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Abstract

Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite statespace E,
let v : E → R\{0} and let (ϕt)t≥0 be defined by ϕt =

∫ t
0 v(Xs)ds. We consider the

cases where the process (ϕt)t≥0 is oscillating and where (ϕt)t≥0 has a negative drift.
In each of the cases we condition the process (Xt, ϕt)t≥0 on the event that (ϕt)t≥0 hits
level y before hitting zero and prove weak convergence of the conditioned process as
y → ∞. In addition, we show the relation between conditioning the process (ϕt)t≥0

with a negative drift to oscillate and conditioning it to stay non-negative until large
time, and relation between conditioning (ϕt)t≥0 with a negative drift to drift to drift to
+∞ and conditioning it to hit large levels before hitting zero.

1 Introduction

Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite statespace E,
let v be a map v : E → R\{0}, let (ϕt)t≥0 be an additive functional defined by ϕt =∫ t
0 v(Xs)ds and let Hy, y ∈ R, be the first hitting time of level y by the process (ϕt)t≥0.

In the previous paper Jacka, Najdanovic, Warren (2004) we discussed the problem of
conditioning the process (Xt, ϕt)t≥0 on the event that the process (ϕt)t≥0 stays non-
negative, that is the event {H0 = +∞}. In the oscillating case and in the case of the
negative drift of the process (ϕt)t≥0, when the event {H0 = +∞} is of zero probability,
the process (Xt, ϕt)t≥0 can instead be conditioned on some approximation of the event
{H0 = +∞}. In Jacka et al. (2004) we considered the approximation by the events
{H0 > T}, T > 0, and proved weak convergence as T → ∞ of the process (Xt, ϕt)t≥0

conditioned on this approximation.
In this paper we look at another approximation of the event {H0 = +∞} which is

the approximation by the events {H0 > Hy}, y ∈ R. Again, we are interested in weak
convergence as y →∞ of the process (Xt, ϕt)t≥0 conditioned on this approximation.
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Our motivation comes from a work by Bertoin and Doney. In Bertoin, Doney (1994)
the authors considered a real-valued random walk {Sn, n ≥ 0} that does not drift to
+∞ and conditioned it to stay non-negative. They discussed two interpretations of this
conditioning, one was conditioning S to exceed level n before hitting zero, and another
was conditioning S to stay non-negative up to time n. As it will be seen, results for our
process (Xt, ϕt)t≥0 conditioned on the event {H0 = +∞} appear to be analogues of the
results for a random walk.

Furthermore, similarly to the results obtained in Bertoin, Doney (1994) for a real-
valued random walk {Sn, n ≥ 0} that does not drift to +∞, we show that in the negative
drift case

(i) taking the limit as y →∞ of conditioning the process (Xt, ϕt)t≥0 on {Hy < +∞}
and then further conditioning on the event {H0 = +∞} yields the same result as
the limit as y →∞ of conditioning (Xt, ϕt)t≥0 on the event {H0 > Hy};

(ii) conditioning the process (Xt, ϕt)t≥0 on the event that the process (ϕt)t≥0 oscillates
and then further conditioning on {H0 = +∞} yields the same result as the limit
as T →∞ of conditioning the process (Xt, ϕt)t≥0 on {H0 > T}.

The organisation of the paper is as follows: in Section 2 we state the main theorems
in the oscillating and in the negative drift case; in Section 3 we prove the main theorem
in the oscillating case; in Section 4 we prove the main theorem in the negative drift
case. Sections 5 and 6 deal with the negative drift case of the process (ϕt)t≥0 and
commuting diagrams in conditioning the process (Xt, ϕt)t≥0 on {Hy < H0} and {H0 >
T}, respectively, listed in (i) and (ii) above. Finally, Section 7 is concerned with the
Green’s function of the process (Xt, ϕt)t≥0 and some auxiliary results needed for the
proofs in previous sections.

All the notation in the present paper is taken from Jacka et al. (2004).

2 Main theorems

For fixed y > 0, let P y
(e,ϕ) denote the law of the process (Xt, ϕt)t≥0, starting at (e, ϕ) ∈

E+
0 , conditioned on the event {Hy < H0}, and let P y

(e,ϕ)|Ft , t ≥ 0, be the restriction of
P y

(e,ϕ) to Ft. We are interested in weak convergence of (P y
(e,ϕ)|Ft)T≥0 as y → +∞.

Theorem 2.1 Suppose that the process (ϕt)t≥0 oscillate. Then, for fixed (e, ϕ) ∈
E+

0 and t ≥ 0, the measures (P y
(e,ϕ)|Ft)y≥0 converge weakly to the probability measure

P r
(e,ϕ)|Ft as y →∞. The measure P r

(e,ϕ) is defined by

P r
(e,ϕ)(A) =

E(e,ϕ)

(
I(A)hr(Xt, ϕt)I{t < H0}

)
hr(e, ϕ)

, t ≥ 0, A ∈ Ft,
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where the function hr is given by

hr(e, y) = e−yV −1QJ1Γ2r(e), (e, y) ∈ E × R,

and V −1Qr = 1.

By comparing Theorem 2.1 and Theorem 2.1 in Jacka et al. (2004) we see that the
measures (P y

(e,ϕ))y≥0 and (P T
(e,ϕ))T≥0 converge weakly to the same limit. Therefore, in

the oscillating case conditioning (Xt, ϕt)t≥0 on {Hy < H0}, y > 0, and conditioning
(Xt, ϕt)t≥0 on {H0 > T}, T > 0, yield the same result.

Theorem 2.2 Suppose that the process (ϕt)t≥0 drifts to −∞. Then, for fixed (e, ϕ) ∈
E+

0 and t ≥ 0, the measures (P y
(e,ϕ)|Ft)y≥0 converge weakly to the probability measure

P fmax

(e,ϕ) |Ft as y →∞ given by

P fmax

(e,ϕ) (A) =
E(e,ϕ)

(
I(A)hfmax(Xt, ϕt)I{t < H0}

)
hfmax(e, ϕ)

, t ≥ 0, A ∈ Ft

where the function hfmax is

hfmax(e, y) = e−yV −1QJ1Γ2fmax(e), (e, y) ∈ E × R.

