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Abstract

Let (X¢)¢>0 be a continuous-time irreducible Markov chain on a finite statespace E,
let v: E — R\{0} and let (¢¢)i>0 be defined by ¢ = fotv(XS)ds. We consider the
cases where the process (¢¢)i>0 is oscillating and where (p;):>0 has a negative drift.
In each of the cases we condition the process (X, ¢¢):r>0 on the event that (¢¢)¢>0 hits
level y before hitting zero and prove weak convergence of the conditioned process as
y — oo. In addition, we show the relation between conditioning the process (¢¢)i>0
with a negative drift to oscillate and conditioning it to stay non-negative until large
time, and relation between conditioning (¢;);>¢ with a negative drift to drift to drift to
+o0 and conditioning it to hit large levels before hitting zero.

1 Introduction

Let (Xt)t>0 be a continuous-time irreducible Markov chain on a finite statespace E,
let v be a map v: E — R\{0}, let (¢¢)i>0 be an additive functional defined by ¢; =
fg v(Xs)ds and let Hy, y € R, be the first hitting time of level y by the process (¢¢)¢>0.
In the previous paper Jacka, Najdanovic, Warren (2004) we discussed the problem of
conditioning the process (X¢, ¢¢)i>0 on the event that the process (¢¢)t>0 stays non-
negative, that is the event {Hy = +o0}. In the oscillating case and in the case of the
negative drift of the process (¢¢)i>0, when the event { Hy = 400} is of zero probability,
the process (X¢, ¢t)t>0 can instead be conditioned on some approximation of the event
{Hp = +oo}. In Jacka et al. (2004) we considered the approximation by the events
{Hy > T}, T > 0, and proved weak convergence as T — oo of the process (X¢, ¢t)i>0
conditioned on this approximation.

In this paper we look at another approximation of the event { Hy = 400} which is
the approximation by the events {Hy > H,}, y € R. Again, we are interested in weak
convergence as y — oo of the process (X¢, ¢+)¢>0 conditioned on this approximation.
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Our motivation comes from a work by Bertoin and Doney. In Bertoin, Doney (1994)
the authors considered a real-valued random walk {S,,n > 0} that does not drift to
+o0 and conditioned it to stay non-negative. They discussed two interpretations of this
conditioning, one was conditioning S to exceed level n before hitting zero, and another
was conditioning S to stay non-negative up to time n. As it will be seen, results for our
process (X¢, ¢t)¢>0 conditioned on the event { Hy = 400} appear to be analogues of the
results for a random walk.

Furthermore, similarly to the results obtained in Bertoin, Doney (1994) for a real-
valued random walk {S,,,n > 0} that does not drift to 400, we show that in the negative
drift case

(i) taking the limit as y — oo of conditioning the process (X¢, ¢¢)¢>0 on {H, < +oo}
and then further conditioning on the event { Hy = +oo} yields the same result as
the limit as y — oo of conditioning (X4, ¢¢)i>0 on the event {Hy > Hy};

(ii) conditioning the process (X¢, ¢t)¢>0 on the event that the process (p¢)¢>0 oscillates
and then further conditioning on {Hy = +o0o} yields the same result as the limit
as T' — oo of conditioning the process (X¢, pt)i>0 on {Hg > T'}.

The organisation of the paper is as follows: in Section 2 we state the main theorems
in the oscillating and in the negative drift case; in Section 3 we prove the main theorem
in the oscillating case; in Section 4 we prove the main theorem in the negative drift
case. Sections 5 and 6 deal with the negative drift case of the process (p¢)i>0 and
commuting diagrams in conditioning the process (X, ¢¢)i>0 on {Hy < Ho} and {Hp >
T}, respectively, listed in (i) and (ii) above. Finally, Section 7 is concerned with the
Green’s function of the process (X, ¢¢)r>0 and some auxiliary results needed for the
proofs in previous sections.

All the notation in the present paper is taken from Jacka et al. (2004).

2 Main theorems

For fixed y > 0, let P(ye ») denote the law of the process (X¢, pt)e>0, starting at (e, ) €
Ef, conditioned on the event {H, < Hy}, and let P(ye (p)’]:t, t > 0, be the restriction of

P(ye ») to Fi. We are interested in weak convergence of (P!

(e.0) |71 )T>0 a8 Y — +00.

Theorem 2.1 Suppose that the process (¢i)i>0 oscillate. Then, for fized (e,p) €
Ef and t > 0, the measures (P(ye sa)|7:t)yzo converge weakly to the probability measure

P{e’w)b:t as y — 0o. The measure P{e,w) is defined by

_ By (I (A)hr (Xe, o) I{t < HO})

t>0, A
hr(e,cp) ) = Yy efh




where the function h, is given by
he(e,y) = e " Qnlar(e),  (ey) € ExR,
and V1Qr = 1.

By comparing Theorem 2.1 and Theorem 2.1 in Jacka et al. (2004) we see that the
measures (P(y6 7@))1/20 and (P(z »))T>0 converge weakly to the same limit. Therefore, in
the oscillating case conditioning (X, ¢¢)i>0 on {H, < Hp}, y > 0, and conditioning
(Xt,¢t)e>0 on {Ho > T}, T > 0, yield the same result.

