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Abstract

Let (X¢)¢>0 be a continuous-time irreducible Markov chain on a finite statespace E,
let v be a map v: E — R\{0} and let (¢:);>0 be an additive functional defined by
P = fg v(Xs)ds. We consider the cases where the process (¢)¢>0 is oscillating and where
(pt)e>0 has a negative drift. In each of the cases we condition the process (X¢, ¢t)e>0
on the event that (¢:);>0 stays non-negative until time 7" and prove weak convergence
of the conditioned process as T — .

1 Introduction

The problem of conditioning a stochastic process to stay forever in a certain region has
been extensively studied in the literature. Many authors have addressed essentially the
same problem by conditioning a process with a possibly finite lifetime to live forever.
An interesting case is when the event that the process remains in some region is of zero
probability, or in terms of the lifetime of the process restricted to the region, when the
process has a finite lifetime with probability one. In that case the process cannot be
conditioned to stay in the region forever in the standard way. Instead, this condtioning
can be approximated by conditioning the process to stay in the region for a large time.

There are many well-known examples of such conditionings in which weak conver-
gence of the approximating process occurs. For instance, Knight (1969) showed that
the standard Brownian motion conditioned not to cross zero for a large time converges
weakly to a three-dimensional Bessel process; Iglehart (1974) considered a general ran-
dom walk conditioned to stay non-negative for a large time and showed that it converges
weakly; Pinsky (1985) showed that under certain conditions, a homogeneous diffusion
on R? conditioned to remain in an open connected bounded region for a large time
converges weakly to a homogeneous diffusion; Jacka and Roberts (1988) proved weak
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convergence of an Ito diffusion conditioned to remain in an interval (a,b) until a large
time.

However, weak convergence of the approximations does not always occur. There are
counterexamples in which a process conditioned to stay in a region for a large time does
not converge at all or it does converge but to a dishonest limit. Jacka and Warren (2002)
gave two examples of such processes.

This paper is concerned with another example of conditioning a process to stay in
a region. We consider a finite statespace continuous time Markov chain (X;);>¢ and its
associated fluctuating additive functional (¢¢)¢>0. The aim is to condition the Markov
process (X¢, ¢¢)t>0 on the event that the fluctuating functional stays non-negative.

There are three possible cases of the behaviour of the process (¢¢)i>0, in two of
which, when it oscillates and when it drifts to —oo, the event that it stays non-negative
is of zero probability. We are interested in performing conditioning in these two cases.

A similar question has been discussed in Bertoin and Doney (1994) for a real-valued
random walk. It has been shown there that, under certain conditions, an oscillating
random walk or a random walk with a negative drift, conditioned to stay non-negative
for large time converges weakly to an honest limit which is an h-transform of the original
random walk killed when it hits zero. This work presents the analogous result for the
process (X¢, ¢t)t>0-

The organisation of the paper is as follows: the exact formulation of the problem
and results are given in Section 2, the proof of the result in the oscillating case is given
is Section 3, the proof of the result in the negative drift case is given in Section 4 and
the review of the notation and results used in previous sections is given in Section 5.

2 The problem and main results

Let (Xt)¢>0 be an irreducible honest Markov chain on a finite statespace E. Let v be a
map v: E — R\{0} and suppose that both BT =v71(0,00) and E~ =v~!(—00,0) are
non-empty.

Define the process (¢¢)i>0 by

t
90t=<p+/ v(Xg)ds, ¢ €R.
0

Let Ef = (E x (0,400)) U (ET x {0}) and let Hy = inf{t > 0: ¢; < 0}. The aim
is to condition the process (X¢, ¢¢):>0 starting in ESL on the event {Hy = 4o00}.

There are three possible cases depending on the behavoiur of the process (¢¢)i>0.
When the process (pt)i>0 drifts to +o00, the event { Hy = +o00} is of positive probablity
which implies that conditioning the process (X, ¢¢)i>0 on it can be performed in the
standard way. However, when the process (p¢):>0 oscillates or drifts to —oo, the event
{Hp = +0o0} is of zero probablity and conditioning (X¢, ¢¢)¢>0 on it cannot be performed
in the standard way. We concentrate on these two latter cases and define conditioning



(Xt,pt)i>0 on {Hyp = +oo} as the limit as T — oo of conditioning (X¢, ¢¢)r>0 on
{Ho > t}.

Let P ) denote the law of the process (X, pr)e>0 starting at (e, @), let P(z o)
T > 0, denote the law of the process (X, pt)i>0, starting at (e, ) € E;, conditioned on

{Ho > T}, and let P(Y;Lp)\ft, t > 0, be the restriction of P(ZM) to Fi, where (Fy)¢>o is the
natural filtration of (X¢):>0. We are interested in weak convergence of (Pg; ) |7, )r>0 as
T — +o0.

Let () denote the conservative irreducible -matrix of the process (X;):>0 and let
V be the diagonal matrix diag(v(e)). Let V™!QI' = I'G be the unique Wiener-Hopf
factorisation of the matrix V~1Q (see Barlow et al. (1980)). Let J, J; and J; be the

matrices s s
0 0 0 0
=0 )=o) = (Y)

and let a matrix I'y be given by I'y = JT'J.
Now we state our main result in the oscillating case.

