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Abstract

Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite statespace E,
let v be a map v : E → R\{0} and let (ϕt)t≥0 be an additive functional defined by
ϕt =

∫ t
0 v(Xs)ds. We consider the cases where the process (ϕt)t≥0 is oscillating and where

(ϕt)t≥0 has a negative drift. In each of the cases we condition the process (Xt, ϕt)t≥0

on the event that (ϕt)t≥0 stays non-negative until time T and prove weak convergence
of the conditioned process as T →∞.

1 Introduction

The problem of conditioning a stochastic process to stay forever in a certain region has
been extensively studied in the literature. Many authors have addressed essentially the
same problem by conditioning a process with a possibly finite lifetime to live forever.
An interesting case is when the event that the process remains in some region is of zero
probability, or in terms of the lifetime of the process restricted to the region, when the
process has a finite lifetime with probability one. In that case the process cannot be
conditioned to stay in the region forever in the standard way. Instead, this condtioning
can be approximated by conditioning the process to stay in the region for a large time.

There are many well-known examples of such conditionings in which weak conver-
gence of the approximating process occurs. For instance, Knight (1969) showed that
the standard Brownian motion conditioned not to cross zero for a large time converges
weakly to a three-dimensional Bessel process; Iglehart (1974) considered a general ran-
dom walk conditioned to stay non-negative for a large time and showed that it converges
weakly; Pinsky (1985) showed that under certain conditions, a homogeneous diffusion
on Rd conditioned to remain in an open connected bounded region for a large time
converges weakly to a homogeneous diffusion; Jacka and Roberts (1988) proved weak
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convergence of an Ito diffusion conditioned to remain in an interval (a, b) until a large
time.

However, weak convergence of the approximations does not always occur. There are
counterexamples in which a process conditioned to stay in a region for a large time does
not converge at all or it does converge but to a dishonest limit. Jacka and Warren (2002)
gave two examples of such processes.

This paper is concerned with another example of conditioning a process to stay in
a region. We consider a finite statespace continuous time Markov chain (Xt)t≥0 and its
associated fluctuating additive functional (ϕt)t≥0. The aim is to condition the Markov
process (Xt, ϕt)t≥0 on the event that the fluctuating functional stays non-negative.

There are three possible cases of the behaviour of the process (ϕt)t≥0, in two of
which, when it oscillates and when it drifts to −∞, the event that it stays non-negative
is of zero probability. We are interested in performing conditioning in these two cases.

A similar question has been discussed in Bertoin and Doney (1994) for a real-valued
random walk. It has been shown there that, under certain conditions, an oscillating
random walk or a random walk with a negative drift, conditioned to stay non-negative
for large time converges weakly to an honest limit which is an h-transform of the original
random walk killed when it hits zero. This work presents the analogous result for the
process (Xt, ϕt)t≥0.

The organisation of the paper is as follows: the exact formulation of the problem
and results are given in Section 2, the proof of the result in the oscillating case is given
is Section 3, the proof of the result in the negative drift case is given in Section 4 and
the review of the notation and results used in previous sections is given in Section 5.

2 The problem and main results

Let (Xt)t≥0 be an irreducible honest Markov chain on a finite statespace E. Let v be a
map v : E → R\{0} and suppose that both E+ = v−1(0,∞) and E− = v−1(−∞, 0) are
non-empty.

Define the process (ϕt)t≥0 by

ϕt = ϕ +
∫ t

0
v(Xs)ds, ϕ ∈ R.

Let E+
0 = (E × (0,+∞))

⋃
(E+ × {0}) and let H0 = inf{t > 0 : ϕt < 0}. The aim

is to condition the process (Xt, ϕt)t≥0 starting in E+
0 on the event {H0 = +∞}.

There are three possible cases depending on the behavoiur of the process (ϕt)t≥0.
When the process (ϕt)t≥0 drifts to +∞, the event {H0 = +∞} is of positive probablity
which implies that conditioning the process (Xt, ϕt)t≥0 on it can be performed in the
standard way. However, when the process (ϕt)t≥0 oscillates or drifts to −∞, the event
{H0 = +∞} is of zero probablity and conditioning (Xt, ϕt)t≥0 on it cannot be performed
in the standard way. We concentrate on these two latter cases and define conditioning
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(Xt, ϕt)t≥0 on {H0 = +∞} as the limit as T → ∞ of conditioning (Xt, ϕt)t≥0 on
{H0 > t}.

Let P(e,ϕ) denote the law of the process (Xt, ϕt)t≥0 starting at (e, ϕ), let P T
(e,ϕ),

T > 0, denote the law of the process (Xt, ϕt)t≥0, starting at (e, ϕ) ∈ E+
0 , conditioned on

{H0 > T}, and let P T
(e,ϕ)|Ft , t ≥ 0, be the restriction of P T

(e,ϕ) to Ft, where (Ft)t≥0 is the
natural filtration of (Xt)t≥0. We are interested in weak convergence of (P T

(e,ϕ)|Ft)T≥0 as
T → +∞.

Let Q denote the conservative irreducible Q-matrix of the process (Xt)t≥0 and let
V be the diagonal matrix diag(v(e)). Let V −1QΓ = ΓG be the unique Wiener-Hopf
factorisation of the matrix V −1Q (see Barlow et al. (1980)). Let J , J1 and J2 be the
matrices

J =
(

I 0
0 −I

)
J1 =

(
I 0
0 0

)
J2 =

(
0 0
0 1

)
and let a matrix Γ2 be given by Γ2 = JΓJ .

Now we state our main result in the oscillating case.

Theorem 2.1 Suppose that the process (ϕt)t≥0 oscillates. Then, for fixed (e, ϕ) ∈ E+
0

and t ≥ 0, the measures (P T
(e,ϕ)|Ft)T≥0 converge weakly to a probability measure P r

(e,ϕ)|Ft

as T →∞, where the measure P r
(e,ϕ) is defined by

P r
(e,ϕ)(A) =

E(e,ϕ)

(
I(A)hr(Xt, ϕt)I{t < H0}

)
hr(e, ϕ)

, t ≥ 0, A ∈ Ft,

for hr(e, y) = e−yV −1QJ1Γ2r(e), (e, y) ∈ E × R, and V −1Qr = 1.