Theorem 2.2 Suppose that the process (¢i)i>0 drifts to —oo. Then, for fized (e, ) €

Ef and t > 0, the measures (P(ye w)|ff)yzo converge weakly to the probability measure

fmaz

(co) |7 as y — oo given by

mea:c A E(e*p) (I(A)hfmax (Xta SOt)I{t < HO})
( ) N hf'maz (67 SD)

(e0) s t>0, Ae F

where the function hy, . is

hfmaac (e7y) = eiyv_lelI‘Qfmax(e)) (e>y) c F xR.

3 The oscillating case: Proof of Theorem 2.1

Let t > 0 be fixed and let A € F;. We start by looking at the limit of P(ye ¢)(A) as
y — +oo. For (e,p) € Ef and y > ¢, by (viii) in Jacka et al. (2004), the event
Ple.p)(Hy < Hp) > 0,y > 0. Hence, by the Markov property, for any (e, ) € Ef and
any A € F;,

P(ye,@)(A) = P(e,<p)(A ’ Hy < HO)
1

B Pley)(Hy < Ho) Bres (I(A)(I{t<H0 A Hy}Pix, ) (Hy < Ho)

+I{H, <t < Ho} +I{H, < Hy < t})). (1)

Lemma 3.1 Let r be a vector such that V1Qr = 1. Then

(i) he(e,0) = e ¥V QL Tyr(e) >0, (e, ) € Ef,

P on(Hy < Hy) e V'@ Tyr(e)
/i li ad = ) ) ) /7 ! € E+'
(“) y—l>r-ir-100 P(e’@) (Hy < Ho) e“PV*lell“gr(e) (6 SO) (6 QO) 0




Proof: (i) Let the matrices A_, and C_, be as given in (14). Then,

o) = eV R _ (At —T7r7)
he(-,0) =€ JiTor = <C¢(T+—H_T_) )

The outline of the proof is the following: first we show that the vector A, (rt—II"r")
is positive by showing that it is a Perron-Frobenius vector of some positive matrix. Then,
because Cy(r™ —II7r7) = C¢A;1 Ay(rt —TI7r7) and that the matrix C, A" is, by
Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), positive, we conclude that
the vector Cy,(r™ —II777) is also positive and that the function h, is positive.

Therefore, all we have to prove is that the vector A,(r™ —II7r7) is positive for any
@ € R. Let 7 be fixed vector such that V"1Qr = 1. Then

A,yr“‘ +B_yr~ = rt 4 ylt

yVlQ,. _ 1
¢ r=rtyl @ C_yrt+D_yr~=r"+yl~.

By (17), the matrix A, is invertible. Thus, because 1t =1I"17, (A_, —II"C_,) =
(A4y —~TI-C,) " and (B_y — 11" D_,) = —(A_, — 1" C_,)II",

(A@(Ay - H*Cy)*lAj) Ap(rt =TI r™) = Ay(rt —TI77r7).

By Theorem 7.3 the matrix A,(A4, —II~C,)~! is positive. By Lemma 7.2, Theorem
7.3 and by (viii) in Jacka et al. (2004), the matrix A;l is also positive. Hence, the
matrix Ay (Ay — H_C'y)_lA;1 is positive and it has the Perron-Frobenius eigenvector
which is also positive.

Suppose that A, (r™ —II7r~) = 0. Then, because Ay, is invertible, (r* —II7r~) = 0.
If r© = II" 7~ then r is a linear combination of the vectors gi, k = 1,..., m in the basis
B, but that is not possible because r is also in the basis B and therefore independent from
gk, k =1,...,m. Hence, the vector A,(rt —II7r7) # 0 and by the last equation it is
the eigenvector of the matrix A,(A_, — I'I*C'_y)A(;1 which corresponds to its eigenvalue
1.

It follows from

(A@(Ay — Hicy)*lA;1> AQO<I o H7H+> _ Atp(I . H7H+) eyG+ (2)

that if « is a non-zero eigenvalue of the matrix G+ with some algebraic multiplicity,
then e* is an eigenvalue of the matrix A, (A, — H_C'y)_lA;1 with the same algebraic
multiplicity. Since all n — 1 non-zero eigenvalues of G are with negative real parts,
all eigenvalues e®¥, o; # 0, j = 1,...,n, of A (A, — H_C'y)_lA;1 have real parts
strictly less than 1. Thus, 1 is the Perron-Frobenius eigenvalue of the matrix A, (A, —
H_C’y)_lA;1 and the vector Ay, (r™ — II"r7) is its Perron-Frobenius eigenvector, and
therefore positive.
(ii) The statement follows directly from the equality
Plerg)(Hy < Ho) . Go(¢',y)1(e")

lim = lim ———ee
y——+00 P(e,ap)(Hy < Ho) y——+o0 GO(Sovy)l(e)




where Go(p,y) is the Green’s function for the killed process defined in Appendix, and
from the representation of Go(¢,y) given by

Golp,y)l = Z a; e—@V—lQJ1F2 eyV—lej + ¢ e_‘PV_lQJlfgr,
Jya 70

for some constants aj, 7 = 1,...,n and ¢ # 0. For the details of the proof see Najdanovic
(2003). O

Proof of Theorem 2.1: For fixed (e,¢) € Ef, t € [0,+00) and y > 0, let hy(e, ¢,t)
be a random variable defined on the probability space (2, F, P(e#,)) by

1
hy(e,o,t) = <y (I{t<H0 A Hy}Px, o (Hy < Ho)

+I{H, <t < Ho}+I{H, < Hy < t}).