3 The oscillating case: Proof of Theorem 2.1

Let t ≥ 0 be fixed and let A ∈ Ft. We start by looking at the limit of P y
(e,ϕ)(A) as

y → +∞. For (e, ϕ) ∈ E+
0 and y > ϕ, by (viii) in Jacka et al. (2004), the event

P(e,ϕ)(Hy < H0) > 0, y > 0. Hence, by the Markov property, for any (e, ϕ) ∈ E+
0 and

any A ∈ Ft,

P y
(e,ϕ)(A) = P(e,ϕ)(A | Hy < H0)

=
1

P(e,ϕ)(Hy < H0)
E(e,ϕ)

(
I(A)(I{t<H0 ∧Hy}P(Xt,ϕt)(Hy < H0)

+I{Hy ≤ t < H0}+ I{Hy < H0 ≤ t})
)
. (1)

Lemma 3.1 Let r be a vector such that V −1Qr = 1. Then

(i) hr(e, ϕ) ≡ e−ϕV −1QJ1Γ2r(e) > 0, (e, ϕ) ∈ E+
0 ,

(ii) lim
y→+∞

P(e′,ϕ′)(Hy < H0)
P(e,ϕ)(Hy < H0)

=
e−ϕ′V −1QJ1Γ2r(e′)
e−ϕV −1QJ1Γ2r(e)

, (e, ϕ), (e′, ϕ′) ∈ E+
0 .
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Proof: (i) Let the matrices A−y and C−y be as given in (14). Then,

hr(·, ϕ) = e−ϕV −1QJ1Γ2r =
(

Aϕ(r+ −Π−r−)
Cϕ(r+ −Π−r−)

)
.

The outline of the proof is the following: first we show that the vector Aϕ(r+−Π−r−)
is positive by showing that it is a Perron-Frobenius vector of some positive matrix. Then,
because Cϕ(r+ − Π−r−) = CϕA−1

ϕ Aϕ(r+ − Π−r−) and that the matrix CϕA−1
ϕ is, by

Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), positive, we conclude that
the vector Cϕ(r+ −Π−r−) is also positive and that the function hr is positive.

Therefore, all we have to prove is that the vector Aϕ(r+−Π−r−) is positive for any
ϕ ∈ R. Let r be fixed vector such that V −1Qr = 1. Then

eyV −1Qr = r + y1 ⇔ A−yr
+ + B−yr

− = r+ + y1+

C−yr
+ + D−yr

− = r− + y1−.

By (17), the matrix Aϕ is invertible. Thus, because 1+ = Π−1−, (A−y −Π−C−y) =
(Ay −Π−Cy)−1 and (B−y −Π−D−y) = −(A−y −Π−C−y)Π−,(

Aϕ(Ay −Π−Cy)−1A−1
ϕ

)
Aϕ(r+ −Π−r−) = Aϕ(r+ −Π−r−).

By Theorem 7.3 the matrix Aϕ(Ay −Π−Cy)−1 is positive. By Lemma 7.2, Theorem
7.3 and by (viii) in Jacka et al. (2004), the matrix A−1

ϕ is also positive. Hence, the
matrix Aϕ(Ay − Π−Cy)−1A−1

ϕ is positive and it has the Perron-Frobenius eigenvector
which is also positive.

Suppose that Aϕ(r+−Π−r−) = 0. Then, because Aϕ is invertible, (r+−Π−r−) = 0.
If r+ = Π−r− then r is a linear combination of the vectors gk, k = 1, . . . ,m in the basis
B, but that is not possible because r is also in the basis B and therefore independent from
gk, k = 1, . . . ,m. Hence, the vector Aϕ(r+ − Π−r−) 6= 0 and by the last equation it is
the eigenvector of the matrix Aϕ(A−y−Π−C−y)A−1

ϕ which corresponds to its eigenvalue
1.

It follows from(
Aϕ(Ay −Π−Cy)−1A−1

ϕ

)
Aϕ(I −Π−Π+) = Aϕ(I −Π−Π+) eyG+

(2)

that if α is a non-zero eigenvalue of the matrix G+ with some algebraic multiplicity,
then eαy is an eigenvalue of the matrix Aϕ(Ay − Π−Cy)−1A−1

ϕ with the same algebraic
multiplicity. Since all n − 1 non-zero eigenvalues of G+ are with negative real parts,
all eigenvalues eαjy, αj 6= 0, j = 1, . . . , n, of Aϕ(Ay − Π−Cy)−1A−1

ϕ have real parts
strictly less than 1. Thus, 1 is the Perron-Frobenius eigenvalue of the matrix Aϕ(Ay −
Π−Cy)−1A−1

ϕ and the vector Aϕ(r+ − Π−r−) is its Perron-Frobenius eigenvector, and
therefore positive.

(ii) The statement follows directly from the equality

lim
y→+∞

P(e′,ϕ′)(Hy < H0)
P(e,ϕ)(Hy < H0)

= lim
y→+∞

G0(ϕ′, y)1(e′)
G0(ϕ, y)1(e)

,
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where G0(ϕ, y) is the Green’s function for the killed process defined in Appendix, and
from the representation of G0(ϕ, y) given by

G0(ϕ, y)1 =
∑

j,αj 6=0

aj e−ϕV −1QJ1Γ2 eyV −1Qfj + c e−ϕV −1QJ1Γ2r,

for some constants aj , j = 1, . . . , n and c 6= 0. For the details of the proof see Najdanovic
(2003). �

Proof of Theorem 2.1: For fixed (e, ϕ) ∈ E+
0 , t ∈ [0,+∞) and y ≥ 0, let hy(e, ϕ, t)

be a random variable defined on the probability space (Ω,F , P(e,ϕ)) by

hy(e, ϕ, t) =
1

P(e,ϕ)(Hy < H0)

(
I{t<H0 ∧Hy}P(Xt,ϕt)(Hy < H0)

+I{Hy ≤ t < H0}+ I{Hy < H0 ≤ t}
)
.