Let β0 be the point at which the Perron-Frobenius eigenvalue α(β) of the matrix
(Q − βV ) attains its global minimum (see Lemma 5.7). Let α0 = α(β0) and g0 be the
Perron-Frobenius eigenvalue and right eigenvector, respectively, of the matrix (Q−β0V )
and let G0 be the diagonal matrix diag(g0(e)). Let Q0 be the E×E matrix with entries

Q0(e, e′) = G−1
0 (Q− α0I − β0V )G0(e, e′), e, e′ ∈ E. (1)

The matrix Q0 is a conservative irreducible Q-matrix (Lemma 5.9). Let (V −1Q0)Γ0) =
Γ0G0 be the unique Wiener-Hopf factorization of the matrix V −1Q0 and let Γ0

2 = JΓ0J .
Now we can state our main result in the negative drift case.

Theorem 2.2 Suppose that the process (ϕt)t≥0 drifts to −∞. For fixed (e, ϕ), (e′, ϕ′) ∈
E+

0 and t ≥ 0, if all non-zero eigenvalues of the matrix V −1Q0 are simple and if

limT→+∞
P(e′,ϕ′)(H0>T−t)

P(e,ϕ)(H0>T ) exists, then the measures (P T
(e,ϕ)|Ft)T≥0 converge weakly as

T →∞ to a probability measure P r0

(e,ϕ)|Ft which is defined by

P r0

(e,ϕ)(A) =
E(e,ϕ)

(
I(A)hr0(Xt, ϕt)I{t < H0}

)
hr0(e, ϕ)

, t ≥ 0, A ∈ Ft,
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where the function hr0 is given by hr0(e, y, t) = e−α0te−β0y G0 e−yV −1Q0
J1Γ0

2r
0(e),

(e, y, t) ∈ E × R× [0,+∞), and V −1Q0r0 = 1.

3 The oscillating case: Proof of Theorem 2.1

We start by looking at limT→+∞ P T
(e,ϕ)(A) for A ∈ Ft. By (x) (see Appendix), the events

{H0 > T}, T > 0, are of positive probability. Thus, for 0 < t < T and A ∈ Ft,

P T
(e,ϕ)(A) = P(e,ϕ)(A | H0 > T ) =

E(e,ϕ)

(
I(A)P(Xt,ϕt)(H0 > T − t)I{H0 > t}

)
P(e,ϕ)(H0 > T )

. (2)

First we show that limT→+∞
P(e′,ϕ′t)

(H0>T−t)

P(e,ϕ)(H0>T ) exists by looking at the asymptotic
behaviour of the function t 7→ P(e,ϕ)(H0 > t).

In the oscillating case, by (16) and (iv) (see Appendix), zero is an eigenvalue of
V −1Q with algebraic multiplicity two and geometric multiplicity one. Therefore, there
exists a vector r such that V −1Qr = 1. Since the choice of such vector is not relevant
in the presented work, we shall always refer to it as if it was fixed.

Let µ be the invariant measure of the process (Xt)t≥0.

Lemma 3.1 For any (e, ϕ) ∈ E+
0 ,

P(e,ϕ)(H0 > t) ∼ − 1
π

1√
−µV r

t−
1
2 e−ϕV −1QJ1Γ2r(e), t → +∞.

Proof: The lemma is proved by applying Tauberian theorems to the Laplace transform
1−E(e,ϕ)(e

−αH0 )

α of P(e,ϕ)(H0 > t). By Lemmas 5.2 and 5.3 (see Appendix), for α > 0 and
(e, ϕ) ∈ E+

0 ,

1− E(e,ϕ)(e−αH0)
α

= e−ϕV −1Q 1− ΓαJ21
α

(e)− e−ϕV −1(Q−αI) − e−ϕV −1Q

α
ΓαJ21(e). (3)

Let βmin(α) be the eigenvalue of V −1(Q− αI) with minimal positive real part and
let gmin(α) be its associated eigenvector. Then, by (13), Π−α g−min(α) = g+

min(α) and by
substituting gmin(α) from Theorem 5.1 we obtain, for sufficiently small α

1+ −Π−α 1−

α
= − 1√

−µV r
α−

1
2 (r+ −Π−r−) +

1√
−µV r

α−
1
2 (Π−α −Π−)r−

+
1
α

Ξ+
min(α

1
2 ) +

1
α

Π−α Ξ−min(α
1
2 ). (4)

By Theorem 5.1, 1
α Ξ+

min(α
1
2 ) is bounded, and by (v), Π−α −Π− → 0 as α → 0. Thus,

it follows from (4) that

1+ −Π−α 1−

α
∼ − 1√

−µV r
α−

1
2 (r+ −Π−r−), α → 0. (5)
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Since
1− ΓαJ21

α
=

(
1+−Π−

α 1−

α
0

)
and J1Γ2r =

(
r+ −Π−r−

0

)
,

it follows that

e−ϕV −1Q 1− ΓαJ21
α

∼ 1√
−µV r

α−
1
2 e−ϕV −1QJ1Γ2r, α → 0.

The function α 7→ e−ϕV −1(Q−αI) is analytic for all α and by (v), Γα → Γ, as α → 0.
Hence, the second term on the right-hand side of (3) is bounded for small α > 0.
Therefore, for any (e, ϕ) ∈ E × (0,+∞),

1− E(e,ϕ)(e−αH0)
α

∼ 1√
−µV r

α−
1
2 e−ϕV −1QJ1Γ2r(e), α → 0.

The assertion in the lemma now follows from the Tauberian theorem (see Feller
(1971) part 2, XIII.5), �

Lemma 3.2 The vector e−ϕV −1QJ1Γ2r > 0.

Proof: See Jacka et al. (2004). �

For the proof of Theorem 2.1 we need two more lemmas.

Lemma 3.3 (i) Let {fn, n ∈ N} and f be non-negative random variables on a probability
space (Ω,F , P ) such that Efn = Ef = 1, where expectation is taken with respect to the
probability measure P . If fn → f a.s. as n → +∞, then fn → f in L1(Ω,F , P ) as
n → +∞.
(ii) Let {Pn, n ∈ N} and P be probability measures on a measurable space (Ω,F) such
that, for any A ∈ F , Pn(A) → P (A) as n → +∞. Then the measures {Pn, n ∈ N}
converge weakly to P on F .