By Lemma 3.1 (ii) and by Lemmas 3.2, 3.3 and 3.4 in Jacka et al. (2004) the random

. he (X4, .
variables hy(e, ¢, t) converge to %I{t < Ho} in LY(Q,F,P)) as y — +o0.

Therefore, by (1), for fixed t > 0 and A € F,

lim PY
[

y~>+oo ( 790) (A) = hm E(e#)) (I(A)hy(€7 90? t)) = P{e7<p) (A)7

y—+oo
which, by Lemma 3.3 (ii) in Jacka et al. (2004), implies that the measures (P(ye ) |7, )y>0

converge weakly to P’

(€7¢)|]-‘t as y — 00. O

4 The negative drift case: Proof of Theorem 2.2

Again, as in the oscillating case, we start with the limit of P(ye ¢)<A) as y — +oo by
P(E/W/)(Hy<H0)

lookin lim e
ooking at iy oo p " (1T, <o)

First we prove an auxiliary lemma.
Lemma 4.1 For any vector g on E limy_.~ F(y)g = 0.

In addition, for any non-negative vector g on E limy_, o e” "V F(y)g = ¢ J1 frmaz
for some positive constant ¢ € R.

Proof: Let
g" -
9= ( ) and g* :Zajf;r,
g =
for some coefficients a;, j = 1,...,n, where vectors f;r, j=1,...,n, form the basis N'"
and are associated with the eigenvalues «;, j = 1,...,n (see Jacka et.al (2004)).



Then, the first equality in the lemma follows from

o= (T D) () E () e

since, for Re(o;) <0, j =1,. n, evG" f+ — 0 as y — +o0.

Moreover, by (iii) in Jacka et al (2004) the matrix G is an irreducible Q-matrix
with the Perron-Frobenius eigenvalue . and Perron-Frobenius eigenvector f .
Thus, for any non-negative vector g on E*, by (VII) in Jacka et al. (2004),

. _ +
im _ememet gle) = ¢ flu(e), @)

for some positive constant ¢ € R. Therefore, from (3) and (4)

e_ama,zy eyG+g+ f+
Amazxly — 1 — max —
ygrfooe F( ) yginoo ( 0 c 0 ¢ J1 fmaz-

P(e’,«p’)(Hy<H0)

Now we find the limit limy_>+oo m
e,p Yy

Lemma 4.2

(Z) hfmaa: (67 (10) = e_(pV71QJ1F2fmaw(e) > O? (67 ()0) € ES_’

Pooy(Hy < Hy) eV QITy fras(€)
.. . (e/, ")\ ty 0 11 2/ max ot +
1 - ) ) ) ) € by .
(”) y—1>I-iI-1c>o P(e,go)(Hy < HO) €_¢V71QJ1F2fmam(e) (6 90) (6 QO) 0

Proof: (i) The function hy, . can be rewritten as

Cov- Ao(I — T TIH) £
h . —e PV 1QJ T frnax = ( ®» - max
fmaz( SO) 1 2f C@(]— I £

) max

where A, and C,, are given by (14).

First we show that the vector A, (I — II"IIT) [, . is positive. By (16), (iv) and (ii)
in Jacka et al. (2004) the matrix (I — II"II") is invertible and by (17) the matrix A, is
invertible. Therefore,

Ap(A_y —TI7C_ A" = A (I — T IV (1 — I 1H) 1AL

By Theorem 7.3 the matrix A,(A4,—II"C,) ! is positive and by Lemma 7.2, Theorem
7.3 and by (viii) in Jacka et al.(2004), the matrix A !'is also positive. Hence, the matrix

Ap(A_y — H’C’,y)Agl is positive and is similar to e¥¢". Thus, Ap(A_y — H’C,y)Agl

+ . . .
and €Y have the same Perron-Frobenius eigenvalue and because the Perron-Frobenius



cigenvector of e¥@" is ft it follows that A, (I — II"ITT)f  is the Perron-Frobenius

eigenvector of A,(A_, — H_C’,y)A;1 and therefore positive. In addition,
C‘,O(I - H_H+)fntam = C‘PA;I A%(I - H_H+)fntaxa

and by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), the matrix C, A"
is positive. Therefore, the function hy,,  is positive.
(ii) By Lemmas 7.2, 4.1 and Theorem 7.3

oy Deen(y <Ho) e ?V Oy F(y)1(e)
y—+00 P(e,so) (H, < Hp) y—-+o0 e‘“’vilQFIbF(y)l(e) .

Since the vector 1 is non-negative and because I'T'sJ1 finaz = J11'2 finaz, the statement
in the lemma follows from Lemma 4.1. O

The function hy, . has the property that the process {hy, .. (X¢, o)I{t < Ho},
t > 0} is a martingale under Ple,p)- We prove this in the following lemma.

Lemma 4.3 The process {hy,,,. (X, o) I{t < Ho},t > 0} is a martingale under P ).