Theorem 2.1 Suppose that the process (¢i)i>o oscillates. Then, for fized (e, ) € Ey

and t > 0, the measures (P(Z )

as T — oo, where the measure P(’”e ) 1s defined by

|7, )T>0 converge weakly to a probability measure P |7,

) Bie gy (T (X, 00)I{t < Ho} )
Fleo ) = hr(e, ¢) ’

(exp
for hy(e,y) = e ¥V QI Tyr(e), (e,y) € EXR, and V'Qr = 1.

t>0, Ae F,

Let [y be the point at which the Perron-Frobenius eigenvalue a(f3) of the matrix
(Q — V) attains its global minimum (see Lemma 5.7). Let ap = a(fp) and go be the
Perron-Frobenius eigenvalue and right eigenvector, respectively, of the matrix (Q — ByV')
and let Gy be the diagonal matrix diag(go(e)). Let Q° be the E x E matrix with entries

Qe,e') = G (Q — apl — BoV)Go(e,€), e, e € F. (1)

The matrix Q is a conservative irreducible Q-matrix (Lemma 5.9). Let (V~1Q°)I'Y) =
I'°GY be the unique Wiener-Hopf factorization of the matrix V=1Q° and let T') = JT°J.
Now we can state our main result in the negative drift case.

Theorem 2.2 Suppose that the process (¢i)i>0 drifts to —occ. For fized (e, p), (¢/,¢') €

Ear and tPZ O,Hz'f ;ll non-zero eigenvalues of the matriz V='Q° are simple and if
’ ol —t
limTﬁ+w% exists, then the measures (P(Z;,SO)L}})TZO converge weakly as

T — oo to a probability measure P(Teocp)]y:t which is defined by

Efe.p) (1(A)h,0(Xe, ) {1 < Ho})
hepo (67 90) ,

t>0, Ae Fy,
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where the function h,o is given by h,o(e,y,t) = e—ote=Poy 3, e_yV_IQOJlfgro(e),
(e,y,t) € E xR x [0, +00), and V1Q%0 = 1.

3 The oscillating case: Proof of Theorem 2.1

We start by looking at limp_, 4 o P(E w)(A) for A € F;. By (x) (see Appendix), the events

{Hop > T}, T > 0, are of positive probability. Thus, for 0 <t < T and A € F,

Elep) (I (A) P, p0) (Ho > T — t)I{Ho > t})

A|Hy>T)=

PL \(A) =P,

(6790) 6780)

Fi . P(e’,gpé)(H0>T7t) . . .
irst we show that limp_, Py (HST) exists by looking at the asymptotic
behaviour of the function ¢ — P, ,)(Ho > t).

In the oscillating case, by (16) and (iv) (see Appendix), zero is an eigenvalue of
V~1Q with algebraic multiplicity two and geometric multiplicity one. Therefore, there
exists a vector r such that V~'Qr = 1. Since the choice of such vector is not relevant
in the presented work, we shall always refer to it as if it was fixed.

Let p be the invariant measure of the process (X¢)¢>o.

Lemma 3.1 For any (e, ) € E{,

1 1 1 -1
Ple(Ho > 1) ~ — s 472 7 Tor(e), = oo,
Proof: The lemma is proved by applying Tauberian theorems to the Laplace transform
_ —aH,
1= Bep)(e7770) Pie,p)(Ho > t). By Lemmas 5.2 and 5.3 (see Appendix), for o > 0 and

«

(e,¢) € E,

1-E e~ Ho a1 =T, J1 —eVHQ-al) _ o—¢V7'Q
)€ _pvigl =Tl (e) - ¢ Todol(e). (3)
o' « o'
Let Bmin(a) be the eigenvalue of V~1(Q — al) with minimal positive real part and
let gmin() be its associated eigenvector. Then, by (13), Il g... (a) = g} . (a) and by
substituting gmn(a) from Theorem 5.1 we obtain, for sufficiently small «

1+ —TI51- 1 - 1 ,
— ¢ = a2 —IImr )+ —— o 2(II; =117 )™
I _ 1 B 1
+ a :;in(az) + a Ha ‘:‘min(a2) (4)
By Theorem 5.1, E;m(a%) is bounded, and by (v), II, —II” — 0 as @ — 0. Thus,
it follows from (4) that
1T —II1" 1
R LV (rF —TI7r7), a— 0. (5)

a v—uVr



Since

1—Tg4Jo1 1M1~ + _ [y
7J2 = a and JiI'9r = " I ,
o 0 0

it follows that

ePV @ 17 Tahl L a2 eV QT a—0.

« v—uVr

The function o — e=#V " (@=o1) ig analytic for all @ and by (v), I'q — T, as a — 0.
Hence, the second term on the right-hand side of (3) is bounded for small a > 0.
Therefore, for any (e, p) € E x (0, +00),

1 — B ) (e~aHo 1 B
() ) ~ a3 eV 1QJ1I‘27"(@), a— 0.

o vV—uVr

The assertion in the lemma now follows from the Tauberian theorem (see Feller
(1971) part 2, XIIL.5), O

Lemma 3.2 The vector eV '@ JTyr > 0.

Proof: See Jacka et al. (2004). O

For the proof of Theorem 2.1 we need two more lemmas.

Lemma 3.3 (i) Let { f,,n € N} and f be non-negative random variables on a probability
space (2, F, P) such that Ef, = Ef = 1, where expectation is taken with respect to the
probability measure P. If f, — f a.s. asn — +oo, then f, — f in LY(Q,F,P) as
n — +oo.

(ii) Let {P,,n € N} and P be probability measures on a measurable space (2, F) such
that, for any A € F, P,(A) — P(A) as n — +oo. Then the measures {P,,n € N}
converge weakly to P on F.

Proof: (i) Since {f,,n € N} and f are non-negative and Ef,, = Ef = 1, the functions
{fn(w),n € N} and f(w), w € Q, are densities with respect to the measure P. In
addition, f, — f a.s. asn — +oo and so f,, — f in probability as n — +oo. Therefore,
by Theorem 2.2. from Jacka, Roberts (1997), f, — f in LY(Q,F, P) as n — +oo.