By Lemma 3.1 (ii) and by Lemmas 3.2, 3.3 and 3.4 in Jacka et al. (2004) the random
variables hy(e, ϕ, t) converge to hr(Xt,ϕt)

hr(e,ϕ) I{t < H0} in L1(Ω,F , P(e,ϕ)) as y → +∞.
Therefore, by (1), for fixed t ≥ 0 and A ∈ Ft,

lim
y→+∞

P y
(e,ϕ)(A) = lim

y→+∞
E(e,ϕ)

(
I(A)hy(e, ϕ, t)

)
= P r

(e,ϕ)(A),

which, by Lemma 3.3 (ii) in Jacka et al. (2004), implies that the measures (P y
(e,ϕ)|Ft)y≥0

converge weakly to P r
(e,ϕ)|Ft as y →∞. �

4 The negative drift case: Proof of Theorem 2.2

Again, as in the oscillating case, we start with the limit of P y
(e,ϕ)(A) as y → +∞ by

looking at limy→+∞
P(e′,ϕ′)(Hy<H0)

P(e,ϕ)(Hy<H0) . First we prove an auxiliary lemma.

Lemma 4.1 For any vector g on E limy→+∞ F (y)g = 0.
In addition, for any non-negative vector g on E limy→+∞ e−αmaxyF (y)g = c J1fmax

for some positive constant c ∈ R.

Proof: Let

g =
(

g+

g−

)
and g+ =

n∑
j=1

ajf
+
j ,

for some coefficients aj , j = 1, . . . , n, where vectors f+
j , j = 1, . . . , n, form the basis N+

and are associated with the eigenvalues αj , j = 1, . . . , n (see Jacka et.al (2004)).
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Then, the first equality in the lemma follows from

F (y)g =
(

eyG+
0

0 0

) (
g+

g−

)
=

(
eyG+

g+

0

)
=

n∑
j=1

aj

(
eyG+

f+
j

0

)
, y > 0, (3)

since, for Re(αj) < 0, j = 1, . . . , n, eyG+
f+

j → 0 as y → +∞.
Moreover, by (iii) in Jacka et al. (2004), the matrix G+ is an irreducible Q-matrix

with the Perron-Frobenius eigenvalue αmax and Perron-Frobenius eigenvector f+
max.

Thus, for any non-negative vector g on E+, by (VII) in Jacka et al. (2004),

lim
y→+∞

e−αmaxy eyG+
g(e) = c f+

max(e), (4)

for some positive constant c ∈ R. Therefore, from (3) and (4)

lim
y→+∞

e−αmaxy F (y)g = lim
y→+∞

(
e−αmaxy eyG+

g+

0

)
= c

(
f+

max

0

)
= c J1fmax.

�

Now we find the limit limy→+∞
P(e′,ϕ′)(Hy<H0)

P(e,ϕ)(Hy<H0) .

Lemma 4.2

(i) hfmax(e, ϕ) ≡ e−ϕV −1QJ1Γ2fmax(e) > 0, (e, ϕ) ∈ E+
0 ,

(ii) lim
y→+∞

P(e′,ϕ′)(Hy < H0)
P(e,ϕ)(Hy < H0)

=
e−ϕ′V −1QJ1Γ2fmax(e′)
e−ϕV −1QJ1Γ2fmax(e)

, (e, ϕ), (e′, ϕ′) ∈ E+
0 .

Proof: (i) The function hfmax can be rewritten as

hfmax(·, ϕ) = e−ϕV −1QJ1Γ2fmax =
(

Aϕ(I −Π−Π+)f+
max

Cϕ(I −Π−Π+)f+
max

)
where Aϕ and Cϕ are given by (14).

First we show that the vector Aϕ(I −Π−Π+)f+
max is positive. By (16), (iv) and (ii)

in Jacka et al. (2004) the matrix (I −Π−Π+) is invertible and by (17) the matrix Aϕ is
invertible. Therefore,

Aϕ(A−y −Π−C−y)A−1
ϕ = Aϕ(I −Π−Π+)eyG+

(I −Π−Π+)−1A−1
ϕ .

By Theorem 7.3 the matrix Aϕ(Ay−Π−Cy)−1 is positive and by Lemma 7.2, Theorem
7.3 and by (viii) in Jacka et al.(2004), the matrix A−1

ϕ is also positive. Hence, the matrix
Aϕ(A−y −Π−C−y)A−1

ϕ is positive and is similar to eyG+
. Thus, Aϕ(A−y −Π−C−y)A−1

ϕ

and eyG+
have the same Perron-Frobenius eigenvalue and because the Perron-Frobenius
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eigenvector of eyG+
is f+

max, it follows that Aϕ(I −Π−Π+)f+
max is the Perron-Frobenius

eigenvector of Aϕ(A−y −Π−C−y)A−1
ϕ and therefore positive. In addition,

Cϕ(I −Π−Π+)f+
max = CϕA−1

ϕ Aϕ(I −Π−Π+)f+
max,

and by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), the matrix CϕA−1
ϕ

is positive. Therefore, the function hfmax is positive.
(ii) By Lemmas 7.2, 4.1 and Theorem 7.3

lim
y→+∞

P(e′,ϕ′)(Hy < H0)
P(e,ϕ)(Hy < H0)

== lim
y→+∞

e−ϕ′V −1QΓΓ2F (y)1(e′)
e−ϕV −1QΓΓ2F (y)1(e)

.

Since the vector 1 is non-negative and because ΓΓ2J1fmax = J1Γ2fmax, the statement
in the lemma follows from Lemma 4.1. �

The function hfmax has the property that the process {hfmax(Xt, ϕt)I{t < H0},
t ≥ 0} is a martingale under P(e,ϕ). We prove this in the following lemma.

Lemma 4.3 The process {hfmax(Xt, ϕt)I{t < H0}, t ≥ 0} is a martingale under P(e,ϕ).

Proof: The function hfmax(e, ϕ) is continuously differentiable in ϕ and therefore by (15)
in Jacka et al. (2004) it is in the domain of the infinitesimal generator G of the process
(Xt, ϕt)t≥0 and Ghfmax = 0. The rest of the proof is analogous to the proof of Lemma
3.3 in Jacka et al. (2004). �

Proof of Theorem 2.2: The theorem is proved in the same way as Theorem 2.1, the
only difference is that Lemma 4.2 is used instead of Lemma 3.1. �

5 The negative drift case: conditioning (ϕt)t≥0 to drift to
+∞

The process (Xt, ϕt)t≥0 can also be conditioned first on the event that (ϕt)t≥0 hits large
levels y regardless of crossing zero (that is taking the limit as y → ∞ of conditioning
(Xt, ϕt)t≥0 on {Hy < +∞}), and then the resulting process can be conditioned on the
event that (ϕt)t≥0 stays non-negative. In this section we show that these two condi-
tionings performed in the stated order yield the same result as the limit as y → +∞ of
conditioning (Xt, ϕt)t≥0 on {Hy < H0}.