Proof: The function hy,, .. (e, ¢) is continuously differentiable in ¢ and therefore by (15)
in Jacka et al. (2004) it is in the domain of the infinitesimal generator G of the process
(X¢, ¢t)i>0 and Ghy, .. = 0. The rest of the proof is analogous to the proof of Lemma

3.3 in Jacka et al. (2004). O
Proof of Theorem 2.2: The theorem is proved in the same way as Theorem 2.1, the
only difference is that Lemma 4.2 is used instead of Lemma 3.1. O

5 The negative drift case: conditioning (¢;);>0 to drift to
400

The process (X¢, ¢1)¢>0 can also be conditioned first on the event that (¢;);>0 hits large
levels y regardless of crossing zero (that is taking the limit as y — oo of conditioning
(X, pt)i>0 on {H, < +o00}), and then the resulting process can be conditioned on the
event that (p¢):>0 stays non-negative. In this section we show that these two condi-
tionings performed in the stated order yield the same result as the limit as y — +oo of
conditioning (X¢, ¢¢)i>0 on {H, < Hy}.

Let (e,p) € Ef and y > ¢. Then, by (ix) in Jacka et al. (2004), the event
{H, < +oo} is of positive probability and the process (X, ¢;)i>0 can be conditioned on
{H, < 400} in the standard way.

For fixed t > 0 and any A € Fy,

Ble ) (I(A) P, o (Hy < +00)I{t < Hy} + I(A)I{H, < t})

P(e’@) (4] Hy < +o0) = P(e ®) (Hy < 400)

()



Lemma 5.1 For any (e, ¢), (¢/,¢') € Ef,

lm DUy < 4+00)  em@mest frny ()
y—too Peg)(Hy < +00) e~ mar® foo.(€)

Proof: By Lemma 5.5 in Jacka et al. (2004), for 0 < ¢ < y,
P(e,tp)(Hy < +OO) = P(e,gofy) (HO < +OO) = FF(y — gO)l
The vector 1 is non-negative. Hence, by Lemma 4.1 and because I'J1 fraz = fraz,

P on(Hy < + —OmazP' T'o—maz (Y—¢') _ /
i Deen(Hy <4o0) . e Pe Fly - 9)1(¢)

y=too Pl ) (Hy < +00) y—oo eomargleamaz(1=2) F(y — )1(e)
e—anLaﬁwlfmax(e,)

6—Oémaa:80fmax (e) '

Let hmaz(e, ¢) be a function on E x R defined by
hmax(ea 90) = eiamaz@fmax(e)-
Lemma 5.2 The process (hmaz(Xt, t))i>0 is a martingale under P ).

Proof: The function hy,q. (e, ¢) is continuously differentiable in ¢ which implies that it
is in the domain of the infinitesimal generator G of the process (X¢, ¢t)¢>0. In addition,
Ghmaz = 0. It follows that the process (Amaz(Xt, ¢t))t>0 is a local martingale under
P(c,) and, because it is bounded on every finite interval, the process (hmax(Xt, 0t))i>0
is a martingale under P, ). O

By Lemmas 5.1 and 5.2 we prove

Theorem 5.1 For fized (e, ) € Ear, let P(Z”;)I be a measure defined by

_ E(evsﬁ) (I(A> himaz (X, @t))

thaz A —
) Pmaz (€, )

) , t>0,A€eF.

Then, P(’::";“)”” is a probability measure and, for fired t > 0,

lim P, (A| Hy < +o0) = P'me(A), Ae€F,.

Yy——+00 (er‘P)
Proof: By the definition, the function hj,., is positive. Hence P(};TP“)E is a measure.
In addition, by Lemma 5.2, the process (hmaz(Xt, ¢t))e>0 is a martingale under P

ep)
Hence, P(]z ”g)”” is a probability measure.



For fixed (e, ) € Ef and t,y > 0, let hy(e,p,t) be a random variable defined on
the probability space (2, F, P )) by
 Pix,pn(Hy < +o00)I{t < Hy} + I(A)I{H, <t}
hy(ea ()07 t) - .
P(e,go) (Hy < —|—OO)

The random variables hy(e, ¢,t), y > 0, are non-negative and, by Lemma 5.1,

hmaz (Xta th)

lim hy(e,p,t) = ,  a.s..
y—+o00 y( ? ) hmaz(ea 90)
The rest of the proof is analogous to the proof of Theorem 2.1. O

We now want to condition the process (X, ¢¢)i>0 under P(Z”:;)l‘ on the event {Hy =
+00}. By Theorem 7.4, (X¢)¢>0 under P(};TTP“)” is Markov with the irreducible conservative
Q-matrix Q"mer given by

_ Jmaz (6,)
fmax(e)

and, by the same theorem, the process (¢¢)i>0 under P(};z“)”” drifts to +o00. We find the

th‘””(e, e (Q — amazV)(e, €), e, € E,

Wiener-Hopf factorization of the matrix V—1Q"maz.

Lemma 5.3 The unique Wiener-Hopf factorization of the matriz V—1QMe is given
by V—1Qhmaz Thmas = Thmaz Ghmaes where, for any (e,e’) € E x E,

_ fmax(el)
fmax(e)

In addition, if

h + hmaz,—
Boman G max, 0 Poman I [1"maz,
G - < 0 _Ghmazyf ) and F - < Hhmaz ,+ I ’

then Ghmaezt is o conservative Q—matriz and IIPme=t is stochastic, and Ghme=— is not
a conservative Q—matric and IIMme= js strictly substochastic.