(ii) Let for any A € F, P,(A) — P(A) as n — +o0o. Then, by the definition of strong
convergence in Jacka et.al (1997), P, converges strongly to P which, by Theorem 2.1.
in Jacka et.al (1997), implies that {P,,n € N} converge weakly to P. O

Lemma 3.4 Let h,(e, @) be a function on E x R defined by
he(e,p) = eV QnTr(e).

Then the process {h,(Xy, 1) I{t < Ho},t > 0} is a martingale under P ).
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Proof: The function h, is continuously differentiable in ¢ which by (15) implies that
hy is in the domain of the infinitesimal generator G of the process (X, ¢1)¢>0 and that
Gh, = 0. Thus, (h,(X¢, ¢t))e>0 is a local martingale under P(e#,) and therefore the
process (hy(Xiamy, inm,) = hr(Xt, @) I{t < Ho})i>0 is also a local martingale under
P, o) (the equality of the processes is valid because h,(Xm,,¢H,) = 0 if the process
(Xt, ot)e>0 starts in Ea') Since the process {h, (X, pi)I{t < Ho},t > 0} is bounded on
every finite interval, it follows that it is a martingale under P, ). O

Proof of Theorem 2.1: For fixed (e, ¢) € Ef and t,T € [0,+00) let hy(e, ¢,t) be
a random variable defined by
P(Xt,cpt)(HO >T — t)
P(e,go) (H(] > T)

hr(e,p,t) = I{t<Ho}.

Then, by Lemmas 3.1, 3.2, 3.3 (i) and 3.4 the random variables hr(e, ¢, t) converge to

hz )(it’:ft I{t<Hp} in Ll(Q F, Pe,p)) as T — +oo. Therefore, by (2), for fixed ¢ > 0 and

Ace ft,
: T -
TEI—?OQ P(ev‘p) (A) - TEI_{_IOO E(eﬁp) <I(A)hT(67 ©, t))
_ hT(Xt’ Sot)

which, by Lemma 3.3 (ii), implies that the measures (Pg; w)‘ F:)y>0 converge weakly to
P’;w)|ft as T — oo. O

4 The negative drift case: Proof of Theorem 2.2

We start again by looking at limp_. 4 P(Z )
Ple,p)(Ho>T)

(A) for A € F;. As in the oscillating case,

we need to find limy_, 4

Lemma 4.1 Let h,o be a function on E X R x [0,4+00) defined by

hyo(e, @, t) = e~@0t g=Po¥ Goeﬂov_lQoJngrO(e).

P(el,wl) (Ho>T—t)

w0 (e ,t)
P(S,Aﬂ) (H() >T)

Then, if lim7_ 400 exists, it is equal to h )

For the proof of the lemma we will need some auxiliary lemmas. Let V~1(Q° —
al)TY = T9GY be the unique Wiener-Hopf factorisation of the matrix V=1(Q% — )
and for fixed (e, p) € E x R, let a function L ,)(a), @ > ag, be defined by

1-— e—ﬁoso Gy e_wvil(Qo_(a_ao) ) a o G J21

«

Ly (@) = (). (6)



By Lemmas 5.3 and 5.10, for « > 0,

1=V @l fo1 1= By (e )

L(e,cp)(Oé) = = /O e_atp(wp)(Ho > t) dt.

(7)

Lemma 4.2 For any (e,¢) € Ej , the function L., (a) is analytic for Re(a) > ag.

(07 «

Proof: By the definition in Lemma 5.3, the matrices IT} and II, are analytic for Re(a) >
0. Hence, the matrix I'y, is analytic for Re(a) > 0 and therefore, by Lemma 5.10 the
matrix '), is analytic for Re(c) > ag. It follows that the numerator of L. ) (c) in
(6) is analytic for Re(a) > ap and since

e_ﬁWGoe_‘pvil(Q0+°‘OI)FQQOG51J21 — VTR 1 = 1,

the numerator of L ,)(a) is equal to zero for @ = 0. Therefore, L () is analytic
for Re(a) > ap. O

We note that the objects (e.g. vectors and matrices) with the superscript © are
associated with the matrix Q" and are defined in the same way as their counterparts
associated with the matrix Q.

Lemma 4.3 Let all non-zero eigenvalues of the matriz V1Q" be simple. Then, for
some non-zero constant c,

(i) (T, —T% Ggll ~ c(a— ao)% ST a — a,

a—ag

(i1) Lieypy (@) = Liep) (o) ~ ¢ (a— ag)% e Peqy ef‘pV_IQOJlfgrO(e), a — ag.

Proof: Let g~ be a non-negative vector on £~. Then

m
_ 0,—
g = Zak 9g
k=1

for some constants ay, k = 1,...m. By (vii), the constant @i, which corresponds to
0.—

Gmin, = 17 in the previous linear combination is not zero. Thus,
_ L — 0,—
279" = apmin 00717 + Z ar T g™ (8)
0,— , 0,—

By (16) and Lemma 5.9, the matrices Q° and V' define the oscillating case. Therefore,
by (5), ,

\ /—,MOVT‘O @

-T2 ~ 2 (rOF —%=07), a — 0. 9)