Proof: (i) Since {fn, n ∈ N} and f are non-negative and Efn = Ef = 1, the functions
{fn(ω), n ∈ N} and f(ω), ω ∈ Ω, are densities with respect to the measure P . In
addition, fn → f a.s. as n → +∞ and so fn → f in probability as n → +∞. Therefore,
by Theorem 2.2. from Jacka, Roberts (1997), fn → f in L1(Ω,F , P ) as n → +∞.
(ii) Let for any A ∈ F , Pn(A) → P (A) as n → +∞. Then, by the definition of strong
convergence in Jacka et.al (1997), Pn converges strongly to P which, by Theorem 2.1.
in Jacka et.al (1997), implies that {Pn, n ∈ N} converge weakly to P . �

Lemma 3.4 Let hr(e, ϕ) be a function on E × R defined by

hr(e, ϕ) = e−ϕV −1QJ1Γ2r(e).

Then the process {hr(Xt, ϕt)I{t < H0}, t ≥ 0} is a martingale under P(e,ϕ).
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Proof: The function hr is continuously differentiable in ϕ which by (15) implies that
hr is in the domain of the infinitesimal generator G of the process (Xt, ϕt)t≥0 and that
Ghr = 0. Thus, (hr(Xt, ϕt))t≥0 is a local martingale under P(e,ϕ) and therefore the
process (hr(Xt∧H0 , ϕt∧H0) = hr(Xt, ϕt)I{t < H0})t≥0 is also a local martingale under
P(e,ϕ) (the equality of the processes is valid because hr(XH0 , ϕH0) = 0 if the process
(Xt, ϕt)t≥0 starts in E+

0 ). Since the process {hr(Xt, ϕt)I{t < H0}, t ≥ 0} is bounded on
every finite interval, it follows that it is a martingale under P(e,ϕ). �

Proof of Theorem 2.1: For fixed (e, ϕ) ∈ E+
0 and t, T ∈ [0,+∞) let hT (e, ϕ, t) be

a random variable defined by

hT (e, ϕ, t) =
P(Xt,ϕt)(H0 > T − t)

P(e,ϕ)(H0 > T )
I{t<H0}.

Then, by Lemmas 3.1, 3.2, 3.3 (i) and 3.4 the random variables hT (e, ϕ, t) converge to
hr(Xt,ϕt)
hr(e,ϕ) I{t<H0} in L1(Ω,F , P(e,ϕ)) as T → +∞. Therefore, by (2), for fixed t ≥ 0 and

A ∈ Ft,

lim
T→+∞

P T
(e,ϕ)(A) = lim

T→+∞
E(e,ϕ)

(
I(A)hT (e, ϕ, t)

)
= E(e,ϕ)

(
I(A)

hr(Xt, ϕt)
hr(e, ϕ)

I{t < H0}
)

= P r
(e,ϕ)(A),

which, by Lemma 3.3 (ii), implies that the measures (P T
(e,ϕ)|Ft)y≥0 converge weakly to

P r
(e,ϕ)|Ft as T →∞. �

4 The negative drift case: Proof of Theorem 2.2

We start again by looking at limT→+∞ P T
(e,ϕ)(A) for A ∈ Ft. As in the oscillating case,

we need to find limT→+∞
P(e′,ϕ′t)

(H0>T−t)

P(e,ϕ)(H0>T ) .

Lemma 4.1 Let hr0 be a function on E × R× [0,+∞) defined by

hr0(e, ϕ, t) = e−α0t e−β0ϕ G0e
−ϕV −1Q0

J1Γ0
2r

0(e).

Then, if limT→+∞
P(e′,ϕ′)(H0>T−t)

P(e,ϕ)(H0>T ) exists, it is equal to hr0 (e′,ϕ′,t)
hr0 (e,ϕ,0) .

For the proof of the lemma we will need some auxiliary lemmas. Let V −1(Q0 −
αI)Γ0

α = Γ0
αG0

α be the unique Wiener-Hopf factorisation of the matrix V −1(Q0 − αI)
and for fixed (e, ϕ) ∈ E × R, let a function L(e,ϕ)(α), α ≥ α0, be defined by

L(e,ϕ)(α) =
1− e−β0ϕ G0 e−ϕV −1(Q0−(α−α0)I) Γ0

α−α0
G−1

0 J21
α

(e). (6)
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By Lemmas 5.3 and 5.10, for α > 0,

L(e,ϕ)(α) =
1− e−ϕV −1(Q−αI)ΓαJ21

α
=

1− E(e,ϕ)(e−αH0)
α

=
∫ ∞

0
e−αtP(e,ϕ)(H0 > t) dt.

(7)

Lemma 4.2 For any (e, ϕ) ∈ E+
0 , the function L(e,ϕ)(α) is analytic for Re(α) > α0.

Proof: By the definition in Lemma 5.3, the matrices Π+
α and Π−α are analytic for Re(α) >

0. Hence, the matrix Γα is analytic for Re(α) > 0 and therefore, by Lemma 5.10 the
matrix Γ0

α−α0
is analytic for Re(α) > α0. It follows that the numerator of L(e,ϕ)(α) in

(6) is analytic for Re(α) > α0 and since

e−β0ϕG0e
−ϕV −1(Q0+α0I)Γ0

−α0
G−1

0 J21 = e−ϕV −1QΓJ21 = 1,

the numerator of L(e,ϕ)(α) is equal to zero for α = 0. Therefore, L(e,ϕ)(α) is analytic
for Re(α) > α0. �

We note that the objects (e.g. vectors and matrices) with the superscript 0 are
associated with the matrix Q0 and are defined in the same way as their counterparts
associated with the matrix Q.

Lemma 4.3 Let all non-zero eigenvalues of the matrix V −1Q0 be simple. Then, for
some non-zero constant c,

(i) (Γ0
α−α0

− Γ0) G−1
0 J21 ∼ c (α− α0)

1
2 J1Γ0

2r
0, α → α0,

(ii) L(e,ϕ)(α)− L(e,ϕ)(α0) ∼ c (α− α0)
1
2 e−β0ϕG0 e−ϕV −1Q0

J1Γ0
2r

0(e), α → α0.