(G — amazl)(e,€) and Thmez(e ) = Fmaz(€) ['(e,e).

hmaz /
¢ (67 ‘ ) B fmax(e)

Proof: By the definition the matrices GPmaes:+ and G*ma=~ are essentially non-negative.
In addition, for any e € Et, GhmasF1(e) = 0. Hence, G"ma=F is a conservative Q-
matrix. By Lemma 4.2 (i),

h_ — (H+6_<PG+ _ 6¢G7H+)f+ — e_ohmzzﬁp(]' _ eGD(G7+a7rLax])) - > O

fmaz max mazxr

Since " N
I _ pP “+mazx -
( c ) e = _(G_ + amaxl)fr;ax’

lim
»—0 ®»



and (I — e#(G tomal)y g =~ 0 it follows that (G~ + mael)fige < 0. Thus,
Ghmaz:=17 < 0 and so G"mas~ is a Q-matrix. Moreover, if (G~ + amaz]) frge = 0
then hy, .. (e,) =0 for e € E~ which is a contradiction to Lemma 4.2. Therefore, the
matrix G"maes~ is not conservative.

The matrices G'ma= and T'mer satisfy the equality V—1QMmas Thmaz = [hmaz Ghmas
which, by Lemma 5.4 in Jacka et al. (2004), gives the unique Wiener-Hopf factorization
of the matrix V~1Q"mes . Finally, by (iv) in Jacka et al. (2004), II"mes:t is a stochastic

and IT"maes:~ is a strictly substochastic matrix. O

Finally, we prove the main result in this section

Theorem 5.2 Let P(J;m£3‘ be as defined in Theorem 2.2. Then, for any (e, ) € E; and
anyt >0,

Plmes (A |Hy = 00) = Plm(4), A€ R

Proof: By Theorem 7.4 the process (¢¢)i>0 under P(};”;)z drifts to +o00. Since in the
positive drift case the event {Hy = 400} is of positive probability, for any ¢ > 0 and
any A € Fy,

(exp)
Plma(A |Hy = 00) = 6
(e (A [Ho = 00) Plmas (Hy=+00) )
By Lemma 5.5 in Jacka et al. (2004) and by Lemma 5.3, for ¢ > 0,
hmaz — _ eamaxlp 7(,00 1 l 1
P (HO - +OO) = l1-—-—— Le (6,6 ) J21(€ ) fma:c(e )
(e:¢) fmax(e)
e//eE
1 ( _ o
= ———— (e ¥ fru —T'F - fmax) €
e 9 (=¢) ()
_ hfmam (6, SD) (7)
hmaa}(e7 SD) ’
where hy, . is as defined in Lemma 4.2. Similarly, for e € E7,
St — I fr h
Plmae (Hp = +o00) = Lmaz fmaz)(e) _ fmaz(e70)

(e,0) frbaz(€) himaz(e,0)

Therefore, the statement in the theorem follows from Theorem 5.1, (6) and (7). O

We summarize the results from this section: in the negative drift case, making the
h-transform of the process (X¢, pt)i>0 with the function hpaz(e, p) = e~ *mex? f . (e)

yields the probability measure P(’;"f;)“” such that (X;)¢>0 under P(]Z'Z;)” is Markov and that

(¢¢)t>0 under P(Z";l)“” is with a positive drift. The process (X¢, ¢+)¢>0 under P(Z"g)“” is also
the limiting process as y — +oc in conditioning (X, ¥¢)i>0 under P ) on {H, < +o0}.
Further conditioning (X¢, ¢¢)¢>0 under P(Z”Z:)z on {Hy = +oo} yields the same result as

the limit as y — +oo of conditioning (X, ¢¢)i>0 on {H, < Hp}. In other words, the
diagram in Figure 1 commutes.

10



{Hy < HO}a y—>+OO

(Xt @r)izo under Fe ~ (Xt ¢t)e=0 under P(j:n;)z
(the negative drift case)
{Hy < +oo}, y—+00 {Hy = +o0}

(Xt, pt)e>0 under P(Z:Z;l)z

(the positive drift case)

Figure 1: The negative drift case of conditioning the process (X¢, ¢¢)i>0 on the events
{Hy < Hp},y>0.

6 The negative drift case: conditioning (¢;);>¢ to oscillate

In this section we condition the process (¢¢)t>0 with a negative drift to oscillate, and
then condition the resulting oscillating process to stay non-negative. Let P( @) denote
the h-transformed measure P, S0) with a function h. We want to find a function & such
that the process (X¢)¢>0 under P(&(p) is Markov and that the process (¢¢)i>0 under P(ep)
oscillates. By Theorem 7.4, there does not exist such function defined on £ xR. But, by
Theorem 7.5, there exists exactly one such function defined on E x R x [0, +00) which
is given by
hole, @, t) = e~ 0te=P0%P gy (e),
where «(3) is the Perron-Frobenius eigenvalue of the matrix (Q — 5V), fy is the argmin
of a(-), g = a(fp) and go is the Perron-Frobenius eigenvector of the matrix (Q — GoV).
For fixed (e, p) € E7, let a measure P(Z?w) be defined by

Ble gy (T(A)ho(Xi, 01,1))
hO(ea 2 0) ,

Then, the process (X¢);>0 under P(};°¢) is Markov with the Q-matrix Q° given by

P (A) =

(e,0) Ae Fi, t > 0. (8)

Q%e, ) = J (Q — apl — BoV)(e,€), e,e € E. 9)

and, by Theorem 7.5, the process (¢¢)i>0 under P(h0 ) oscillates.