We also need the behaviour of ng_gg’_, k=1,...m, gg’_ #* gg;;%. Since by as-
sumption all non-zero eigenvalues of the matrix V~1Q° are simple, it can be shown (see
Wilkinson (1965)) that there exist vectors v, n € N, on E such that

o0
— 0, — 00— _ -
Hg’ g, - 11° g, = Z a” (vfcr,n - Hg vk,n) (10)

n=1

From (8), (9) and (10), and because by (v) I3~ — %~ as a — 0,

D=

H07_g— _ Hov_g_ ~ — 7amin o

@ /— OV 10

(rOF — m%=¢07), a — 0,

which proves (7).
By the definition of L (),

L(e,ap) (a) - L(e,cp)(aﬂ)
_ (a—ag)(1 = e P0Gy e‘“’vilQOFOGangl)

a Qo
- ap(e P0Gy (e 9V (@ —(a—00) _ o=V POGHL 1, 1)
a Qo
e ReGy eV, — TGy ol
(@
e P0Gy (e¢V T (@ —(a—a0) _ e“PV_lQO)(Fgfao — TG sl

a

Since the vector g is positive, the vector (Gg'.Jz1)~ is positive. Thus, by (4)

(Fg_ao ~T9 Gl Je ~ ¢ (a— ao)% JT99, a — g,
for some non-zero constant c. In addition, the function o — e~ ?V Q= (a—0)) g
analytic for all & which implies that e~ ?V Q" —(a=a0)) _ ¢=¢V'Q" i5 hounded for small
|oe — ag|. Therefore, (i7) is valid. O

Lemma 4.4 For fized (e, p) € EJ, the function L ,)(a + ag), o > 0, is the Laplace
transform of e=*' Py, ) (Ho > t).

Proof: By (7) L(cy)(a), a > 0, is a Laplace transform and therefore, by Theorem
la in Feller (1971) part 2, XIII.4, completely monotone for a > 0. In addition, by
Lemma 4.2, L .)(a) is analytic for @ > ag. Since the analytic continuation of a
completely monotone function is completely monotone, it follows that L. ,)(c) is com-
pletely monotone for o > ag and therefore it is a Laplace transform of some measure
on [0,+00). By the uniqueness of the inverse of the Laplace transform it follows from
(7) that L. ,)(a + ag) for o > 0 is the Laplace transform of e~** P, .y(Hp > t). O



L. + L. .
(co)(@tao) L ’ﬁ(ao) is the Laplace trans-

«

Proof of Lemma 4.1: By Lemma 4.4,
form of the monotone function

t
t— / e_aosp(&@) (Hyp > s) ds — L(e,gp) ().
0

Therefore, by the Tauberian theorem (see Feller (1971) part 2, XIIL.5),

t
C
/ e—aosP(e’[p) (HU > S) ds — L(e#,) (Ozo) ~ oL
0 (2)

as t — +oo. Then, for fixed (e, ¢), (¢, ') € Ef,

t2e P0Gy PV Q" JiT979(e),

lim fOT_t e_aOSP(e'v@')(HO > s) ds — L(e’#’)(ao) B e=Pv' 3 e“P'V_1Q0J1F(2)T0(e’)
T—+o0 f()T e_O‘OSP(e,go) (HO > S) ds — L(e,go) (ao) e*ﬁo«pGO efgov—lQoJngro(e) .

The statement in the lemma is now proved since, by L’Hopital’s rule,

fOT_t e—OéOSP(e/M/) (H() > S) ds — L(e/’wx)(ao) P(e/#)/) (H[) >T — t)

lim = et lim ,
T—too fOT e~ 5P oy (Ho > 5) ds — L ) (o) T—too Py (Ho>T)
if the latter limit exists. O

Lemma 4.5 The process {hyo(Xy, o1, t)I{t < Ho},t > 0} is a martingale under P ).

Proof: The function h,o is continuously differentiable in ¢ which by (15) implies that
it is in the domain of the infinitesimal generator G of the process (X¢, ¢t)i>0 and that
Gh,o = 0. The rest of the proof is analogous to the proof of Lemma 3.4. O

Proof of Theorem 2.2: For fixed (e, ) € Ef and t,T € [0, +o0) let hr(e, ¢,t) be
a random variable defined by
P(Xt,tpt)(HO >T — t)
P(e#,) (HU > T)

hr(e, o, t) = I{t<Hy}.

Then, by Lemmas 4.1, 3.2, 3.3 (i) and 4.5 the random variables hr(e, ¢, t) converge to
%I{t < Hp} in LY(Q, F, P ) as T — +oo. Therefore, by (2), for fixed ¢ > 0
and A € Fy,

: T _ : 0
R0 = i_Fi (e = L)

which, by Lemma 3.3 (ii), implies that the measures (P(Z @)\ 7 )y>0 converge weakly to

Py )l7 as T — oo O



5 Appendix

The purpose of this section is to introduce notation and review some and prove some
other results needed for the proofs in the previous two sections.

Lemma 5.1 Let Q) be an irreducible essentially non-negative matriz, V' a diagonal mat-
riz and B € R. Then the matriz (Q — V') is also an irreducible essentially non-negative
matriz.

Proof: The proof follows directly from the definition of an irreducible essentially non-
negative matrix (see Seneta (1981)). O

The following three lemmas about the Wiener-Hopf factorization of the matrices
V=HQ — aI), a > 0, were proved in Barlow et al. (1980). We state them here in the
notation we are going to use.

Lemma 5.2 For fivzed o > 0, there exists a unique pair (II7,11,), where II} is an
E~ x ET matriz and 11, is an ET x E~ matriz, and there exist Q-matrices GI and
G, on E* x E* and E- x E—, respectively, such that, if

o
I I, Gt 0 >
. = o and G, = - B
¢ (H;j I > “ ( 0 -Gy
then Ty, is invertible and T2 V=Y Q —al) Ty = Go. Moreover, I and IT;, are strictly

substochastic.