Proof: Let g− be a non-negative vector on E−. Then

g− =
m∑

k=1

ak g0,−
k

for some constants ak, k = 1, . . . m. By (vii), the constant amin which corresponds to
g0,−
min = 1− in the previous linear combination is not zero. Thus,

Π0,−
α g− = amin Π0,−

α 1− +
∑

g0,−
k 6=g0,−

min

ak Π0,−
α g0,−

k . (8)

By (16) and Lemma 5.9, the matrices Q0 and V define the oscillating case. Therefore,
by (5),

1+ −Π0,−
α 1− ∼ 1√

−µ0V r0
α

1
2 (r0,+ −Π0,−r0,−), α → 0. (9)
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We also need the behaviour of Π0,−
α g0,−

k , k = 1, . . . m, g0,−
k 6= g0,−

min. Since by as-
sumption all non-zero eigenvalues of the matrix V −1Q0 are simple, it can be shown (see
Wilkinson (1965)) that there exist vectors vk,n, n ∈ N, on E such that

Π0,−
α g0,−

k −Π0,−g0,−
k =

∞∑
n=1

αn (v+
k,n −Π0,−

α v−k,n) (10)

From (8), (9) and (10), and because by (v) Π0,−
α → Π0,− as α → 0,

Π0,−
α g− −Π0,−g− ∼ − amin√

−µ0V r0
α

1
2 (r0,+ −Π0,−r0,−), α → 0,

which proves (i).
By the definition of L(e,ϕ)(α),

L(e,ϕ) (α)− L(e,ϕ)(α0)

= − (α− α0)(1− e−β0ϕG0 e−ϕV −1Q0
Γ0G−1

0 J21)
α α0

− α0(e−β0ϕG0 (e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0
)Γ0G−1

0 J21)
α α0

−
e−β0ϕG0 e−ϕV −1Q0

(Γ0
α−α0

− Γ0)G−1
0 J21

α

−
e−β0ϕG0 (e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0

)(Γ0
α−α0

− Γ0)G−1
0 J21

α
.

Since the vector g0 is positive, the vector (G−1
0 J21)− is positive. Thus, by (i)

(Γ0
α−α0

− Γ0) G−1
0 J2 ∼ c (α− α0)

1
2 J1Γ0

2r
0, α → α0,

for some non-zero constant c. In addition, the function α 7→ e−ϕV −1(Q0−(α−α0)) is
analytic for all α which implies that e−ϕV −1(Q0−(α−α0))− e−ϕV −1Q0

is bounded for small
|α− α0|. Therefore, (ii) is valid. �

Lemma 4.4 For fixed (e, ϕ) ∈ E+
0 , the function L(e,ϕ)(α + α0), α > 0, is the Laplace

transform of e−α0tP(e,ϕ)(H0 > t).

Proof: By (7) L(e,ϕ)(α), α > 0, is a Laplace transform and therefore, by Theorem
1a in Feller (1971) part 2, XIII.4, completely monotone for α ≥ 0. In addition, by
Lemma 4.2, L(e,ϕ)(α) is analytic for α > α0. Since the analytic continuation of a
completely monotone function is completely monotone, it follows that L(e,ϕ)(α) is com-
pletely monotone for α > α0 and therefore it is a Laplace transform of some measure
on [0,+∞). By the uniqueness of the inverse of the Laplace transform it follows from
(7) that L(e,ϕ)(α + α0) for α > 0 is the Laplace transform of e−α0tP(e,ϕ)(H0 > t). �
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Proof of Lemma 4.1: By Lemma 4.4, L(e,ϕ)(α+α0)

α − L(e,ϕ)(α0)

α is the Laplace trans-
form of the monotone function

t 7→
∫ t

0
e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0).

Therefore, by the Tauberian theorem (see Feller (1971) part 2, XIII.5),∫ t

0
e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0) ∼

c

Γ(1
2)

t−
1
2 e−β0ϕG0 e−ϕV −1Q0

J1Γ0
2r

0(e),

as t → +∞. Then, for fixed (e, ϕ), (e′, ϕ′) ∈ E+
0 ,

lim
T→+∞

∫ T−t
0 e−α0sP(e′,ϕ′)(H0 > s) ds− L(e′,ϕ′)(α0)∫ T

0 e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0)
=

e−β0ϕ′G0 e−ϕ′V −1Q0
J1Γ0

2r
0(e′)

e−β0ϕG0 e−ϕV −1Q0J1Γ0
2r

0(e)
.

The statement in the lemma is now proved since, by L’Hôpital’s rule,

lim
T→+∞

∫ T−t
0 e−α0sP(e′,ϕ′)(H0 > s) ds− L(e′,ϕ′)(α0)∫ T

0 e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0)
= eα0t lim

T→+∞

P(e′,ϕ′)(H0 > T − t)
P(e,ϕ)(H0 > T )

,

if the latter limit exists. �

Lemma 4.5 The process {hr0(Xt, ϕt, t)I{t < H0}, t ≥ 0} is a martingale under P(e,ϕ).

Proof: The function hr0 is continuously differentiable in ϕ which by (15) implies that
it is in the domain of the infinitesimal generator G of the process (Xt, ϕt)t≥0 and that
Ghr0 = 0. The rest of the proof is analogous to the proof of Lemma 3.4. �

Proof of Theorem 2.2: For fixed (e, ϕ) ∈ E+
0 and t, T ∈ [0,+∞) let hT (e, ϕ, t) be

a random variable defined by

hT (e, ϕ, t) =
P(Xt,ϕt)(H0 > T − t)

P(e,ϕ)(H0 > T )
I{t<H0}.

Then, by Lemmas 4.1, 3.2, 3.3 (i) and 4.5 the random variables hT (e, ϕ, t) converge to
hr0 (Xt,ϕt)

hr0 (e,ϕ) I{t < H0} in L1(Ω,F , P(e,ϕ)) as T → +∞. Therefore, by (2), for fixed t ≥ 0
and A ∈ Ft,

lim
T→+∞

P T
(e,ϕ)(A) = lim

T→+∞
E(e,ϕ)

(
I(A)hT (e, ϕ, t)

)
= P r0

(e,ϕ)(A),

which, by Lemma 3.3 (ii), implies that the measures (P T
(e,ϕ)|Ft)y≥0 converge weakly to

P r0

(e,ϕ)|Ft as T →∞. �
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5 Appendix

The purpose of this section is to introduce notation and review some and prove some
other results needed for the proofs in the previous two sections.

Lemma 5.1 Let Q be an irreducible essentially non-negative matrix, V a diagonal mat-
rix and β ∈ R. Then the matrix (Q−βV ) is also an irreducible essentially non-negative
matrix.

Proof: The proof follows directly from the definition of an irreducible essentially non-
negative matrix (see Seneta (1981)). �

The following three lemmas about the Wiener-Hopf factorization of the matrices
V −1(Q − αI), α ≥ 0, were proved in Barlow et al. (1980). We state them here in the
notation we are going to use.