The aim now is to condition (X, ¢¢)i>0 under Ph0 ) on the event that (¢:)i>0 stays
non-negative. The following theorem determines the law of this new conditioned process.
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Theorem 6.1 For fived (e,¢) € Ey , let a measure P(ZOS’D};Q be defined by

Bl (I((Xe, o) I{t < Ho} )
ho(e; o) ’
where the function h® is given by ho(e,y) = e ¥V '@ iT9r%e), (e,y) € E x R, and

0
V1Q%0 = 1. Then, onjphT s a probability measure.
In addition, fort >0 and A € F%,

ploht ) =

o A€ F, t>0,

ho,hO . i
Pley () = Jim Pl (A | Hy < Ho) = lim Py (4| Ho > 1),

and

[ L —
Fleg) (A) = Py (A),

where p{e‘)@) is as defined in Theorem 2.2 in Jacka et al. (2004).

Proof: By Lemma 5.9 and (16) in Jacka et al. (2004), the Q-matrix Q" of the process
(X¢)t>0 under P(ZOQD) is conservative and irreducible and the process (¢¢)i>0 under P(h

0
e,¢)
oscillates. Thus, if P(ZOL’;;g denotes the law of (X, ¢;)i>0 under P(ZOSO) conditioned on

{Hy = +oo}, then, by Theorem 2.1 in Jacka et al. (2004) and by Theorem 2.1, P(’?g;?
is a probability measure and

PP (A) = tim Pl

(e0) Jim Pl (AlHy < Ho)

. h
= lim P[° (A[Ho > T).

In addition, by definition (8) of the measure PZOW ,fort >0and A e F,

(ex)

 Beap) (10A) ho(Xe, 008) W(Xoy 1) It < Ho})

ho,h? .
PP r(A) = =P, A
esey (1) hoe, 2.0) 1(e.9) o)
since ho(e, p,t) hO(e, ) = hyo(e, p,t) where h,o(e, p,t) is as defined in Theorem 2.2 in
Jacka et al. (2004). O

We summarize the results in this section: in the negative drift case, making the
h-transform of the process (Xi, ¢y, t);>0 with the function ho(e, ) = e~ 0¥e=%%?gy(e)
yields the probability measure P(};Ow) such that (X;);>o under P(ZOSO) is Markov and that

(¢t)t>0 under P(Zov) oscillates. Then the law of (X¢, ¢¢)i>0 under P(Zow) conditioned on
the event {Hy = +o0} is equal to P(ZOZ;Q = P(’; 0@). On the other hand, by Theorem 2.2
in Jacka et al. (2004), under the condition that all non-zero eigenvalues of the matrix
V1Q0 are simple, P{;(p) is the limiting law as 7" — +oo of the process (X¢, pt)i>0
under P(re 0@ conditioned on {Hy > T'}. Hence, under the condition that all non-zero

eigenvalues of the matrix V~1Q° are simple, the diagram in Figure 2 commutes.
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{Ho > T}, T — 400

(Xt,¢1)e>0 under P (X1, 01)e=0 under P(re(icp)

(the negative drift case)
{T < Hy}, T—+o0

{Hy < HO}a y—>—|—oo
(Xt, pt)e>0 under P{;‘?w

(the oscillating case)

Figure 2: The negative drift case of conditioning the process (X¢, ¢¢)i>0 on the events
{Ho>T}, T >0.

7 Appendix: The Green’s function

The Green’s function of the process (X, ¢t)i>0, denoted by G((e, ), (f,y)), for any
(e,0),(f,y) € E xR, is defined as

G((6790)7 (fvy)) = E(e,cp)( Z I(Xs = f, Ps = y))v

0<s<00

noting that the process (X, ¢¢)i>0 hits any fixed state at discrete times. For simplicity
of notation, let G(p,y) denote the matrix (G((-,¥), (+,y)))ExE-

Theorem 7.1 In the drift cases,

717+ -1 —(7 _T11+17—-)—1
6.0 =15 = (I )

In the oscillating case, G(0,0) = +oo.
Proof: By the definition of G(0,0) and the matrices II'", II~ and T,

G(0,0) = i <r?+ T)n - i([ — )"

n=1 n=1

Suppose that the process (¢¢)¢>0 drifts either to +o00 of —oco. Then by (16) and (IV)
in Jacka et al. (2004) exactly one of the matrices II™ and IT™ is strictly substochastic.
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In addition, the matrix II"II" is positive and thus primitive. Therefore, the Perron-
Frobenius eigenvalue \ of II"TI" satisfies 0 < A < 1 which, by the Perron-Frobenius
theorem for primitive matrices, implies that

(I~ IT+)"

nl_)né.lo W = const. 7é 0.