Lemma 5.3 Let a > 0 be fized. Then

Eeo)(e 0 { Xy, = €'}) = IIf(e,¢), (e,e') € E= x ET,
Eeoy(e M { Xy, = €'}) = I (e ), (e,ey e EY x E—,
Eeg(e @M I{Xy, =¢}) = eC(ed), (e,¢)eETxET, y>0,
Eeo(e ™ vI{Xy  =¢}) = evCa(e,d), (e,e!) e E= x E~, y>0.

Lemma 5.4 There erists a unique pair (1T, 117), where IT* is an B~ x ET matriz and
I~ is an ET x E= matriz, and there exist Q-matrices G on ET x ET and G~ on
E~ x E= such that

v'Q)r=rag, (11)

I II- Gt 0
F_<H+ I) and G—(O —G)'

Moreover, IIT and I1~ are substochastic and

where

Peoy(Xm, =€) = If(ee), (e,€/) € E= x ET,
Peoy( X, = ey = I (e¢), (e,e') e ET x E™,
P(e,O) (XHy = = et (e e’), (e,e) € ETxE*T, y>0,
Peoy(Xm_, =€) VS (e e!), (e,e)e E-xE, y>0.



It follows (see Barlow et al. (1980)) that the matrix V~1(Q—alT) cannot have strictly
imaginary eigenvalues and there exists a basis B(«/) in the space of all vectors on E such
that if g(«) is in B(«), then

(VHQ — al) = Aa) I)*g(a) =0, (12)

for some eigenvalue A\(«) of V~1(Q —al) and some k € N. The number of vectors in the
basis B(«) associated with the same eigenvalue is equal to the algebraic multiplicity of
that eigenvalue. Let A («) and P(«) be the sets of vectors g(«) € B(«a) associated with
eigenvalues with positive and with negative real parts, respectively. Then,

T« II g («
sla) €@ = g() = (L1 ). gfa) e Pl@) > gl = (M9 V). 9
The set N(«) (respectively P(a)) contains exactly |E1| (respectively E~) vectors
and the vectors g™ (a) (respectively ¢~ (o)) for all g(a) € N () (respectively P(c))
form a basis in the space of all vectors on ET (respectively E~). The eigenvalues of
V—HQ — al) with strictly negative (respectively positive) real part coincide with the
eigenvalues of GJ (respectively —G7).
The Wiener-Hopf factorization (11) of the matrix V~1@Q implies that

GTft=aft iff V_1Q< I )za( I >
H+f+ H+f+

Gg~ =—Bg iff V‘lQ(Hg__g_) =ﬂ<H;_g_)

(14)

Let aj, j = 1,...,n, be the eigenvalues (not necessarily distinct) of the matrix G+,
and —0, k = 1,...,m, be the eigenvalues (not necessarily distinct) of the matrix G~.
Since by (iii) GT and G~ are irreducible Q-matrices, it follows that

Omaz = 0AX Re(a;j) <0 and — Bpin = max Re(—0k) = —  nin Re(fB) <0
are simple eigenvalues of G* and G, respectively. Hence, it follows from (14) that all
eigenvalues of V1@ with negative (respectively positive) real part coincide with the
eigenvalues of G (respectively —G ™).

By Jordan normal form theory there exists a basis B in the space of all vectors on F
such that there exist exactly n = |E™| vectors { f1, fa, ..., fn} in B such that each vector
fj, 3 =1,...,nis associated with an eigenvalue o; of V~1Q for which Re(aj) <0, and
that there exist exactly m = |E~| vectors {g1,92,...,9m} in B such that each vector
gk, kK =1,...,m, is associated with an eigenvalue B of V~1Q with Re(3;) > 0. The
vectors {f{, fo ..., [} form a basis N in the space of all vectors on ET. and the
vectors {g; ,95 ,---, 9y} form a basis P~ in the space of all vectors on E~.

Let fimaz and gmin be the eigenvectors of the matrix V1@ associated with its eigen-
values ar and Bpin, respectively. Then, f = and Gpmin are the Perron-Frobenius
eigenvectors of the matrices G and G, respectively.

From Lemmas 5.2 - 5.4 it can be proved that:
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(i) The matrices ITT and II~ are positive.

(ii) If at least one of the matrices IT* and II~ is strictly substochastic then the matrices
(I —II"II"), (I —II*II7) and I are invertible and

1 (I -1 11+)~t ~II- (7 —1t-)—!
e < SN T (- T >

The matrices GT and G~ are irreducible Q-matrices.

G (G7) is conservative iff ITT (I17) is stochastic.

)
)

(v) limg—o Ty =T.
) The vectors finaz and gmin are the only positive eigenvectors of the matrix V~1Q.
)

There are no non-negative vectors on E* (E~) which are linearly independent of
the vector f,f .. (9,im)-
(viii) For any y > 0 and (e,¢) € Ey NE,, orany y < 0 and (e,p) € Ey OE;,
P(e,¢)(XHy = 6/,Hy < H@) >0and 0 < P(e,ga)(Hy < H[)) < 1.
(ix) For any (e,¢) € Ef and ¢’ € E~, or any (e,¢) € E; and ¢/ € ET, P ,\(Xn, =
e/, Hy < +00) >0
(x) For any (e,) € ExRand T > 0, Py o (Ho > T) > 0.

)
Let a matrix F(y), y € R, be defined by

yG _ LyG
Fy) {Jle ey Jq, y>0

Jy eV = e¥C ], y < 0.
Then

Lemma 5.5 For any e, e’ € E,
P(e,gp)(XHo = elv Hy < +OO) =T F(_Qp)(ea el)a ¥ 7£ 0,

0 I
Pleoy(Xmy = €/, Hy < +00) = (I = Ta)(e,¢) = <H+ 0 ) (e, €).

Proof: The lemma follows directly from the definition of the matrices I', T's and F'(¢p).