Let (e, ϕ) ∈ E+
0 and y > ϕ. Then, by (ix) in Jacka et al. (2004), the event

{Hy < +∞} is of positive probability and the process (Xt, ϕt)t≥0 can be conditioned on
{Hy < +∞} in the standard way.

For fixed t ≥ 0 and any A ∈ Ft,

P(e,ϕ)(A | Hy < +∞) =
E(e,ϕ)

(
I(A)P(Xt,ϕt)(Hy < +∞)I{t < Hy}+ I(A)I{Hy < t}

)
P(e,ϕ)(Hy < +∞)

.

(5)
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Lemma 5.1 For any (e, ϕ), (e′, ϕ′) ∈ E+
0 ,

lim
y→+∞

P(e′,ϕ′)(Hy < +∞)
P(e,ϕ)(Hy < +∞)

=
e−αmaxϕ′fmax(e′)
e−αmaxϕfmax(e)

.

Proof: By Lemma 5.5 in Jacka et al. (2004), for 0 ≤ ϕ < y,

P(e,ϕ)(Hy < +∞) = P(e,ϕ−y)(H0 < +∞) = ΓF (y − ϕ)1.

The vector 1 is non-negative. Hence, by Lemma 4.1 and because ΓJ1fmax = fmax,

lim
y→+∞

P(e′,ϕ′)(Hy < +∞)
P(e,ϕ)(Hy < +∞)

= lim
y→+∞

e−αmaxϕ′Γe−αmax(y−ϕ′)F (y − ϕ)1(e′)
e−αmaxϕΓe−αmax(y−ϕ)F (y − ϕ)1(e)

=
e−αmaxϕ′fmax(e′)
e−αmaxϕfmax(e)

.

�

Let hmax(e, ϕ) be a function on E × R defined by

hmax(e, ϕ) = e−αmaxϕfmax(e).

Lemma 5.2 The process (hmax(Xt, ϕt))t≥0 is a martingale under P(e,ϕ).

Proof: The function hmax(e, ϕ) is continuously differentiable in ϕ which implies that it
is in the domain of the infinitesimal generator G of the process (Xt, ϕt)t≥0. In addition,
Ghmax = 0. It follows that the process (hmax(Xt, ϕt))t≥0 is a local martingale under
P(e,ϕ) and, because it is bounded on every finite interval, the process (hmax(Xt, ϕt))t≥0

is a martingale under P(e,ϕ). �

By Lemmas 5.1 and 5.2 we prove

Theorem 5.1 For fixed (e, ϕ) ∈ E+
0 , let P hmax

(e,ϕ) be a measure defined by

P hmax

(e,ϕ) (A) =
E(e,ϕ)

(
I(A) hmax(Xt, ϕt)

)
hmax(e, ϕ)

, t ≥ 0, A ∈ Ft.

Then, P hmax

(e,ϕ) is a probability measure and, for fixed t ≥ 0,

lim
y→+∞

P(e,ϕ)(A | Hy < +∞) = P hmax

(e,ϕ) (A), A ∈ Ft.

Proof: By the definition, the function hmax is positive. Hence P hmax

(e,ϕ) is a measure.
In addition, by Lemma 5.2, the process (hmax(Xt, ϕt))t≥0 is a martingale under P(e,ϕ).
Hence, P hmax

(e,ϕ) is a probability measure.
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For fixed (e, ϕ) ∈ E+
0 and t, y ≥ 0, let hy(e, ϕ, t) be a random variable defined on

the probability space (Ω,F , P(e,ϕ)) by

hy(e, ϕ, t) =
P(Xt,ϕt)(Hy < +∞)I{t < Hy}+ I(A)I{Hy < t}

P(e,ϕ)(Hy < +∞)
.

The random variables hy(e, ϕ, t), y ≥ 0, are non-negative and, by Lemma 5.1,

lim
y→+∞

hy(e, ϕ, t) =
hmax(Xt, ϕt)
hmax(e, ϕ)

, a.s..

The rest of the proof is analogous to the proof of Theorem 2.1. �

We now want to condition the process (Xt, ϕt)t≥0 under P hmax

(e,ϕ) on the event {H0 =

+∞}. By Theorem 7.4, (Xt)t≥0 under P hmax

(e,ϕ) is Markov with the irreducible conservative
Q-matrix Qhmax given by

Qhmax(e, e′) =
fmax(e′)
fmax(e)

(Q− αmaxV )(e, e′), e, e′ ∈ E,

and, by the same theorem, the process (ϕt)t≥0 under P hmax

(e,ϕ) drifts to +∞. We find the
Wiener-Hopf factorization of the matrix V −1Qhmax .

Lemma 5.3 The unique Wiener-Hopf factorization of the matrix V −1Qhmax is given
by V −1Qhmax Γhmax = Γhmax Ghmax, where, for any (e, e′) ∈ E × E,

Ghmax(e, e′) =
fmax(e′)
fmax(e)

(G− αmaxI)(e, e′) and Γhmax(e, e′) =
fmax(e′)
fmax(e)

Γ(e, e′).

In addition, if

Ghmax =
(

Ghmax,+ 0
0 −Ghmax,−

)
and Γhmax =

(
I Πhmax,−

Πhmax,+ I

)
,

then Ghmax,+ is a conservative Q−matrix and Πhmax,+ is stochastic, and Ghmax,− is not
a conservative Q−matrix and Πhmax,− is strictly substochastic.

Proof: By the definition the matrices Ghmax,+ and Ghmax,− are essentially non-negative.
In addition, for any e ∈ E+, Ghmax,+1(e) = 0. Hence, Ghmax,+ is a conservative Q-
matrix. By Lemma 4.2 (i),

h−fmax
= (Π+e−ϕG+ − eϕG−

Π+)f+
max = e−αmaxϕ(I − eϕ(G−+αmaxI))f−max > 0.

