [-2X (Y *_p*TX ) T r *-l_x (r *-1 (Y *_p*T}t ») 2 
k .... k -k -k k ..... k k "'k .... k J 

(3.30) 

+ 2 Diag(}t )p*r *-l(y *_p*TX ) (Y *_p*Tx)Tr *-1 J) 
.... k k -k ,.. -k ,... k 

lT (1,1,1, ... ,1) J-l 

and where 
-1 

Diag (r
k

* ) means the diagonal matrix with the same diagonal 

as those in r *-1 
k 

To calculate these derivatives at every iteration of an optimisation 

algorithm would require a considerable amount of computation; it is open 

to question, therefore, whether the inclusion of first derivatives in this 

case would lead to any significant increase in computational efficiency. 

doubt, together with the amount of programming effort required to 

incorporate these derivatives into the estimation routines, prohibited 

any further investigation into acceleration by this method • 
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4. USE OF THE E-M ALGORITHM 

An outline of the use of the E-M algorithm to estimate voter transition 

matrices was given at the end of Chapter 2. Here we give details of the 

way in which each step was constructed, and the results of testing the 

procedure on both simulated data and real data. For the moment we shall 

consider estimation only of model A, i.e. with fixed transition probab-, 

. ili ties for all K constituencies. 

4.1 INITIAL ESTIMATE OF II 

For reasons of computational efficiency, the initial estimate should 

clearly be as good a guess at the transition probabilities as possible. 

One necessary feature, however, is that the initial estimate of II should 

not contain any zero elements; for once any IT, , has become zero, this 
1J 

algorithm never changes its value again. 

4.2 THE EXPECTATION (E-) STEP 

This step must take the vectors .~k'!k for each constituency k, and 

the present estimate of IT, and evaluate 

t:Ljk = E(Tijkl~k'lk,IT) ( l~i~I) l~j:SJ 

l=:;k:sK 

Now the distribution of T, 'k 1J 
conditional on ~'Xk,IT 

hypergeometric disrribution, defined by 
L 

{exp(i J't, 'k A' ,)/,IT,t1'J'k!} , 1J 1J l,J h (tijk I~ ,Jk , IT) 

t
L {exp(,L,t, 'kA' ,)/,IT,t '} 
ijk 1,] 1J 1J l,J ijk· 

A, , log (IT" TIIJ/IT, JIT I ' ) 1J 1J 1 J (l=:;~=:;I) 
\l~J:SJ 

(4.1) 

is an extended 

(4.2) 

(4.3) 

Aij is the logarithm of the cross-product ratio for the (i,j)th 

II. 

, for example, Plackett (1981) ) 

i~ 
~1 
i 
I 

I 
l 

j 
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Unfortunately, there are no simple explicit expressions for the 

distribution; Plackett (1981) states that "the exact 

sions are inconvenient to use without good computational facilities, 

n .. [=T" k here] they eventually become useless." 
~J ~J 

we can certainly expect large values of T" k in this problem, we 
~J 

approximation to the expectation. Following Plackett, we 

(unique) quantities "C
ijk 

(~) 

J 

j:l1:ijk (~) X 
ik 

I 
1: 

i=l t:ijk (~) 

to satisfy 

Yjk (i.e. row and colum 
sums correct) 

log {t:ijk (~) t:IJk (~) /1:iJk (~) 1:Ijk (~) A .. Vi,j,k 
~J 

(i.e. all cross-product ratios agree with those in IT) 

(4.4) 

(4.5) 

Then the {T. 'k} for constituency k can be shown to have an asymptotic 
~J 

variate normal distribution, with asymptotic means 

E(T. 'klX. Y A) 'V '1:. 'k(A) 
~J Nk,-,- ~J-

(4.6) 

So we can return the values 1:. . 
~Jk 

as the outcome of the E-step. 