O

Let A be the infinitesimal generator of the process (X¢, ¢, t)i>0 and let D4 denote
its domain.

Let a function f(e,¢,t) on E x R x [0,400) be continuously differentiable in ¢ and
t. Then f € D4 and

Af=(Q+ v+ )4 (15)
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where
Qf(€7§0¢t) = Ze’eEQ(€7el)f(e/7§07t)
Vilie.p.t) = Viee)ghie o.1),

The behaviour of the process (¢¢):>0 is determined by the matrices @@ and V. More
precisely,

(pt)e>0 drifts to +oo iff pV1>0 iff GT is conservative, G~ is not conservative,

(pt)i>0 oscillates  iff pV1=0 iff G* and G~ are conservative,

(pt)e>0 drifts to —oo iff pV1 <0 iff G~ is conservative, G™ is not conservative.
(16)

Let fi = fmaz and g1 = gmin be the eigenvectors of V1@ associated with the
eigenvalues qpqr and Bin, respectively. Then, in the positive drift case, fiae = 1 #
Jmin, and in the negative drift case, gmin = 1 # fimaz, and in both cases the basis B
in the space of all vectors on E is equal to {f;,j = 1,...,n, gr,k =1,...,m}. In the
oscillating case, fmaz = gmin = 1 and the equation V~'Qz = 1 has a solution. If r is a
solution, then, by Jordan normal form theory, r is linearly independent from the vectors
{fi,i=1....n, gi,k=1,...omyand B={1,r,f;,j =2,...,n, gr,k=2,...,m} isa
basis in the space of all vectors on E.

The following lemmas are concerned with the Perron-Frobenius eigenvalue of the
matrix QgV. For any § € R, let o(/3) be the Perron-Frobenius eigenvalue of the matrix
(Q—BV) and let u'®/*(3) and u"9"*(3) be the associated left and right eigenvectors such
that [|Ju'®/*(3)|| = |[u"9"(B)| = 1 in some norm in the space R”. A striking property of
the eigenvalue a(/3) is that it is a convex function of .

Lemma 5.6 Let § € R and let a(B3) be the Perron-Frobenius eigenvalue of the matrix
(Q —BV). Then, a(p) is a convex function of B and therefore continuous. It attains its
global minimum and has two zeros, ez < 0 and Bmin = 0, not necessarily distinct.

Proof: Let r(A) denote the Perron-Frobenius eigenvalue of an essentially non-negative
matrix A. Since @ is essentially non-negative it follows from Cohen (1981) tha for any
z,y € Rand any ¢, 0 <t < 1,

r(1-)(@Q@—-zV)+tQ—-yV)) <(1-t) r(Q—zV)+tr(Q—yV). (17)

Hence, () is a convex function and therefore continuous.

Let |3| be sufficiently large. then some rows of (@) — 8V') are non-negative which
implies that there does not exists a positive vecotr f such that (Q — V) f < 0. Hence,
by the Perron-Frobenius theorem, (/) > 0 for sufficiently large |3|.

Suppose that «a(3) = 0. Then there exists a positive vector f such that (Q —
BV)f = 0. Since, by (VI), there exist exactly eigenvalues of V~1Q, cmar and Buin (not
necessarily distinct), whose associated eigenvectors are positive, it follows that a;yq, and
Bmin are the only zeros of ().

13



Therefore, the function «(f3) is continuous, for || sufficiently large it is positive and
it has either one or two zeros. All of these together imply that «((3) attains its minimum.

0

Lemma 5.7 Let a(f) be the Perron-Frobenius eigenvalue and let u'**(3) and u9"(3)
be the unit Perron-Frobenius left and right eigenvectors of the matrixz (QQ — V). Then
a(p) is a differentiable function of 5 and

do B uleft(ﬂ) Vv um’ght(ﬁ)
%(ﬁ) - uleft(ﬁ) uright(ﬁ) :

In addition, there is a unique By € (Cmaz, Bmin) Such that g%(ﬁo) =0 and a(By) is
the global minimum of the function o(B) and

dov <0, if B< By
@(ﬁ) =0, if 8= 0o
>0, if 8> Po,

Proof: By multiplying the equality

(Q—BV) w9 (3 +h) —h V u"9" (B + h)
= (a(B+h) — a(B)) u"" (B +h) + «(B) u" (3 + h),

by % and by letting h — 0, we obtain that «(/3) is a differentiable function of 5. By
Lemma 5.6 it is also convex and attains its minimum. hence, there exists unique 3y such
that «(fp) is the global minimum of () and that g%(ﬁo) = 0. By Lemma 5.6, o(f)
has two zeros, ez < 0 and S > 0. Hence, By € (maz, Bmin) When amar # Bmin
and By = Qmaz = Bmin When ez = Bmin-

It remains to show that «(f3) is strictly monotone on (—oo, 5y] and [By, +00), Let
and u((3) be the Perron-Frobenius eigenvalue and eigenvector, respectively, of (Q — V).
Then, u(3) is a positive eigenvector of V~1(Q — aI).

(i) Suppose that Gy = 0. Then a(f8y) = 0 and therefore a(5) > 0. By (VI), for
a > 0, the only positive eigenvectors of V~1(Q — al) are fiaz(a) and gpmin(a) which
are associated with the eigenvalues a;q: (@) and G (), respectively. Hence, for fixed
a > ap, there exist only two values of (3, qmaer(@) and Bpin(a), such that « is the
Perron-Frobenius eigenvalue of (Q — V). Since amaz(a) < 0 and Bpin(a) > 0, it
follows that «(/3) is strictly monotone on both intervals (—oo, 0] and [0, 400).