Lemma 5.2 For fixed α > 0, there exists a unique pair (Π+
α ,Π−α ), where Π+

α is an
E− × E+ matrix and Π−α is an E+ × E− matrix, and there exist Q-matrices G+

α and
G−α on E+ × E+ and E− × E−, respectively, such that, if

Γα =
(

I Π−α
Π+

α I

)
and Gα =

(
G+

α 0
0 −G−α

)
,

then Γα is invertible and Γ−1
α V −1(Q−αI) Γα = Gα. Moreover, Π+

α and Π−α are strictly
substochastic.

Lemma 5.3 Let α > 0 be fixed. Then

E(e,0)(e−αH0I{XH0 = e′}) = Π+
α (e, e′), (e, e′) ∈ E− × E+,

E(e,0)(e−αH0I{XH0 = e′}) = Π−α (e, e′), (e, e′) ∈ E+ × E−,

E(e,0)(e−αHyI{XHy = e′}) = eyG+
α (e, e′), (e, e′) ∈ E+ × E+, y > 0,

E(e,0)(e−αH−yI{XH−y = e′}) = eyG−
α (e, e′), (e, e′) ∈ E− × E−, y > 0.

Lemma 5.4 There exists a unique pair (Π+,Π−), where Π+ is an E−×E+ matrix and
Π− is an E+ × E− matrix, and there exist Q-matrices G+ on E+ × E+ and G− on
E− × E− such that

(V −1Q) Γ = Γ G, (11)

where

Γ =
(

I Π−

Π+ I

)
and G =

(
G+ 0
0 −G−

)
.

Moreover, Π+ and Π− are substochastic and

P(e,0)(XH0 = e′) = Π+(e, e′), (e, e′) ∈ E− × E+,

P(e,0)(XH0 = e′) = Π−(e, e′), (e, e′) ∈ E+ × E−,

P(e,0)(XHy = e′) = eyG+
(e, e′), (e, e′) ∈ E+ × E+, y ≥ 0,

P(e,0)(XH−y = e′) = eyG−
(e, e′), (e, e′) ∈ E− × E−, y ≥ 0.

10



It follows (see Barlow et al. (1980)) that the matrix V −1(Q−αI) cannot have strictly
imaginary eigenvalues and there exists a basis B(α) in the space of all vectors on E such
that if g(α) is in B(α), then

(V −1(Q− αI)− λ(α) I)kg(α) = 0, (12)

for some eigenvalue λ(α) of V −1(Q−αI) and some k ∈ N. The number of vectors in the
basis B(α) associated with the same eigenvalue is equal to the algebraic multiplicity of
that eigenvalue. Let N (α) and P(α) be the sets of vectors g(α) ∈ B(α) associated with
eigenvalues with positive and with negative real parts, respectively. Then,

g(α) ∈ N (α) ⇒ g(α) =
(

g+(α)
Π+

α g+(α)

)
, g(α) ∈ P(α) ⇒ g(α) =

(
Π−α g−(α)

g−(α)

)
. (13)

The set N (α) (respectively P(α)) contains exactly |E+| (respectively E−) vectors
and the vectors g+(α) (respectively g−(α)) for all g(α) ∈ N (α) (respectively P(α))
form a basis in the space of all vectors on E+ (respectively E−). The eigenvalues of
V −1(Q − αI) with strictly negative (respectively positive) real part coincide with the
eigenvalues of G+

α (respectively −G−α ).
The Wiener-Hopf factorization (11) of the matrix V −1Q implies that

G+f+ = αf+ iff V −1Q

(
f+

Π+f+

)
= α

(
f+

Π+f+

)
G−g− = −βg− iff V −1Q

(
Π−g−

g−

)
= β

(
Π−g−

g−

)
.

(14)

Let αj , j = 1, . . . , n, be the eigenvalues (not necessarily distinct) of the matrix G+,
and −βk, k = 1, . . . ,m, be the eigenvalues (not necessarily distinct) of the matrix G−.
Since by (iii) G+ and G− are irreducible Q-matrices, it follows that

αmax ≡ max
1≤j≤n

Re(αj) ≤ 0 and − βmin ≡ max
1≤k≤m

Re(−βk) = − min
1≤k≤m

Re(βk) ≤ 0

are simple eigenvalues of G+ and G−, respectively. Hence, it follows from (14) that all
eigenvalues of V −1Q with negative (respectively positive) real part coincide with the
eigenvalues of G+ (respectively −G−).

By Jordan normal form theory there exists a basis B in the space of all vectors on E
such that there exist exactly n = |E+| vectors {f1, f2, . . . , fn} in B such that each vector
fj , j = 1, . . . , n is associated with an eigenvalue αj of V −1Q for which Re(αj) ≤ 0, and
that there exist exactly m = |E−| vectors {g1, g2, . . . , gm} in B such that each vector
gk, k = 1, . . . ,m, is associated with an eigenvalue βk of V −1Q with Re(βk) ≥ 0. The
vectors {f+

1 , f+
2 , . . . , f+

n } form a basis N+ in the space of all vectors on E+. and the
vectors {g−1 , g−2 , . . . , g−m} form a basis P− in the space of all vectors on E−.

Let fmax and gmin be the eigenvectors of the matrix V −1Q associated with its eigen-
values αmax and βmin, respectively. Then, f+

max and g−min are the Perron-Frobenius
eigenvectors of the matrices G+ and G−, respectively.

From Lemmas 5.2 - 5.4 it can be proved that:
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(i) The matrices Π+ and Π− are positive.

(ii) If at least one of the matrices Π+ and Π− is strictly substochastic then the matrices
(I −Π−Π+), (I −Π+Π−) and Γ are invertible and

Γ−1 =
(

(I −Π−Π+)−1 −Π−(I −Π+Π−)−1

−Π+(I −Π−Π+)−1 (I −Π+Π−)−1

)
.

(iii) The matrices G+ and G− are irreducible Q-matrices.

(iv) G+ (G−) is conservative iff Π+ (Π−) is stochastic.

(v) limα→0 Γα = Γ.

(vi) The vectors fmax and gmin are the only positive eigenvectors of the matrix V −1Q.

(vii) There are no non-negative vectors on E+ (E−) which are linearly independent of
the vector f+

max (g−min).

(viii) For any y > 0 and (e, ϕ) ∈ E+
0 ∩ E−y , or any y < 0 and (e, ϕ) ∈ E−0 ∩ E+

y ,
P(e,ϕ)(XHy = e′,Hy < H0) > 0 and 0 < P(e,ϕ)(Hy < H0) < 1.