The problem now is that of finding quantities (1:. 'k) which satisfy 
~J 

this is simplest done using the so-called iterative 

procedure (ISP). This can be specified as follows: given, for 

k, ~k' ~ and the latest estimate of IT, 

(i) let M .. 
~J XikITij 

(ii) scale the columns of 

(1 ~ i' I, 1, j ,;; J) 

M = (M .. ) 
~J 

to make column 

with the Y'
k

' i.e. replace M .. by M . . x (Y' k / 
J ~J ~J J 

totals agree 

I 
L M .. ) 

i=l ~J 

(iii) scale the rows of M to make row totals agree with the X
ik

, 

J 
i.e. replace M .. by M .. x (X / L M .. ) 

~J ~J ik. 1 ~J 
J= 

(iv) check for convergence of the sequence of matrices M; if not 

converged, return to (ii); if converged, return the values 

1:ijk Mij (l ::: i ~ I, 1 ~ j ~ J) • 
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It can be shown that this iterative procedure is guarant.eed to 

converge, to any desired accuracy - see, for example, Bishop, Fienberg 

Step (i) here ensures that the {M
ij

} have the correct cross-product 

steps (ii) and (iii) leave all cross-product ratios unchanged, 

the iteration has converged both row and column sums of M will 

Hence the final {Mo o} will indeed satisfy (4.4) and (4.5). 
1J 

THE MAXIMISATION (M-) STEP 

In the situation of complete data, with all the transition counts 

known, the likelihood function is 

K I J ITo 0 

T
ijk 

L (II) IT II X ok ! IT 
1J 

(4.7) 
k=l i=l 1 j=l T

ijk
! 

K I J 

log L (II) = L L Clog (X 0 k !) + L (T 0 0 klogrr 0 0 -log (T 0 0 k ! ) ) ) 
k=l i=l 1 j=l 1J 1J 1J 

(4.8) 

We wish to maximise log L subject to the constraints 

J 
L II 0 0 

j=l 1J 
I (l~i::;:I) (4.9) 

Ao 
1 

(1 ~ i ~ I), we need to solve Putting in Lagrange multipliers 

K T 
i ijk 

k=l IIij - Ai 
o (4.10) 

K 
L T / 

k=l ijk \ 
=> II 0 0 

1J 
(4.11) 

J K 
-) Ao 

1 
L L T 

j=l k=l ijk 
to satisfy the constraints. 

So the maximum likelihood estimates for the elements of IT are the 

ones, i.e . 
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K J K 
L T " / E E T, , 

k=l ~Jk j=l k=l ~Jk 

K K 
E T, 'k/ E X'k 

k=l ~J k=l 1 . 

l~i~I 

l~j~J 
(4.12) 

We now replace T 
ijk 

with the values 

IT .. 
1J 

to get the new estimates 

K K 
E ~, 'k/ L X 

k=l ~J k=l ik 

This completes the M-step. 

CONVERGENCE CRITERION 

1 ~ i ~ I 
1 ~ j ~ J 

l: , , 
1Jk 

obtained from the 

(4.13) 

The test for convergence which was used in the initial testing of the 

algorithm was as follows denote successive iterates produced by the 

IT(l) ,IT(2),IT(3) , ... , and stop the algorithm at the nth iteration 

d(II(n)' II(n-l)) < D 

d (II , II ~ ) = ~ax, 1 IIi j - IIi j ~ I 
1,J 

D is some threshold level to be fixed. 

iOLLOWING PROGRESS GOODNESS OF FIT 

Writing P* =/ JIll. .II1,J-l 

JIll' JII,J-l 

y *T 
,..k (Ylk'Y2k'··· 'YJ - l ~ , 

Chapter 3, we can evaluate the normal approximation to the log 

~.LJ\."'.L.LUUUU, which is proportional to 

loglrk*1 - L(y *_p*TX )T r *-l(y *_p*Tx ) 
k .... k -k k ~ ~ 

(4.14) 

the goodness-of-fit statistic 

(4.15) 
T T -1 T 

E (Y *-P* ~) r * (Y *-p* X ) 
k"'k ~k k "'k ""k 

These can be evaluated at each iteration as a check on how quickly 

likelihood is increasing and the goodness-of-fit statistic is decreasing • 

i 

1 

1, 

i 
f 

! 
! 
1 , 
j 
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THE PROGRAM 

A computer program was written in FORTRAN to perform the E-M algorithm 

case I = 4, J = 4 and K = NCONST, a variable in the program to be 

before running. The program is given in Appendix 3. 

TESTING THE PROCEDURE 

(i) On simulated data 

The algorithm was tested on the same simulated data from model A that 

used in Chapter 3, i.e. on simulated data for 20 constituencies. 

convergence threshold level D was set very low to allow a large number 

iterations of the E-M algorithm; a maximum of 50 iterations was set in 

program, however. 