Since

lim
ϕ→0

(I − eϕ(G−+αmaxI)) f−max

ϕ
= −(G− + αmaxI)f−max,
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and (I − eϕ(G−+αmaxI))f−max > 0, it follows that (G− + αmaxI)f−max ≤ 0. Thus,
Ghmax,−1− ≤ 0 and so Ghmax,− is a Q-matrix. Moreover, if (G− + αmaxI)f−max = 0
then hfmax(e, ϕ) = 0 for e ∈ E− which is a contradiction to Lemma 4.2. Therefore, the
matrix Ghmax,− is not conservative.

The matrices Ghmax and Γhmax satisfy the equality V −1Qhmax Γhmax = Γhmax Ghmax ,
which, by Lemma 5.4 in Jacka et al. (2004), gives the unique Wiener-Hopf factorization
of the matrix V −1Qhmax . Finally, by (iv) in Jacka et al. (2004), Πhmax,+ is a stochastic
and Πhmax,− is a strictly substochastic matrix. �

Finally, we prove the main result in this section

Theorem 5.2 Let P fmax

(e,ϕ) be as defined in Theorem 2.2. Then, for any (e, ϕ) ∈ E+
0 and

any t ≥ 0,
P hmax

(e,ϕ) (A |H0 = ∞) = P fmax

(e,ϕ) (A), A ∈ Ft.

Proof: By Theorem 7.4 the process (ϕt)t≥0 under P hmax

(e,ϕ) drifts to +∞. Since in the
positive drift case the event {H0 = +∞} is of positive probability, for any t ≥ 0 and
any A ∈ Ft,

P hmax

(e,ϕ) (A |H0 = ∞) =
Ehmax

(e,ϕ)

(
I(A) P hmax

(Xt,ϕt)
(H0 =+∞) I{t < H0}

)
P hmax

(e,ϕ) (H0 =+∞)
. (6)

By Lemma 5.5 in Jacka et al. (2004) and by Lemma 5.3, for ϕ > 0,

P hmax

(e,ϕ) (H0 = +∞) = 1− eαmaxϕ

fmax(e)

∑
e′′∈E

Γe−ϕG(e, e′′) J21(e′′) fmax(e′′)

=
1

hmax(e, ϕ)

(
e−αmaxϕ fmax − ΓF (−ϕ)fmax

)
(e)

=
hfmax(e, ϕ)
hmax(e, ϕ)

, (7)

where hfmax is as defined in Lemma 4.2. Similarly, for e ∈ E+,

P hmax

(e,0) (H0 = +∞) =
f+

max −Π−f−max)(e)
f+

max(e)
=

hfmax(e, 0)
hmax(e, 0)

.

Therefore, the statement in the theorem follows from Theorem 5.1, (6) and (7). �

We summarize the results from this section: in the negative drift case, making the
h-transform of the process (Xt, ϕt)t≥0 with the function hmax(e, ϕ) = e−αmaxϕfmax(e)
yields the probability measure P hmax

(e,ϕ) such that (Xt)t≥0 under P hmax

(e,ϕ) is Markov and that

(ϕt)t≥0 under P hmax

(e,ϕ) is with a positive drift. The process (Xt, ϕt)t≥0 under P hmax

(e,ϕ) is also
the limiting process as y → +∞ in conditioning (Xt, ϕt)t≥0 under P(e,ϕ) on {Hy < +∞}.
Further conditioning (Xt, ϕt)t≥0 under P hmax

(e,ϕ) on {H0 = +∞} yields the same result as
the limit as y → +∞ of conditioning (Xt, ϕt)t≥0 on {Hy < H0}. In other words, the
diagram in Figure 1 commutes.
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(Xt, ϕt)t≥0 under P(e,ϕ)

(Xt, ϕt)t≥0 under P hmax

(e,ϕ)

(Xt, ϕt)t≥0 under P fmax

(e,ϕ)

{Hy < H0}, y→+∞

{Hy < +∞}, y→+∞ {H0 = +∞}
(the negative drift case)

(the positive drift case)

Figure 1: The negative drift case of conditioning the process (Xt, ϕt)t≥0 on the events
{Hy < H0}, y ≥ 0.

6 The negative drift case: conditioning (ϕt)t≥0 to oscillate

In this section we condition the process (ϕt)t≥0 with a negative drift to oscillate, and
then condition the resulting oscillating process to stay non-negative. Let P h

(e,ϕ) denote
the h-transformed measure P(e,ϕ) with a function h. We want to find a function h such
that the process (Xt)t≥0 under P h

(e,ϕ) is Markov and that the process (ϕt)t≥0 under P h
(e,ϕ)

oscillates. By Theorem 7.4, there does not exist such function defined on E×R. But, by
Theorem 7.5, there exists exactly one such function defined on E × R× [0,+∞) which
is given by

h0(e, ϕ, t) = e−α0te−β0ϕg0(e),

where α(β) is the Perron-Frobenius eigenvalue of the matrix (Q−βV ), β0 is the argmin
of α(·), α0 = α(β0) and g0 is the Perron-Frobenius eigenvector of the matrix (Q−β0V ).

For fixed (e, ϕ) ∈ E+
0 , let a measure P h0

(e,ϕ) be defined by

P h0

(e,ϕ)(A) =
E(e,ϕ)

(
I(A)h0(Xt, ϕt, t)

)
h0(e, ϕ, 0)

, A ∈ Ft, t ≥ 0. (8)

Then, the process (Xt)t≥0 under P h0

(e,ϕ) is Markov with the Q-matrix Q0 given by

Q0(e, e′) =
g0(e′)
g0(e)

(Q− α0I − β0V )(e, e′), e, e′ ∈ E. (9)

and, by Theorem 7.5, the process (ϕt)t≥0 under P h0

(e,ϕ) oscillates.