(ix) For any (e, ϕ) ∈ E+
0 and e′ ∈ E−, or any (e, ϕ) ∈ E−0 and e′ ∈ E+, P(e,ϕ)(XH0 =

e′,H0 < +∞) > 0.

(x) For any (e, ϕ) ∈ E × R and T > 0, P(e,ϕ)(H0 > T ) > 0.

Let a matrix F (y), y ∈ R, be defined by

F (y) =
{

J1 eyG = eyG J1, y > 0
J2 eyG = eyG J2, y < 0.

Then

Lemma 5.5 For any e, e′ ∈ E,

P(e,ϕ)(XH0 = e′,H0 < +∞) = Γ F (−ϕ)(e, e′), ϕ 6= 0,

P(e,0)(XH0 = e′,H0 < +∞) = (I − Γ2)(e, e′) =
(

0 Π−

Π+ 0

)
(e, e′).

Proof: The lemma follows directly from the definition of the matrices Γ, Γ2 and F (ϕ).

�
Let A be the infinitesimal generator of the process (Xt, ϕt, t)t≥0 and let DA denote

its domain.
Let a function f(e, ϕ, t) on E ×R× [0,+∞) be continuously differentiable in ϕ and

t. Then f ∈ DA and

Af =
(
Q + V

∂

∂ϕ
+

∂

∂t

)
f, (15)
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where
Qf(e, ϕ, t) =

∑
e′∈E Q(e, e′)f(e′, ϕ, t)

V ∂f
∂ϕ(e, ϕ, t) = V (e, e) ∂f

∂ϕ(e, ϕ, t).

The behaviour of the process (ϕt)t≥0 is determined by the matrices Q and V . More
precisely,

(ϕt)t≥0 drifts to +∞ iff µV 1 > 0 iff G+ is conservative, G− is not conservative,
(ϕt)t≥0 oscillates iff µV 1 = 0 iff G+ and G− are conservative,

(ϕt)t≥0 drifts to −∞ iff µV 1 < 0 iff G− is conservative, G+ is not conservative.
(16)

Let f1 = fmax and g1 = gmin be the eigenvectors of V −1Q associated with the
eigenvalues αmax and βmin, respectively. Then, in the positive drift case, fmax = 1 6=
gmin, and in the negative drift case, gmin = 1 6= fmax, and in both cases the basis B
in the space of all vectors on E is equal to {fj , j = 1, . . . , n, gk, k = 1, . . . ,m}. In the
oscillating case, fmax = gmin = 1 and the equation V −1Qx = 1 has a solution. If r is a
solution, then, by Jordan normal form theory, r is linearly independent from the vectors
{fj , j = 1, . . . , n, gk, k = 1, . . . ,m} and B = {1, r, fj , j = 2, . . . , n, gk, k = 2, . . . ,m} is a
basis in the space of all vectors on E.

The following lemmas are concerned with the Perron-Frobenius eigenvalue of the
matrix QβV . For any β ∈ R, let α(β) be the Perron-Frobenius eigenvalue of the matrix
(Q−βV ) and let uleft(β) and uright(β) be the associated left and right eigenvectors such
that ‖uleft(β)‖ = ‖uright(β)‖ = 1 in some norm in the space RE . A striking property of
the eigenvalue α(β) is that it is a convex function of β.

Lemma 5.6 Let β ∈ R and let α(β) be the Perron-Frobenius eigenvalue of the matrix
(Q−βV ). Then, α(β) is a convex function of β and therefore continuous. It attains its
global minimum and has two zeros, αmax ≤ 0 and βmin ≥ 0, not necessarily distinct.

Proof: Let r(A) denote the Perron-Frobenius eigenvalue of an essentially non-negative
matrix A. Since Q is essentially non-negative it follows from Cohen (1981) tha for any
x, y ∈ R and any t, 0 < t < 1,

r((1− t)(Q− xV ) + t(Q− yV )) ≤ (1− t) r(Q− xV ) + t r(Q− yV ). (17)

Hence, α(β) is a convex function and therefore continuous.
Let |β| be sufficiently large. then some rows of (Q − βV ) are non-negative which

implies that there does not exists a positive vecotr f such that (Q− βV )f ≤ 0. Hence,
by the Perron-Frobenius theorem, α(β) > 0 for sufficiently large |β|.

Suppose that α(β) = 0. Then there exists a positive vector f such that (Q −
βV )f = 0. Since, by (VI), there exist exactly eigenvalues of V −1Q, αmax and βmin (not
necessarily distinct), whose associated eigenvectors are positive, it follows that αmax and
βmin are the only zeros of α(β).
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Therefore, the function α(β) is continuous, for |β| sufficiently large it is positive and
it has either one or two zeros. All of these together imply that α(β) attains its minimum.

�

Lemma 5.7 Let α(β) be the Perron-Frobenius eigenvalue and let uleft(β) and uright(β)
be the unit Perron-Frobenius left and right eigenvectors of the matrix (Q − βV ). Then
α(β) is a differentiable function of β and

dα

dβ
(β) = −uleft(β) V uright(β)

uleft(β) uright(β)
.

In addition, there is a unique β0 ∈ (αmax, βmin) such that dα
dβ (β0) = 0 and α(β0) is

the global minimum of the function α(β) and

dα

dβ
(β)


< 0, if β < β0

= 0, if β = β0

> 0, if β > β0,

Proof: By multiplying the equality

(Q− βV ) uright(β + h)− h V uright(β + h)
= (α(β + h)− α(β)) uright(β + h) + α(β) uright(β + h),

by uleft(β)
h and by letting h → 0, we obtain that α(β) is a differentiable function of β. By

Lemma 5.6 it is also convex and attains its minimum. hence, there exists unique β0 such
that α(β0) is the global minimum of α(β) and that dα

dβ (β0) = 0. By Lemma 5.6, α(β)
has two zeros, αmax ≤ 0 and βmin ≥ 0. Hence, β0 ∈ (αmax, βmin) when αmax 6= βmin

and β0 = αmax = βmin when αmax = βmin.
It remains to show that α(β) is strictly monotone on (−∞, β0] and [β0,+∞), Let α

and u(β) be the Perron-Frobenius eigenvalue and eigenvector, respectively, of (Q−βV ).
Then, u(β) is a positive eigenvector of V −1(Q− αI).