Therefore, (II"IIT)" — 0 elementwise as n — +o0, and similarly (II"II7)" — 0
elementwise as n — +o0. Hence, (I —I'2)" — 0, n — +o00. Since

I—(I-Ty)"=Ty» (I-Ty)",
k=0

and, by (II) in Jacka et al. (2004), F;l exists, by letting n — +o0o we obtain

o0

G(0,0)=> (I-Ty)" =Ty (10)

n=0

Suppose now that the process (¢¢)i>0 oscillates. Then again by (16) and (IV) in
Jacka et al. (2004), the matries It and II~ are stochastic. Thus, (I —T'3)1 =1 and

G(0,01 =D (I-Ty)"Ll=>"1=+oc. (11)
n=0 n=0
Since the matrix @ is irreducible, it follows that G(0,0) = +oc. g

Theorem 7.2 In the drift cases, the Green’s function G((e, ), (f,y)) of the process
(Xt, pt)e>0 is given by the E x E matriz G(p,y), where

I F(y—¢) 5t
Glow) ={ TFU P T 27y

Proof: By Theorem 7.1, G(y,y) = G(0,0) = F;l. and by Lemma 5.5 in Jacka et al.
(2004),

P(e,ga—y)(XHo = elvHO < +OO) =T F(y - (p)(e’ 6,), 2 75 Y.

The theorem now follows from

G((Q‘P)? (fv y)) = Z P(e,apfy)(XHo = 6/7H0 < +OO) G((el,()), (f,O))

e'ekr
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The Green’s function Go((e, @), (f,v)), (e,¢),(f,y) € E x R, (in matrix notation
Go(p,y)) of the process (X4, ¢t )e>0 killed when the process (¢ )¢>0 crosses zero is defined
by

GO((Q@)? (fa y)) = E(e,go)( Z I(Xs =fips = y))

0<s<Hy

It follows that Go(p,y) = 0 if py < 0, that Go(¢,0) = 0 if ¢ # 0, and that
Go(0,0) = I. To calculate Go(p,y) for |p| < |y|, py > 0, y # 0, we use the following
lemma:

Lemma 7.1 Let (f,y) € Et x (0,400) be fized and let the process (X, pi)i>0 start at
(e, ) € Ex(0,y). Let (e,p) — h((e, ), (f,y)) be a bounded function on E x (0,y) such
that the process (W((Xiamonm,, Centonm,)s (f>Y)))i=0 is a uniformly integrable martingale
and that
h((e,0),(f,y)) = 0, eckE” (12)
h((e7y)7(f7y)) = GO((e7y)’(f7y)) (13)
Then
h((ea 90)7 (f7 y)) = GO((67 90)7 (f> y))v (6, 90) €L x (07 y)

Proof: The proof of the lemma is based on the fact that a uniformly integrable martingale
in a region which is zero on the boundary of that region is zero everywhere. Therefore
we omit the proof. O

Let Ay, B,,Cy and D, be components of the matrix eV 7'Q guch that, for any

y€R,
eIV <gy gy) . (14)

Theorem 7.3 The Green’s function Go((e, @), (f,y)), l¢l < |yl, vy >0, y #0, e, f €
E, is given by the E x E matriz Go(yp,y) with the components

( [AyA,-TIC )— Ap(Ay —T1-C,) M1~ -
<C¢>( —17Cy)~! Cw(Ay_H_Cy)_l a 0<p<y
B(D,~ "B, 11" B,(D, ~ 1B,
(D¢( — It B,) I D(D —m,) ) Y=esh
(I - HCA)1 (I — CA1H)

GO(San) =
<CA TG A (1 c,A- )1 > p=y>0
(I—ByDy—lrﬁ)—l ByD, (I =11t B, D, ')~! B
<H+(I — B,D;'IT+)~! (I - H*ByDgl)*l » p=y <0

In the drift cases, Go(p,y) written in matriz notation is given by

PG_WGPZF(?J)F;? 0<p<y or y<e<0
Golp,y) = FF(—W)FNZ’GFEI’I O<y<e or p<y<0
(1-TF(=y)TF))r3", p=y#0.
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In addition, the Green’s function Go(p,y) is positive for all ¢,y € R except fory =0
and for py < 0.

Proof: We prove the theorem for y > 0. The case y < 0 can be proved in the same way.
Let y > 0. First we calculate the Green’s function Go(y,y). Let Y}, denote a matrix
on £~ x E* with entries

Yy(e,e') = P(e,y)(XHy = e/,Hy < Ho)

Goly,y) = (;y H]) <ZZO:O((1)_[Y?J)” Z?:o((l)/yﬂ—)") .