The aim now is to condition (Xt, ϕt)t≥0 under P h0

(e,ϕ) on the event that (ϕt)t≥0 stays
non-negative. The following theorem determines the law of this new conditioned process.
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Theorem 6.1 For fixed (e, ϕ) ∈ E+
0 , let a measure P

h0,h0
r

(e,ϕ) be defined by

P
h0,h0

r

(e,ϕ) (A) =
Eh0

(e,ϕ)

(
I(A)h0

r(Xt, ϕt)I{t < H0}
)

h0
r(e, ϕ)

, A ∈ Ft, t ≥ 0,

where the function h0
r is given by h0

r(e, y) = e−yV −1Q0
J1Γ2r

0(e), (e, y) ∈ E × R, and
V −1Q0r0 = 1. Then, P

h0,h0
r

(e,ϕ) is a probability measure.
In addition, for t ≥ 0 and A ∈ Ft,

P
h0,h0

r

(e,ϕ) (A) = lim
y→∞

P h0

(e,ϕ)(A | Hy < H0) = lim
T→∞

P h0

(e,ϕ)(A | H0 > T ),

and
P

h0,h0
r

(e,ϕ) (A) = P r0

(e,ϕ)(A),

where P r0

(e,ϕ) is as defined in Theorem 2.2 in Jacka et al. (2004).

Proof: By Lemma 5.9 and (16) in Jacka et al. (2004), the Q-matrix Q0 of the process
(Xt)t≥0 under P h0

(e,ϕ) is conservative and irreducible and the process (ϕt)t≥0 under P h0

(e,ϕ)

oscillates. Thus, if P
h0,h0

r

(e,ϕ) denotes the law of (Xt, ϕt)t≥0 under P h0

(e,ϕ) conditioned on

{H0 = +∞}, then, by Theorem 2.1 in Jacka et al. (2004) and by Theorem 2.1, P
h0,h0

r

(e,ϕ)
is a probability measure and

P
h0,h0

r

(e,ϕ) (A) = lim
y→∞

P h0

(e,ϕ)(A|Hy < H0) = lim
T→∞

P h0

(e,ϕ)(A|H0 > T ).

In addition, by definition (8) of the measure P h0

(e,ϕ), for t ≥ 0 and A ∈ Ft,

P
h0,h0

r

(e,ϕ) (A) =
E(e,ϕ)

(
I(A) h0(Xt, ϕt, t) h0

r(Xt, ϕt) I{t < H0}
)

h0(e, ϕ, 0) h0
r(e, ϕ)

= P r0

(e,ϕ)(A),

since h0(e, ϕ, t) h0
r(e, ϕ) = hr0(e, ϕ, t) where hr0(e, ϕ, t) is as defined in Theorem 2.2 in

Jacka et al. (2004). �

We summarize the results in this section: in the negative drift case, making the
h-transform of the process (Xt, ϕt, t)t≥0 with the function h0(e, ϕ) = e−α0ϕe−β0ϕg0(e)
yields the probability measure P h0

(e,ϕ) such that (Xt)t≥0 under P h0

(e,ϕ) is Markov and that

(ϕt)t≥0 under P h0

(e,ϕ) oscillates. Then the law of (Xt, ϕt)t≥0 under P h0

(e,ϕ) conditioned on

the event {H0 = +∞} is equal to P
h0,h0

r

(e,ϕ) = P r0

(e,ϕ). On the other hand, by Theorem 2.2
in Jacka et al. (2004), under the condition that all non-zero eigenvalues of the matrix
V −1Q0 are simple, P r0

(e,ϕ) is the limiting law as T → +∞ of the process (Xt, ϕt)t≥0

under P r0

(e,ϕ) conditioned on {H0 > T}. Hence, under the condition that all non-zero
eigenvalues of the matrix V −1Q0 are simple, the diagram in Figure 2 commutes.
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(Xt, ϕt)t≥0 under P(e,ϕ)

(Xt, ϕt)t≥0 under P h0

(e,ϕ)

(Xt, ϕt)t≥0 under P r0

(e,ϕ)

{H0 > T}, T→+∞

{Hy < H0}, y→+∞
{T < H0}, T→+∞

(the negative drift case)

(the oscillating case)

Figure 2: The negative drift case of conditioning the process (Xt, ϕt)t≥0 on the events
{H0 > T}, T ≥ 0.

7 Appendix: The Green’s function

The Green’s function of the process (Xt, ϕt)t≥0, denoted by G((e, ϕ), (f, y)), for any
(e, ϕ), (f, y) ∈ E × R, is defined as

G((e, ϕ), (f, y)) = E(e,ϕ)

( ∑
0≤s<∞

I(Xs = f, ϕs = y)
)
,

noting that the process (Xt, ϕt)t≥0 hits any fixed state at discrete times. For simplicity
of notation, let G(ϕ, y) denote the matrix (G((·, ϕ), (·, y)))E×E .

Theorem 7.1 In the drift cases,

G(0, 0) = Γ−1
2 =

(
(I −Π−Π+)−1 Π−(I −Π+Π−)−1

Π+(I −Π−Π+)−1 (I −Π+Π−)−1

)
.

In the oscillating case, G(0, 0) = +∞.

Proof: By the definition of G(0, 0) and the matrices Π+, Π− and Γ2,

G(0, 0) =
∞∑

n=1

(
0 Π−

Π+ 0

)n

=
∞∑

n=1

(I − Γ2)n.

Suppose that the process (ϕt)t≥0 drifts either to +∞ of −∞. Then by (16) and (IV)
in Jacka et al. (2004) exactly one of the matrices Π+ and Π− is strictly substochastic.
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In addition, the matrix Π−Π+ is positive and thus primitive. Therefore, the Perron-
Frobenius eigenvalue λ of Π−Π+ satisfies 0 < λ < 1 which, by the Perron-Frobenius
theorem for primitive matrices, implies that

lim
n→∞

(Π−Π+)n

(1 + λ)n
= const. 6= 0.