(i) Suppose that β0 = 0. Then α(β0) = 0 and therefore α(β) ≥ 0. By (VI), for
α > 0, the only positive eigenvectors of V −1(Q − αI) are fmax(α) and gmin(α) which
are associated with the eigenvalues αmax(α) and βmin(α), respectively. Hence, for fixed
α ≥ α0, there exist only two values of β, αmax(α) and βmin(α), such that α is the
Perron-Frobenius eigenvalue of (Q − βV ). Since αmax(α) ≤ 0 and βmin(α) ≥ 0, it
follows that α(β) is strictly monotone on both intervals (−∞, 0] and [0,+∞).

(ii) Let now β0 ∈ R and let

Q0 = Q− β0V − α0I.

The matrix Q0 is essentially non-negative and, by Lemma 5.1, irreducible, and so is
the matrix (Q0 − βV ) for any β ∈ R. Let α0(β) be the Perron-Frobenius eigenvalue
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of (Q0 − βV ). Then α0(β) = α(β + β0) − α0. Since α(β) attains its global minimum
at β = β0, it follows that α0(β) attains its global minimum zero at β = 0. Therefore,
by (i), α0(β) is strictly monotone on (−∞, 0] and [0,+∞), which implies that α(β) is
strictly monotone on (−∞, β0] and [β0,+∞). �

The sign of the unique argument β0 of the global minimum of the function α(β),
whose existence has been proved in the previous lemma, is found to depend on the
behaviour of the process (ϕt)t≥0. Namely,

Lemma 5.8

In the positive drift case β0 > 0 and α0 < 0.
In the oscillating case β0 = 0 and α0 = 0.
In the negative drift case β0 < 0 and α0 < 0.

Proof: In the drift cases, αmax 6= βmin and therefore, by Lemma 5.7, β0 ∈ (αmax, βmin).
In the positive drift case, by (16), αmax = 0 and βmin > 0, and therefore β0 > 0. In
the negative drift case, by (16), βmin = 0 and αmax < 0, and therefore β0 < 0. Since in
both cases the function α(β) has two distinct zeros, its global minimum α0 is negative.

Finally, in the oscillating case, by (16), αmax = βmin = 0 and then β0 = 0. Thus,
the function α(β) has exactly one zero at β = 0 and, since by 5.6, it attains a global
minimum, it follows that α(β) attains its global minimum at β0 = 0 and that α0 =
α(β0) = 0. �

Lemma 5.9 The matrix Q0 given by (1) is a conservative irreducible Q-matrix. In
addition, if µ0 is a vector on E such that µ0Q0 = 0 then µ0V 1 = 0.

Proof: Since the matrices I and V are diagonal and the vector g0 is positive, the matrix
Q0 is essentially non-negative. In addition, Q01 = 0.

By Lemma 5.1, the matrix (Q − α0I − β0V ) is irreducible which implies that the
matrix et(Q−α0I−β0V ) is positive for all t > 0. Since the vector g0 is positive, it follows
from the definition of Q0 that etQ0

is positive for all t > 0 and that the matrix Q0 is
irreducible.

Let gleft
0 be the left Perron-Frobenius eigenvector of the matrix (Q − β0V ) and let

µ0 be a vector on E with entries µ0(e) = gleft
0 (e)g0(e), e ∈ E. Then µ0Q0 = 0 and by

Lemmas 5.7 and 5.8 µ0V 1 = 0. Since any vector v which satisfies vQ0 = 0 is a constant
multiple of µ0, the proof of the lemma is complete. �

Lemma 5.10 For α ≥ 0, let

V −1(Q− αI) Γα = Γα Gα and V −1(Q0 − αI) Γ0
α = Γ0

α G0
α,

be the Wiener-Hopf factorisations of V −1(Q− αI) and V −1(Q0 − αI), respectively (for
α = 0 we drop the subscript). Then,

G0
α−α0

= G−1
0 (Gα − β0I) G0, and Γ0

α−α0
= G−1

0 Γα G0, α ≥ 0.
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Proof: By the definition of Q0 and by the Wiener-Hopf factorization of V −1(Q − αI),
for every α > 0,

V −1(Q0 − (α− α0)I) = (G−1
0 ΓαG0) (G−1

0 (Gα − β0I)G0) (G−1
0 Γ−1

α G0). (18)

Let G+
0 (respectively G−0 ) be the restriction of G0 to E+×E+ (respectively E−×E−).

Then,

G−1
0 (Gα − β0I)G0 =

(
(G+

0 )−1(G+
α − β0I)G+

0 0
0 −(G−0 )−1(G−α + β0I)G−0

)
.

Suppose that (G+
0 )−1(G+

α−β0I)G+
0 and (G−0 )−1(G−α +β0I)G−0 are Q-matrices. Then,

by Lemma 5.2, (18) is the the Wiener-Hopf factorization of V −1(Q0 − (α − α0)I) for
α > 0, and by the uniqueness of the Wiener-Hopf factorization

G0
α−α0

= G−1
0 (Gα − β0I) G0, Γ0

α−α0
= G−1

0 Γα G0, α ≥ 0.

Therefore, all we have to prove is that (G+
0 )−1(G+

α −β0I)G+
0 and (G−0 )−1(G−α +β0I)G−0

are Q-matrices.
Let the function h be defined by h(e, ϕ, t) = e−α0t e−β0ϕ g0(e). Then h is continuously

differentable in ϕ and t, and, by (15), it is in the domain of the infinitesimal generator A
of the process (Xt, ϕt, t)t≥0 and Ah = 0. It follows that the process (h(Xt∧Hy , ϕt∧Hy , t∧
Hy))t≥0 is a positive martingale. By Fatou’s lemma,

E(e,ϕ)

(
e−α0Hye−β0ϕHy g0(XHy)

)
≤ e−β0ϕ g0(e),

and because g0 is positive, for α > α0,

E(e,ϕ)

(
e−αHy g0(XHy)

)
≤ E(e,ϕ)

(
e−α0Hy g0(XHy)

)
≤ e−β0(ϕ−y) g0(e). (19)

By Lemma 5.3, for ϕ = 0 and y > 0,

e−β0y g0(e) ≥ E(e,0)

(
e−αHy g0(XHy)

)
=

(
eyG+

α g+
0

Π+
α eyG+

α g+
0

)
,

which implies that ey(G+
α−β0)g+

0 ≤ g+
0 . Hence, because

lim
y→0

ey(G+
α−β0)g+

0 − g+
0

y
= (G+

α − β0)g+
0 ,

(G+
α − β0)g+

0 ≤ 0 and therefore, because (G+
0 )−1 is positive,

(G+
0 )−1(G+

α − β0I)G+
0 1+ = (G+

0 )−1(G+
α − β0I)g+

0 ≤ 0

and (G+
0 )−1(G+

α − β0I)G+
0 is a Q-matrix. It can be proved in the same way that

(G−0 )−1(Gα − β0I)G−0 is a Q-matrix. �
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Theorem 5.1 For α ≥ 0, Let αmax(α) and βmin(α) be the eigenvalues of the matrix
V −1(Q − αI) with maximal negative and minimal positive real parts, respectively, and
let fmax(α) and gmin(α) be their associated eigenvectors, respectively.