(ii) Let now fp € R and let

Qo=Q — BV —apl.

The matrix Qo is essentially non-negative and, by Lemma 5.1, irreducible, and so is
the matrix (Qo — V) for any § € R. Let ag(f3) be the Perron-Frobenius eigenvalue
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of (Qo — V). Then ap(8) = a(B + Bo) — ap. Since a(f) attains its global minimum
at 3 = [, it follows that () attains its global minimum zero at 3 = 0. Therefore,
by (i), ap(f) is strictly monotone on (—o0,0] and [0,400), which implies that «(f) is
strictly monotone on (—o0, fy] and Gy, +00). O

The sign of the unique argument [y of the global minimum of the function «(g3),
whose existence has been proved in the previous lemma, is found to depend on the
behaviour of the process (¢¢)i>0. Namely,

Lemma 5.8

In the positive drift case Bo >0 and ag < 0.
In the oscillating case Go=0 and ag=0.
In the negative drift case Bo <0 and ap <O.

Proof: In the drift cases, dmaz # Bmin and therefore, by Lemma 5.7, 5y € (maz, Bmin)-
In the positive drift case, by (16), mae = 0 and Bpin > 0, and therefore Gy > 0. In
the negative drift case, by (16), Gmin = 0 and quq, < 0, and therefore Gy < 0. Since in
both cases the function «(3) has two distinct zeros, its global minimum g is negative.

Finally, in the oscillating case, by (16), amaer = Bmin = 0 and then Gy = 0. Thus,
the function «(8) has exactly one zero at 3 = 0 and, since by 5.6, it attains a global
minimum, it follows that «(f3) attains its global minimum at §y = 0 and that g =
a(fo) = 0. O

Lemma 5.9 The matriz Q° given by (1) is a conservative irreducible Q-matriz. In
addition, if u° is a vector on E such that 1°Q° = 0 then u°V1 = 0.

Proof: Since the matrices I and V are diagonal and the vector gg is positive, the matrix
Q" is essentially non-negative. In addition, @Q°1 = 0.

By Lemma 5.1, the matrix (Q — apl — (oV) is irreducible which implies that the
matrix e/ (@—a0l=5V) g positive for all ¢ > 0. Since the vector go is positive, it follows
from the definition of Q¥ that et@” is positive for all ¢ > 0 and that the matrix QU is
irreducible.

Let géef " be the left Perron-Frobenius eigenvector of the matrix (Q — V) and let
1 be a vector on E with entries 1%(e) = g[lfft(e)go(e), e € E. Then x°Q° = 0 and by
Lemmas 5.7 and 5.8 z°V1 = 0. Since any vector v which satisfies vQ" = 0 is a constant
multiple of 10, the proof of the lemma is complete. O

Lemma 5.10 For o > 0, let
V3 Q-al) Ty =Ty Gy and V7 1(Q°—al) T =17 GY,

be the Wiener-Hopf factorisations of V=1(Q — ol) and V—1(Q" — al), respectively (for
a =0 we drop the subscript). Then,

G .. =Gyt (Go— Bol) Go, and TO_, =Gy' Ty Go, a>0.

a—ap a—ap
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Proof: By the definition of QY and by the Wiener-Hopf factorization of V=1(Q — al),
for every a > 0,

VHQY — (e — a0)]) = (G 'TaGo) (Gy'(Ga — Bol)Go) (Gy'T'Go).  (18)

Let G¢ (respectively Gy ) be the restriction of Gp to E* x E™ (respectively E~ x E7).
Then,

_ GH NGE - Bo)GF 0 )
G 1 Goc . NG = ( 0 a 0 _ ).
7(@ i) = ( 0 ~(G) (G + ADG,

Suppose that (G3)"HGE —Bol)GY and (Gy ) ~H(Gy + 6ol )Gy are Q-matrices. Then,
by Lemma 5.2, (18) is the the Wiener-Hopf factorization of V~1(Q° — (a — ap)I) for
«a > 0, and by the uniqueness of the Wiener-Hopf factorization

G2 =Gyt (Go — Bol) G, Y . =Gy Ty Gy, a>0.

a—ap a—ap

Therefore, all we have to prove is that (G§) 1 (GY — BoI)G{ and (Gy) "1 (Gg + Bol)Gy
are (Q-matrices.

Let the function h be defined by h(e, ¢, t) = et e=#0% go(e). Then h is continuously
differentable in ¢ and ¢, and, by (15), it is in the domain of the infinitesimal generator .4
of the process (X, ¢, t)i>0 and Ah = 0. It follows that the process (h(X¢nm,, inm,, t A
Hy))¢>0 is a positive martingale. By Fatou’s lemma,

E(GM) (e—QOHyefﬁox(JHy go(XHy)> < e Doy gole),
and because g is positive, for a > ay,

E(e’@) (efaHy gO(XHy)> < E(e,cp) (670‘0Hy gO(XHy)> < eiﬂo(ipiy) 90(6). (19)
By Lemma 5.3, for ¢ =0 and y > 0,

Gt +
e~ gg

e Y go(e) > B ) (e_aHy go(XHy)> = (H*eyGl_g*) :
o 0

which implies that Y(GE—Bo) go+ < gar . Hence, because

G&—Bo) ,+ +
hm ey( /60)90 — gO
y—0

= (G4 — Fo)go
(GE — Bo)gg < 0 and therefore, because (G§)~! is positive,
(G§)"HGE = BD)GILT = (G )G — Pol)gg <0
and (G3)"YGE — Bol)GY is a Q-matrix. It can be proved in the same way that

G;) NGy — Bol)Gy is a Q-matrix. O
(Gy) 0
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Theorem 5.1 For a > 0, Let qunaz(a) and Bpin(a) be the eigenvalues of the matriz
V—HQ — al) with mazimal negative and minimal positive real parts, respectively, and
let fraz(@) and gmin () be their associated eigenvectors, respectively.