Therefore, (Π−Π+)n → 0 elementwise as n → +∞, and similarly (Π+Π−)n → 0
elementwise as n → +∞. Hence, (I − Γ2)n → 0, n → +∞. Since

I − (I − Γ2)n+1 = Γ2

n∑
k=0

(I − Γ2)k,

and, by (II) in Jacka et al. (2004), Γ−1
2 exists, by letting n → +∞ we obtain

G(0, 0) =
∞∑

n=0

(I − Γ2)n = Γ−1
2 . (10)

Suppose now that the process (ϕt)t≥0 oscillates. Then again by (16) and (IV) in
Jacka et al. (2004), the matries Π+ and Π− are stochastic. Thus, (I − Γ2)1 = 1 and

G(0, 0)1 =
∞∑

n=0

(I − Γ2)n1 =
∞∑

n=0

1 = +∞. (11)

Since the matrix Q is irreducible, it follows that G(0, 0) = +∞. �

Theorem 7.2 In the drift cases, the Green’s function G((e, ϕ), (f, y)) of the process
(Xt, ϕt)t≥0 is given by the E × E matrix G(ϕ, y), where

G(ϕ, y) =
{

Γ F (y − ϕ) Γ−1
2 , ϕ 6= y

Γ−1
2 , ϕ = y.

Proof: By Theorem 7.1, G(y, y) = G(0, 0) = Γ−1
2 . and by Lemma 5.5 in Jacka et al.

(2004),
P(e,ϕ−y)(XH0 = e′,H0 < +∞) = Γ F (y − ϕ)(e, e′), ϕ 6= y.

The theorem now follows from

G((e, ϕ), (f, y)) =
∑
e′∈E

P(e,ϕ−y)(XH0 = e′,H0 < +∞) G((e′, 0), (f, 0)).

�
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The Green’s function G0((e, ϕ), (f, y)), (e, ϕ), (f, y) ∈ E × R, (in matrix notation
G0(ϕ, y)) of the process (Xt, ϕt)t≥0 killed when the process (ϕt)t≥0 crosses zero is defined
by

G0((e, ϕ), (f, y)) = E(e,ϕ)

( ∑
0≤s<H0

I(Xs = f, ϕs = y)
)
.

It follows that G0(ϕ, y) = 0 if ϕy < 0, that G0(ϕ, 0) = 0 if ϕ 6= 0, and that
G0(0, 0) = I. To calculate G0(ϕ, y) for |ϕ| ≤ |y|, ϕy ≥ 0, y 6= 0, we use the following
lemma:

Lemma 7.1 Let (f, y) ∈ E+ × (0,+∞) be fixed and let the process (Xt, ϕt)t≥0 start at
(e, ϕ) ∈ E× (0, y). Let (e, ϕ) 7→ h((e, ϕ), (f, y)) be a bounded function on E× (0, y) such
that the process (h((Xt∧H0∧Hy , ϕt∧H0∧Hy), (f, y)))t≥0 is a uniformly integrable martingale
and that

h((e, 0), (f, y)) = 0, e ∈ E− (12)
h((e, y), (f, y)) = G0((e, y), (f, y)). (13)

Then
h((e, ϕ), (f, y)) = G0((e, ϕ), (f, y)), (e, ϕ) ∈ E × (0, y).

Proof: The proof of the lemma is based on the fact that a uniformly integrable martingale
in a region which is zero on the boundary of that region is zero everywhere. Therefore
we omit the proof. �

Let Ay, By, Cy and Dy be components of the matrix e−yV −1Q such that, for any
y ∈ R,

e−yV −1Q =
(

Ay By

Cy Dy

)
. (14)

Theorem 7.3 The Green’s function G0((e, ϕ), (f, y)), |ϕ| ≤ |y|, ϕy ≥ 0, y 6= 0, e, f ∈
E, is given by the E × E matrix G0(ϕ, y) with the components

G0(ϕ, y) =



(
Aϕ(Ay −Π−Cy)−1 Aϕ(Ay −Π−Cy)−1Π−

Cϕ(Ay −Π−Cy)−1 Cϕ(Ay −Π−Cy)−1Π−

)
, 0 ≤ ϕ < y(

Bϕ(Dy −Π+By)−1Π+ Bϕ(Dy −Π+By)−1

Dϕ(Dy −Π+By)−1Π+ Dϕ(Dy −Π+By)−1

)
, y < ϕ ≤ 0,(

(I −Π−CyA
−1
y )−1 Π−(I − CyA

−1
y Π−)−1

CyA
−1
y (I −Π−CyA

−1
y )−1 (I − CyA

−1
y Π−)−1

)
, ϕ = y > 0(

(I −ByD
−1
y Π+)−1 ByD−1

y (I −Π+ByD
−1
y )−1

Π+(I −ByD
−1
y Π+)−1 (I −Π+ByD

−1
y )−1

)
, ϕ = y < 0,

In the drift cases, G0(ϕ, y) written in matrix notation is given by

G0(ϕ, y) =


Γ e−ϕG Γ2 F (y) Γ−1

2 , 0 ≤ ϕ < y or y < ϕ ≤ 0
Γ F (−ϕ) Γ2 eyG Γ−1

2 , 0 < y < ϕ or ϕ < y < 0(
I − ΓF (−y)ΓF (y)

)
Γ−1

2 , ϕ = y 6= 0.
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In addition, the Green’s function G0(ϕ, y) is positive for all ϕ, y ∈ R except for y = 0
and for ϕy < 0.

Proof: We prove the theorem for y > 0. The case y < 0 can be proved in the same way.
Let y > 0. First we calculate the Green’s function G0(y, y). Let Yy denote a matrix

on E− × E+ with entries

Yy(e, e′) = P(e,y)(XHy = e′,Hy < H0).

Then

G0(y, y) =
(

I Π−

Yy I

) ( ∑∞
n=0(Π

−Yy)n 0
0

∑∞
n=0(YyΠ−)n

)
.

By (viii) in Jacka et al. (2004), the matrix Yy is positive and 0 < Yy1+ < 1−. Hence,
Π−Yy is positive and therefore irreducible and its Perron-Frobenius eigenvalue λ satisfies
0 < λ < 1. Thus,

lim
n→∞

(Π−Yy)n

(1 + λ)n
= const. 6= 0,

which implies that (Π−Yy)n → 0 elementwise as n → +∞. Similarly, (YyΠ−)n → 0
elementwise as n → +∞.