Then, in the oscillating case, there exists ε > 0 such that, for 0 < α < ε, and some
constants dn, n = 2, 3, . . . and c > 0,

αmax(α) = − 1√
−µV r

α
1
2 + d2α + d3α

3
2 + . . . = − 1√

−µV r
α

1
2 + Θmax(α

1
2 )

βmin(α) =
1√
−µV r

α
1
2 + d2α− d3α

3
2 + . . . =

1√
−µV r

α
1
2 + Θmin(α

1
2 ),

and |Θmax(α
1
2 )| < c α and |Θmin(α

1
2 )| < c α.

The vectors fmax(α) and gmin(α) can be chosen to be

fmax(α) = 1− 1√
−µV r

α
1
2 r + α v2 + . . . = 1− 1√

−µV r
α

1
2 r + Ξmax(α

1
2 )

gmin(α) = 1 +
1√
−µV r

α
1
2 r + α w2 + . . . = 1 +

1√
−µV r

α
1
2 r + Ξmin(α

1
2 ),

where V −1Qr = 1, and |Ξmax(α
1
2 )| < α v and |Ξmin(α

1
2 )| < α w for some positive

vectors v and w on E.
In the negative drift case, there exists ε > 0 such that, for 0 < α < ε and some

constants an and bn, n ∈ N,

αmax(α) = αmax + a1α + a2α
2 + . . . and βmin(α) = b1α + b2α

2 + b3α
3 + . . . ,

and the vectors fmax(α) and gmin(α) can be chosen to be

fmax(α) = fmax + αv1 + α2v2 + . . . and gmin(α) = 1 + αw1 + α2w2 + . . . ,

where vn and wn, n ∈ N, are some constant vectors.
The analogous result follows in the positive drift case.

Proof: The eigenvalues of V −1(Q− αI) converge to the eigenvalues of V −1Q as α → 0.
Thus, αmax(α) → αmax and βmin(α) → βmin as α → 0.

In the drift cases, by (16), αmax 6= βmin. Hence, αmax and βmin are simple eigenval-
ues of V −1Q which implies that, for sufficiently small α > 0, αmax(α) and βmin(α), and
also fmax(α) and gmin(α), can be represented by convergent power series (see Wilkinson
[5]). In addition, in the positive drift case, αmax = 0 and fmax = 1 and in the negative
drift case βmin = 0 and gmin = 1. Therefore, the part of the theorem for the drift cases
is proved.

In the oscillating case, by (16), zero is an eigenvalue of the matrix V −1Q with
algebraic multiplicity two. Hence, there exists ε > 0 such that for 0 < |α| < ε there
exist two eigenvalues of V −1(Q − αI) which converge to zero as α → 0, and those are
αmax(α) and βmin(α). In addition, one of the following is valid:
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either
αmax(α) = a1α + a2α

2 + a3α
3 + . . .

βmin(α) = b1α + b2α
2 + b3α

3 + . . . ,
(20)

for some constants ak, bk, k ∈ N, or

αmax(α) = d1α
1
2 + d2α + d3α

3
2 + . . .

βmin(α) = −d1α
1
2 + d2α− d3α

3
2 + . . . ,

(21)

for some constants dk, k ∈ N. We shall show that (20) is not possible.
For any α > 0,

(Q− αmax(α)V )fmax(α) = αfmax(α). (22)

Since by Lemma 5.1, the matrix (Q − αmaxV ) is irreducible and essentially non-
negative and the vector fmax(α) is positive, it follows that α is the Perron-Frobenius
eigenvalue of (Q− αmax(α)V ). Similarly, α is the Perron-Frobenius eigenvalue of (Q−
βmin(α)V ).

Let β ∈ R and consider the matrix (Q − βV ) and its Perron-Frobenius eigenvalue
α(β) and eigenvector u(β). The eigenvalue α(β) is simple and it converges to a simple
eigenvalue of the matrix Q as β → 0. Thus, for |β| < δ,

α(β) = c0 + c1β + c2β
2 + . . .

u(β) = 1 + βv1 + β2v2 + . . . ,
(23)

for some constants ck, k ∈ N ∪ {0} and some vectors vk, k ∈ N, on E.
Suppose that the process (ϕt)t≥0 oscillates. By Lemmas 5.7 and 5.8 the eigenvalue

α(β) attains its global minimum 0 at β = 0. Hence, α(0) = dα
dβ (0) = 0, which gives that

c0 = c1 = 0, and therefore

α(β) = c2β
2 + c3β

3 + c4β
4 + . . . . (24)

By substituting α(β) and u(β) into the equation

(Q− βV )u(β) = α(β)u(β)

and by equating terms in β and β2 on each side of the previous equation, we obtain

V −1Qv1 = 1 Qv2 − V v1 = c21. (25)

It follows that c2 6= 0 (if c2 = 0 then V −1Qv2 = v1 which is by Jordan matrix theory
not possible since 0 is the eigenvalue of V −1Q with algebraic multiplicity 2).

Suppose that (20) is true. Then, it follows from (20) and (22) that, for |α| < ε,

α = α(αmax) = c2 α2
max(α) + c3 α3

max(α) + . . .

= c2(a1α + a2α
2 + . . .)2 + c3(a1α + a2α

2 + . . .)3 + . . .

= c2a
2
1α

2 + const.α3 + . . . ,
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which is not possible for every |α| < ε. Hence, (20) is not true and thus (21) holds.
Substituting αmax(α) and βmin(α) from (21) into (24) gives d2

1 = 1
c2

. By Lemmas 5.7
and 5.8, α(0) = 0 is the minimum of the function α(β) which implies that α(β) > 0 for
all β ∈ R, and, by (24), that c2 > 0. By multiplying second equality in (25) by µ from
the left, we obtain (because µ1 = 1), c2 = −µV v1

µ1 = −µV v1. Therefore, the statement
in the theorem follows from (21) and (23). �
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