By (viii) in Jacka et al. (2004), the matrix Y, is positive and 0 < ¥, 1T < 17. Hence,
IT7Y, is positive and therefore irreducible and its Perron-Frobenius eigenvalue \ satisfies
0 < A < 1. Thus,

Then

. (7Y™
nlerOlo ML = const. # 0,
which implies that (II"Y})” — 0 elementwise as n — +oo. Similarly, (Y,II7)" — 0
elementwise as n — +00.
Furthermore, the essentially non-negative matrices (II"Y, — I) and (Y,II~ — I) are
invertible because their Perron-Frobenius eigenvalues are negative and, by the same
argument, the matrices (I — II7Y,)~! and (I — Y,II7)~! are positive. Since

ZZ:O(HiYy)k = (I - HiYy)fl (I - (HiYy)nH)
Zzzo(YyH_)k = (I - YyH_)_l (I— (YyH_)n+1)-

by letting n — oo we finally obtain

[-T7Y,)"t I (I-T7Y,)™ AN | A
ot = (g ity Ml )= (e ) 0
By (i) and (viii) in Jacka et al. (2004), the matrices II™ and Y}, are positive. Since
the matrices (I —II"Y,) ™! and (I — Y,II7)~! are also positive, it follows that Go(y,y),
y > 0 is positive.
Now we calculate the Green’s function Go(p,y) for 0 < ¢ < y. Let (f,y) € ET x
(0,400) be fixed and let the process (X, ¢¢):>0 start in E x (0,y). Let

h((e, ). (f.y)) = e gy (e), (16)

for some vector gy, on E. Since by (15) in Jacka et.al (2004) Ah = 0, the process
(h((Xt, 1), (f,y)))e>0 is a local martingale, and because the function h is bounded on
every finite interval, it is a martingale. In addition, (h((X¢amoam, , CinHonH,)s (f>Y)))i=0
is a bounded martingale and therefore a uniformly integrable martingale.
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We want the function h to satisfy the boundary conditions in Lemma 7.1. Let hy(p)
be an E x ET matrix with entries

hy(QO)((i’ f) = h((ev Q0)7 (fa y))
Then, from (16) and the boundary condition (12),

A, B,\ (M,\ [ A,M,

for some ET x ET matrix My. From the boundary condition (13),
AMy=(I-1I"Y,)""  and C,M,=Y,(I-1I"Y,) ", (17)
which implies that M, = (A, —II-C,)"! and Y, = CyA, 1. Hence,
A (A, —TI7Cy) !
= <
hy(SO) (C@(Ay _ H—cy)—l ) 0 > @ < Y,

and the function h((e, ), (f,y)) satisfies the boundary conditions (12) and (13) in
Lemma 7.1. Therefore, for 0 < ¢ < y, Go(p,y) = hy(p) on E x ET, and because
Go(p,y) = hy(P)IT™ on Ex E7,

Ap(Ay — I-C,)! Ap(Ay — H_Cy)_lﬂ_)

GO(SDvy) = (Cap(Ay N H_Cy)_l C@(Ay N H—Cy)—l 0< p<uy.

Finally, since Go(y,y), y > 0, is positive, by irreducibility Go(p,y) for 0 < ¢ < y is
also positive. O

Lemma 7.2 Fory # 0 and any (e, f) € ExX E

P(e,tp)(XHy = f, Hy < HO) = GO(QOa )( ( Yy )) ( )’ 0< |<P| < ‘y|7
Pieyy(Xn, = f.Hy < Ho) = (T = (Goly, )" (e, /).

Proof: By Theorem 7.3, the matrix Gy(y,y) is invertible. Therefore, the equalities

GO((ea 90)7 (f7y)) - Ee/eE P(e,ap)(XHy - 6/7 Hy < HO) GO((elay)7 (fa y))v ¥ 7é Yy 7£ 0,
GU((evy)7 (f:y)) - I(e7 f) + Ze/eE P(e,y)(XHy = 6/7Hy < HO)G0<(el7y)ﬂ (fay))a y#0,

prove the lemma. O

We close the section by stating two results which were proved in Najdanovic (2003)
and which were used in the previous sections. Let h(e,p,t) be a positive function
on E x R x [0,+00) such that the process (h(X¢, ¢, t))i>0 is a martingale. For fixed
(e,¢) € E x R, define a probability measure P(}é,w) by

Ble,p) (1(4) h(Xe,01))
h(e, ¢,0) ’

AecF. (18)
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Theorem 7.4 There exist only two functions h(e,¢) on E x R continuously differen-
tiable in ¢ such that the process (X¢)i>0 under P(Z ) 1s Markov and they are

hmax(ev 90) = eiamazipfmax(e) and hmin(€7 90) = 67ﬁmmkpgmin<e)-

Moreover,
1) if the process (¢t)i>0 drifts to +00 then hpae = 1 and the process (pi)i>0 under P@T;f
drifts to —oo;
2) if the process (i)i>0 drifts to —oo then hyin = 1 and the process (pt)i>0 under P(Z"’:;)’”
drifts to +00;
3) if the process (pi)i>0 oscillates then hpmaz = Rumin = 1.

Theorem 7.5 All functions h(e,¢,t) on E xR x [0,+00) continuously differentiable in
@ and t for which the process (Xi)i>0 under P(’; ) is Markov are of the form

h(e,,t) = e_o‘te_ﬁs"g(e), (e,p,t) € E xR x [0,+00),

where, for fited 8 € R, « is the Perron-Frobenius eigenvalue and g is the right Perron-
Frobenius eigenvector of the matriz (Q — BV).
Moreover, there exists unique By € R such that

(¢t)t>0 under P(}é,w) drifts to +o00  iff B < fo
(pt)e>0 under P(}é ) oscillates iff  B= 05
(pt)i>0 under P(Z o) drifts to —oo  iff B> fo,

and By is determined by the equation o/(By) = 0, where «(B) is the Perron-Frobenius
eigenvalue of (Q — BV).
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