Recall that the data were simulated from the matrix 

II 

0.64 

0.01 

0.22 

0.02 

0.01 

0.80 

0.03 

0.05 

0.16 

0.06 

0.32 

0.02 

0.19 

0.13 

0.43 

0.91 

This matrix was supplied to the E-M algorithm as the initial estimate 

result of the test was that the algorithm did not satisfy the 

criterion in the first 50 iterations, as expected since the 

threshold level D was set very low at 10-
6

. The 50th iteration 

0.6405 

0.0096 

0.2201 

0.0196 

0.0098 

0.8003 

0.0286 

0.0500 

0.1578 

0.0599 

0.3244 

0.0190 

0.1918 

0.1302 

0.4270 

0.9114 

noted that the normal approximation to the likelihood increased 

iteration, and the goodness-of-fit statistic (4.15) decreased at 

1 
I. 

I 
! 

~ 
! 

! 
i 

I 
I 
l , 
1 
~ 
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iteration, with a value after 50 iterations of 51.47; this is on 

degrees of freedom and hence statistically non-significant. 

However, the sequence TI(r) was clearly being very slow to converge. 

r 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

of TIll (r) was studied more closely; the last eleven 

TIll (r) TI 11 (r) -TIll (r-l) 

0.640430 

0.640438 0.000008 

0.640447 0.000009 

0.640455 0.000008 

0.640463 0.000008 

0.640471 0.000008 

0.640479 0.000008 

0.640487 0.000008 

0.640495 0.000008 

0.640503 0.000008 

0.640511 0.000008 

TIll (r) -TIll (r-l) 

TIll (r-l)-TIll (r-2) 
(estimates rate 
of convergence) 

- 1.1 

-:::::.. 1 

-;::::. 1 

~l 

~ 1 

~l 

::::1 

~l 

~l 

Table 

(4.16) 

This behaviour suggests order 1 convergence at an extremely slow rate, 

close to 1. The other elements of TI(r) were seen to behave in a 

way. 

On real data 

The procedure was tested on the same 80 constituencies with low 

support that were used in Chapter 3. Once more the likelihood 

increased and the goodness-of-fit statistic (4.15) decreased at 

iteration, with a goodness-of-fit value of 71479.9 after 50 iterations 

of 70443.8 from the maximum likelihood method of Chapter 

The elements of TI(SO) were quite close to the final values given by 

Chapter 3, being in agreement to 2 decimal places in every 

Again, though, there was evidence of order 1 convergence; a table 

estimated the rate of convergence as 0.97, which 

extremely slow. I 
.L 
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The subroutine designed to perfrom the iterative scaling procedure 

Convergence was found to be rapid (always in fewer 

iterations) even with very severe convergence criteria. Since this 

gives only the asymptotic expectations, however, a fairly mild 

criterion was eventually adopted stop scaling at the nth 

if 

d(M(n)' M(n-l» <0.1 

d(M,M~) = maxim .. -m~ijl 
. . l. J 
l.,J 

ACCELERATION OF THE E-M ALGORITID1 

The E-M algorithm appears to give order 1 convergence at a very slow 

, greater than 0.95. This suggests the use of an accelerator such as 

1J.2 method: 

(Aitken's 1J.2 method) 

Let {x} be any sequence -converging to the limit s such that the 
n 

:f 0 

d x - s satisfy n n 

d 
n+l 

(A +£ ) d 
n n 

(4.17) 

A is a constant, IAI < 1 and £ -+ 0 as n -+ 00 • 

n 
Then the sequence 

defined by 

x x 
n n 

2 
(x 1 - x ) n- n 

xn+2-2xn+l+xn 
(4.18) 

for n sufficiently large and converges to s faster than the 

{x} in the sense that 
n 

x - s 
n -+ 0 as n -+ 00 

x - s 
n 

proof of this theorem see, for example, Henrici (1964) ) . 

(4.19) 

Aitken's 1J.2 method was tried on the sequence {IT(r)} generated from 

simulated data, applying (4.18) to each of the sequences {ITij (r) } 

r 
i 

~ 
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(1 ~ i ~ 4, 1::: j ::: 4). The attempt was unsuccessful because 

clearly not the "n sufficiently large" of the above theorem. 

ately time did not permit further investigation of this method. 