Then, in the oscillating case, there exists € > 0 such that, for 0 < a < g, and some
constants dp, n =2,3,... and ¢ > 0,

aF +dya+dsas +...=—

1
el ) === Nang

1
Bmin () oz + doa — ngé% 4+ = oz + Omin

1
- (a2),
v —uVr —uVr

and ]@max(a%)\ <caand |@mm(a%)| <ca.
The vectors fmaz(a) and gmin(c) can be chosen to be

1

1 1 1 1
a)=1l————a2r+avg+..=1——— a2 r+= o2
fmaz(@) =1 = = 2 Neng maa(43)
1 1 1 1 — 1
gmin(@) =14+ ——= a2 r+awr+... =14+ ——— a2 r+ Ein(a2),

v—=uVr v —uVr

where V1Qr = 1, and \Emam(a%)] < av and ]Emm(a%

vectors v and w on E.
In the negative drift case, there exists € > 0 such that, for 0 < a < € and some
constants a, and by, n € N,

)| < a w for some positive

Omaz (@) = Qnag + G100+ asa® + ... and Bmin(a) = bia + boa? +bga® + ...,
and the vectors fmaz(@) and gmin(a) can be chosen to be
fmaz (@) = fraz + vl + vy + ... and Imin(@) = 14+ awy + QPwy+ ...,

where v, and w,, n € N, are some constant vectors.
The analogous result follows in the positive drift case.

Proof: The eigenvalues of V~1(Q — al) converge to the eigenvalues of V~1Q as o — 0.
Thus, maez (@) = @maz and Bmin () — Bmin as a — 0.

In the drift cases, by (16), ez # Bmin. Hence, tunar and By, are simple eigenval-
ues of V~1Q which implies that, for sufficiently small & > 0, naz() and Bpin (@), and
also faz (@) and gmin(), can be represented by convergent power series (see Wilkinson
[5]). In addition, in the positive drift case, amas = 0 and fiae = 1 and in the negative
drift case Bin = 0 and gy = 1. Therefore, the part of the theorem for the drift cases
is proved.

In the oscillating case, by (16), zero is an eigenvalue of the matrix V~'Q with
algebraic multiplicity two. Hence, there exists ¢ > 0 such that for 0 < |a| < € there
exist two eigenvalues of V~1(Q — al) which converge to zero as a — 0, and those are
Qmaz (@) and Bin(a). In addition, one of the following is valid:
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either
Omaz(@) = a1a + aga® + aza® + . ..

20
/Bmin(a) =b1a+bza2+b3a3+..., ( )
for some constants a, by, kK € N, or
Qmaz (@) :dla% +d2a+d3a% +... (21)
1
Bmin(a) = —d1a2 + daa — d304% +.
for some constants dy, k € N. We shall show that (20) is not possible.
For any o > 0,
(Q = amaz()V) frnaz (@) = afmaz(c). (22)

Since by Lemma 5.1, the matrix (Q — unq,V) is irreducible and essentially non-
negative and the vector fpq..(«) is positive, it follows that a is the Perron-Frobenius
eigenvalue of (Q — ez (a)V). Similarly, « is the Perron-Frobenius eigenvalue of (Q —

Let 8 € R and consider the matrix (@ — SV) and its Perron-Frobenius eigenvalue
a(f) and eigenvector u(3). The eigenvalue «(f3) is simple and it converges to a simple
eigenvalue of the matrix @ as § — 0. Thus, for |3 < 4,

a(ﬂ):CO+Clﬂ+Cgﬂ2+...

w(B) =1+ Boy + fPva + ..., (23)

for some constants ¢, k € NU {0} and some vectors vi, k € N, on E.

Suppose that the process (¢¢)¢>0 oscillates. By Lemmas 5.7 and 5.8 the eigenvalue
a(f) attains its global minimum 0 at § = 0. Hence, a(0) = %(0) = 0, which gives that
co = ¢1 = 0, and therefore

af) =22 + 38 + et + ... (24)
By substituting a(8) and u(f3) into the equation
(Q = BV)u(B) = a(B)u(p)
and by equating terms in 3 and 32 on each side of the previous equation, we obtain
V7 iQu =1 Quas — Vv = el (25)

It follows that co # 0 (if co = 0 then V~'Quy = v1 which is by Jordan matrix theory
not possible since 0 is the eigenvalue of V~1Q with algebraic multiplicity 2).
Suppose that (20) is true. Then, it follows from (20) and (22) that, for |a| < ¢,

a=a(tmez) = ¢ afmx(a) + c3 ai’nax(a) + ...
= c(ama+ad®+..) +es(aa+aza® +..)3 + ...

= CQCL%O[Q + const.a® 4 ...,
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which is not possible for every |a| < e. Hence, (20) is not true and thus (21) holds.
Substituting cna.(a) and B (a) from (21) into (24) gives d? = é By Lemmas 5.7
and 5.8, a(0) = 0 is the minimum of the function «(3) which implies that a(3) > 0 for
all 8 € R, and, by (24), that co > 0. By multiplying second equality in (25) by u from
the left, we obtain (because pul = 1), co = #‘{”1 = —pVwvy. Therefore, the statement
in the theorem follows from (21) and (23). O
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