Furthermore, the essentially non-negative matrices (Π−Yy − I) and (YyΠ− − I) are
invertible because their Perron-Frobenius eigenvalues are negative and, by the same
argument, the matrices (I −Π−Yy)−1 and (I − YyΠ−)−1 are positive. Since∑n

k=0(Π
−Yy)k = (I −Π−Yy)−1 (I − (Π−Yy)n+1)∑n

k=0(YyΠ−)k = (I − YyΠ−)−1 (I − (YyΠ−)n+1).

by letting n →∞ we finally obtain

G0(y, y) =
(

(I −Π−Yy)−1 Π−(I −Π−Yy)−1

Yy(I − YyΠ−)−1 (I − YyΠ−)−1

)
=

(
I −Π−

−Y −1
y I

)−1

. (15)

By (i) and (viii) in Jacka et al. (2004), the matrices Π− and Yy are positive. Since
the matrices (I −Π−Yy)−1 and (I − YyΠ−)−1 are also positive, it follows that G0(y, y),
y > 0 is positive.

Now we calculate the Green’s function G0(ϕ, y) for 0 ≤ ϕ < y. Let (f, y) ∈ E+ ×
(0,+∞) be fixed and let the process (Xt, ϕt)t≥0 start in E × (0, y). Let

h((e, ϕ), (f, y)) = e−ϕV −1Qgf,y(e), (16)

for some vector gf,y on E. Since by (15) in Jacka et.al (2004) Ah = 0, the process
(h((Xt, ϕt), (f, y)))t≥0 is a local martingale, and because the function h is bounded on
every finite interval, it is a martingale. In addition, (h((Xt∧H0∧Hy , ϕt∧H0∧Hy), (f, y)))t≥0

is a bounded martingale and therefore a uniformly integrable martingale.
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We want the function h to satisfy the boundary conditions in Lemma 7.1. Let hy(ϕ)
be an E × E+ matrix with entries

hy(ϕ)(e, f) = h((e, ϕ), (f, y)).

Then, from (16) and the boundary condition (12),

hy(ϕ) =
(

Aϕ Bϕ

Cϕ Dϕ

) (
My

0

)
=

(
AϕMy

CϕMy

)
, 0 ≤ ϕ < y,

for some E+ × E+ matrix My. From the boundary condition (13),

AyMy = (I −Π−Yy)−1 and CyMy = Yy(I −Π−Yy)−1, (17)

which implies that My = (Ay −Π−Cy)−1 and Yy = CyA
−1
y . Hence,

hy(ϕ) =
(

Aϕ(Ay −Π−Cy)−1

Cϕ(Ay −Π−Cy)−1

)
, 0 ≤ ϕ < y,

and the function h((e, ϕ), (f, y)) satisfies the boundary conditions (12) and (13) in
Lemma 7.1. Therefore, for 0 ≤ ϕ < y, G0(ϕ, y) = hy(ϕ) on E × E+, and because
G0(ϕ, y) = hy(ϕ)Π− on E × E−,

G0(ϕ, y) =
(

Aϕ(Ay −Π−Cy)−1 Aϕ(Ay −Π−Cy)−1Π−

Cϕ(Ay −Π−Cy)−1 Cϕ(Ay −Π−Cy)−1Π−

)
, 0 ≤ ϕ < y.

Finally, since G0(y, y), y > 0, is positive, by irreducibility G0(ϕ, y) for 0 ≤ ϕ < y is
also positive. �

Lemma 7.2 For y 6= 0 and any (e, f) ∈ E × E

P(e,ϕ)(XHy = f,Hy < H0) = G0(ϕ, y)(G0(y, y))−1(e, f), 0 < |ϕ| < |y|,
P(e,y)(XHy = f,Hy < H0) =

(
I − (G0(y, y))−1

)
(e, f).

Proof: By Theorem 7.3, the matrix G0(y, y) is invertible. Therefore, the equalities

G0((e, ϕ), (f, y)) =
∑

e′∈E P(e,ϕ)(XHy = e′,Hy < H0) G0((e′, y), (f, y)), ϕ 6= y 6= 0,

G0((e, y), (f, y)) = I(e, f) +
∑

e′∈E P(e,y)(XHy = e′,Hy < H0)G0((e′, y), (f, y)), y 6= 0,

prove the lemma. �

We close the section by stating two results which were proved in Najdanovic (2003)
and which were used in the previous sections. Let h(e, ϕ, t) be a positive function
on E × R × [0,+∞) such that the process (h(Xt, ϕt, t))t≥0 is a martingale. For fixed
(e, ϕ) ∈ E × R, define a probability measure P h

(e,ϕ) by

P h
(e,ϕ)(A) =

E(e,ϕ)

(
I(A) h(Xt, ϕt, t)

)
h(e, ϕ, 0)

, A ∈ Ft. (18)
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Theorem 7.4 There exist only two functions h(e, ϕ) on E × R continuously differen-
tiable in ϕ such that the process (Xt)t≥0 under P h

(e,ϕ) is Markov and they are

hmax(e, ϕ) = e−αmaxϕfmax(e) and hmin(e, ϕ) = e−βminϕgmin(e).

Moreover,
1) if the process (ϕt)t≥0 drifts to +∞ then hmax = 1 and the process (ϕt)t≥0 under P hmin

(e,ϕ)
drifts to −∞;
2) if the process (ϕt)t≥0 drifts to −∞ then hmin = 1 and the process (ϕt)t≥0 under P hmax

(e,ϕ)
drifts to +∞;
3) if the process (ϕt)t≥0 oscillates then hmax = hmin = 1.

Theorem 7.5 All functions h(e, ϕ, t) on E×R× [0,+∞) continuously differentiable in
ϕ and t for which the process (Xt)t≥0 under P h

(e,ϕ) is Markov are of the form

h(e, ϕ, t) = e−αte−βϕg(e), (e, ϕ, t) ∈ E × R× [0,+∞),

where, for fixed β ∈ R, α is the Perron-Frobenius eigenvalue and g is the right Perron-
Frobenius eigenvector of the matrix (Q− βV ).

Moreover, there exists unique β0 ∈ R such that

(ϕt)t≥0 under P h
(e,ϕ) drifts to +∞ iff β < β0

(ϕt)t≥0 under P h
(e,ϕ) oscillates iff β = β0

(ϕt)t≥0 under P h
(e,ϕ) drifts to −∞ iff β > β0,

and β0 is determined by the equation α′(β0) = 0, where α(β) is the Perron-Frobenius
eigenvalue of (Q− βV ).
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