APPLICATION OF THE E-M ALGORITHM TO THE ESTIMATION OF MODEL B 

The problem here lies with the M- step. The E- step is much the 

model A, but using the {P .. } of (2.10) in place of the {n .. } 
1J 1J 

However, obtaining maximum likelihood estimates for the 

rs of the compound multinomial distribution from the complete data 

as simple as it was for model A. Mosimann (1962) gives a number of 

estimators for the parameters of the compound multinomial distri-

However it is also pointed out that none of these is the maximum 

ihood estimator, which can only be obtained by numerical maximisation 

the likelihood function. 

In principle, therefore, it would be possible to apply the E-M algorithm 

problem of estimating the parameters of model B; in practice, 

IOwever, it is likely to be computationally very slow and therefore of 

value. 

~ 

I 
! 

I 
I 
I 
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5. FURTHER ANALYSIS OF THE 1974 DATA 

THE DATA 

The data to be analysed are the results of the February and October 

tish General Elections of 1974 in the 244 constituencies where there 

a straight fight between the Conservative, Labour and Liberal parties 

elections. The aggregate results. over these 244 constituencies 

follows: 

Table (5.1) 

Total votes Number 
(millions) % of Electorate of seats 

CON 5.370 33.78 166 

LAB 4.153 26.13 72 

LIB 3.272 20.58 6 

NV 3.101 19.51 

CON 4.949 30.89 159 

LAB 4.240 26.46 81 

LIB 2.657 16.58 4 

NV 4.177 26.07 

Here "NV" indicates Non-voters. 

We can see from these aggregate figures that the sample of 244 

tuencies rather over-represents those held by the Conservatives. 

and Ryan (1977) point out that minor party intervention is more 

urban areas, which return predominantly Labour members. 

The above table (5.1) shows that turnout fell between the two elections, 

the Conservative and Liberal parties lost a large number of votes 

gained a few. 

~ 
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ANALYSIS OF THE TRANSITION PROBABILITIES 

The same data \OTere analysed by McCarthy and Ryan (1977) although, as 

Section 3.4, they found only 240 constituencies with 

ght CON-LAB-LIB. contests. They estimated voter transition matrices 

restricted least suqares, without weights, solved by a quadratic 

method. For purposes of comparison we will present the 

and Ryan (M-R) estimates along with those found for models A 

the (restricted) maximum likelihood estimators described in 

3. 

The estimates are given in table (5.2). 

Table (5.2) 

OCTOBER 

CON LAB LIB NV 

CON I 0.897 0.025 0 0.077 (M - R) 

0.805 0 0.081 0.114 (Model A) 

0.897 0 0.002 0.101 (Model B) 

F 
E LAB 0 0.932 0 0.069 

B 0 0.896 0 0.104 
R 
U 

0 0.953 0 0.047 

A 
R LIB I 0.049 0.069 0.816 0.066 
y 

0.152 0.097 0.653 0.098 

0.015 0.080 0.790 0.115 

NV- I 0 0 0 1 

0.022 0.058 0.017 0.903 

0 0 0 1 

Points to note in comparing the three sets of estimates are: 

eil the very close agreement between the estimates from model B 

and those of McCarthy and Ryan; 

I.... ~ 
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the model A estimates are, on the whole, lower on the leading 

diagonal than those given by the other two methods, and higher 

off the leading diagonal; 

all three methods of obtaining estimates give zero values for some 

parameters. This remains something of a problem; these values 

cannot be true, for it is unconceivable that, for example, no-one 

who voted Labour in February voted Liberal in October. 

The general picture given by all three sets of estimates, however, is 

Approximately equal percentages of the three main parties moved 

Labour supporters remained loyal (the estimates 

imply that no Labour supporters changed their vote), with the 

doing most vote-changing. 

will now consider the transition matrix for the group of 80 

tuencies with lowest Liberal strength, as defined in Section 3.4. 

Table (5.3) 

Estimated transition probabilities for the 80 
constituencies with lowest Liberal strength 

OCTOBER 

CON LAB LIB NV 

CON I 0.911 0.005 0.084 0 (M-R) 

0.790 0 0.125 0.085 (Model A) 

0.875 0 0.019 0.106 (Model B) 

LAB I 0 0.936 0 0.064 

0 0.862 0.025 0.113 

0 0.936 0 0.064 

LIB I 0 0.131 0.612 0.257 

0.168 0.201 0.462 0.169 

0 0.135 0.711 0.154 

NV 0 0 0 1 

0.012 0.068 0 0.920 

0 0 0 1 

......... 
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we see that the estimates from model B are very close to those 

and Ryan and that model A estimates are lower on the leading 

and higher elsewhere . 

most striking difference between tables (5.2) and (5.3) is that 

loyalty rates. The defection rate from the Libe~party 
in the constituencies where Liberal support was low than 

constituencies as a whole - a feature which is not at all 

The pattern of Liberal defection was also different; in 

with low Liberal strength a defecting Liberal was less 

to the Conservatives than in the sample as a whole. 

OF THE ESTIMATED SUMS ~ Clij FOR MODEL B 

Table (5.4) 

Estimated sums L Cl . . for model B 
. 1J 
J 

For the full sample 
of 244 constituencies 

30.0 

86.0 

19.6 

4 

For the 80 constituencies 
with lowest Liberal strength 

26.2 

97.0 

25.0 

L Clij gives an indication of the amount of variability 
j=l 

transition probabilities from party i between constituencies. The 

of L Cl . ., the more variabili ty there is. 
j 1J 

table (5.4) indicate that there is little variability 

constituencies in the behaviour of Labour voters, but more 
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in the behaviour of Conservative and Liberal voters. It is 

one of the major sources of variability between constituencies 

voting" whereby, in a marginal contest between two of the 

third party vote not for their own 

the "lesser of two evils". The above estimates, then, 

an indication that Conservatives and Liberals indulge 

cal voting to a greater extent than do Labour voters. 

The actual variances of the probabilities (IT. 'k) may be calculated. 
1J 

(Xl'··· ,xr ) has a Dirichlet distribution D(vl,· ··, v
r

; V
r

+
l

) 

var (x.) = 
1 

(IT
ijk

) = 

Vi(Vl+···+vr+l-Vi) 

(Vl+···+vr+l)2(Vl+···+vr+l+l) 

Pij(l-Pij) 

J 
Ea. .. + 1 

. 1 1J 
J= 

, for example, for transitions from Labour we have 

0.9 x 0.1 

91 
0.001 

(5.5) 

(5.6) 

standard deviation of the order of 0.03, and for transitions from 

eonservatives var (IT . 'k) 
1J 

0.9 x 0.1 

31 
0 . 003, i.e. a standard 

order of 0.05. 

i;,tJp'variances between the parameters may similarly be estimated using 
r -~ 

(II. 'k' IT. 'k) 1J 1J 
Pij Pij' 

J 
E a. . . + 1 

. 1 1J J= 

(j "j') (5.7) 

might have expected that the smaller group of 80 

Il~uencies, having a certain political homogeneity, would have exhibited 

in the transition probabilities. So we would have expected 

have larger values for the smaller group. It is a little 

I then, that Ea. . . , the value for transitions from the Conservatives 
. 1J 
J 

~ .. 
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estimated lower (at 26.2) in the smaller group than it is 

sample (at 30.0). This feature could, of course, be explained 

variationi investigation of the sampling properties of the 

used would be useful to check this. 

goodness-of-fit statistics for the two models on the two groups 

tuencies were as follows: 

Table (5.8) 

Goodness-of-fit statistics 

Full sample of 
244 constituencies 

258117 

(on 720 d. f.) 

732.379 

(on 716 d. f.) 

80 constituencies of 
low Liberal strength 

70443.8 

(on 228 d. f. ) 

240.114 

(on 22 4 d. f . ) 

Model B, then, gives a good fit to the data whereas model A clearly 

.The goodness-of-fit statistic used is 

K T T -1 T 
E (Y * - P* }t) r * (y * - P* }t ) 

k 
.... k .... 1<. k ---k -k 

=1 
(5.9) 

This may be decomposed to give residual "distances" for each 

T T -1 T 
D (Y * - P* X ) r * (Y * - P* X ) 

k -k .... k k -k ..... K 
(5.10) 

We~will examine these distances for model B fitted to the smaller 

constituencies. The goodness-of-fit statistic is, in theory, 

....... ~ 
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random variable on 224 degrees of freedom; the obs.erved 

240.114 is certainly not inconsistent with this. The quantities 

, might be expected to have almost a chi-quare distribution on 

of freedom. The observed distribution was as follows: 

Table (5.11) 

Observed distribution of 

the residual "distances" 

Interval Count 

0-1 18 

1-2 20 

2-3 17 

3~4 11 

4-5 2 

5-6 2 

6-7 2 

7-8 1 

8-9 1 

9-10 2 

10+ 4 

inconsistent with a chi-square distribution on 3 degrees of 

felt that plotting these residual distances against constituency­

variables might show up any pattern in the departures from the fitted 

distances are plotted against size of constituency (Plot (5.12» 

Conservative share of the two-party (i.e. CON+LAB) vote 

one might also consider variables more directly related 

composition of the constituencies. 

of distances against size of constituency shows a tendency 

smaller constituencies to be further away from the fitted model. 

-is no obvious explanation for this feature. It is, however, highly 

~ .b .. __ _ 
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size of constituency is highly correlated with other variables 

constituency is urban or rural, and it may be that 

"hidden" variables would explain departures from the fitted 

been suggested in the past, for example by Miller (1972), 

tion rates might be dependent on the partisanship of the 

As a measure of partisanship we take the Conservative 

at the first election. Plot (5.13) shows 

between the residual distances and our measure of 

An alternative to the distances of (5.10) is to censider 

residuals from the fitted model. For example, we define the 

ve residuals" as 

.............. "'tive residual observed Conservative vote in October 

fitted Conservative vote in October 

calculated from the February results and the 

d probabilities (p .. ). This gives an indication of the direction 
1J 

from the model as well as its size. The Conservative residuals 

ted against Conservative share of the two-party vote in Plot (5.14) 

relationship, with the Conservative vote being over-

the Conservatives are weak and under-estimated where they 

This suggests that a possible improvement to the model might 

the parameters (a . . ) to vary with partisanship. The relation-
1J 

alternatively be investigated by classifying the constituencies 

to partisanship and comparing the estimated (aij) 

fferent groups. 

note about large residuals the largest residual distances in this 

~QmP~e of 80 constituencies with low Liberal strength were as follows: 

. ____ _ .... b __ 
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Constituency 

Gosport 

Peckham 

Coventry S E 

Liverpool Garston 

- 36 -

Residual distance, D 
k 

17.54 

12.56 

11.56 

10.57 

It would be of interest to discover whether there were any special 

in these constituencies which might account for departure 

model - there are none which are obvious just from the election 

.... 
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CONCLUDING REMARKS POSSIBLE FURTHER WORK 

"random effects" model, model B, allowing some variation in 

probabilities between constituencies, was found to fit election 

better than the model postulating equal transition probabilities 

The parameters of the underlying 

distribution in the random effects model give not only average 

for transition probabilities but also the amount of variability 

probabilities between constituencies. It would be useful to 

precisely the parameters of this model can be estimated; 

done either by evaluating the information matrix or u?ing 

lem not considered in this project is that of "election night 

to forecast the outcome of all constituencies 

the election given the results of only the first few 

to have their votes counted. It is not immediately clear 

random effects model's "average" transition probabilities 

do better or worse on the forecasting problem than the prob-

estimated for the ill-fitting fixed effects model. An interesting 

, then, would be to estimate probabilities, using each of the 

from the results at two elections of a small number of 

apply these estimates to the results of the 

constituencies at the first election to forecast the results 

The forecast results from each model could then 

with the actual, observed results, giving at least some idea 

merits of "average" versus "fixed" probabilities for 
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algorithm, although conceptually and computationally very 

for estimating the transition probabilities in the fixed effects 

proved to have order 1 convergence at a very slow rate. One 

the slow convergence may be the approximation taken 

but it has been reported by other authors that the 

ithm can be very slow in certain cases - see the discussion 

by Dempster, Laird and Rubin (1977). The possibility of 

the algorithm using Aitken's 6 2-method or some other 

was discussed briefly in Section 4.8, and it might be worth­

further. 

main points to arise from the analysis of the two General 

were 

the differences in the behaviour of Liberals between 

constituencies of low Liberal strength and those of high 

Liberal strength 

the low degree of variability between constituencies 

found in the transition rates from the Labour Party, 

possibly suggesting that tactical voting is less common 

among Labour voters than among Conservatives and Liberals. 

of the residuals from the random effects model shows a 

between departure from the model and the partisanship of a 

The next stage in modelling, then, might be to allow the 

of the underlying Dirichlet distributions to vary with 
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