CONDITIONING AN ADDITIVE FUNCTIONAL OF A MARKOV CHAIN TO STAY NON-NEGATIVE II: HITTING A HIGH LEVEL ¹

Saul D Jacka, University of Warwick Zorana Najdanovic, University of Warwick Jon Warren, University of Warwick

Abstract

Let $(X_t)_{t\geq 0}$ be a continuous-time irreducible Markov chain on a finite statespace E, let $v: E \to \mathbb{R} \setminus \{0\}$ and let $(\varphi_t)_{t\geq 0}$ be defined by $\varphi_t = \int_0^t v(X_s) ds$. We consider the cases where the process $(\varphi_t)_{t\geq 0}$ is oscillating and where $(\varphi_t)_{t\geq 0}$ has a negative drift. In each of the cases we condition the process $(X_t, \varphi_t)_{t\geq 0}$ on the event that $(\varphi_t)_{t\geq 0}$ hits level y before hitting zero and prove weak convergence of the conditioned process as $y \to \infty$. In addition, we show the relation between conditioning the process $(\varphi_t)_{t\geq 0}$ with a negative drift to oscillate and conditioning it to stay non-negative until large time, and relation between conditioning $(\varphi_t)_{t\geq 0}$ with a negative drift to drift to drift to $+\infty$ and conditioning it to hit large levels before hitting zero.

1 Introduction

Let $(X_t)_{t\geq 0}$ be a continuous-time irreducible Markov chain on a finite statespace E, let v be a map $v: E \to \mathbb{R} \setminus \{0\}$, let $(\varphi_t)_{t\geq 0}$ be an additive functional defined by $\varphi_t = \int_0^t v(X_s) ds$ and let $H_y, y \in \mathbb{R}$, be the first hitting time of level y by the process $(\varphi_t)_{t\geq 0}$. In the previous paper Jacka, Najdanovic, Warren (2004) we discussed the problem of conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on the event that the process $(\varphi_t)_{t\geq 0}$ stays nonnegative, that is the event $\{H_0 = +\infty\}$. In the oscillating case and in the case of the negative drift of the process $(\varphi_t)_{t\geq 0}$, when the event $\{H_0 = +\infty\}$ is of zero probability, the process $(X_t, \varphi_t)_{t\geq 0}$ can instead be conditioned on some approximation of the event $\{H_0 = +\infty\}$. In Jacka et al. (2004) we considered the approximation by the events $\{H_0 > T\}, T > 0$, and proved weak convergence as $T \to \infty$ of the process $(X_t, \varphi_t)_{t\geq 0}$ conditioned on this approximation.

In this paper we look at another approximation of the event $\{H_0 = +\infty\}$ which is the approximation by the events $\{H_0 > H_y\}, y \in \mathbb{R}$. Again, we are interested in weak convergence as $y \to \infty$ of the process $(X_t, \varphi_t)_{t>0}$ conditioned on this approximation.

¹MSC Classification: Primary 60J27, Secondary 60B10

Keywords: Markov chain, conditional law, weak convergence

Our motivation comes from a work by Bertoin and Doney. In Bertoin, Doney (1994) the authors considered a real-valued random walk $\{S_n, n \ge 0\}$ that does not drift to $+\infty$ and conditioned it to stay non-negative. They discussed two interpretations of this conditioning, one was conditioning S to exceed level n before hitting zero, and another was conditioning S to stay non-negative up to time n. As it will be seen, results for our process $(X_t, \varphi_t)_{t\ge 0}$ conditioned on the event $\{H_0 = +\infty\}$ appear to be analogues of the results for a random walk.

Furthermore, similarly to the results obtained in Bertoin, Doney (1994) for a realvalued random walk $\{S_n, n \ge 0\}$ that does not drift to $+\infty$, we show that in the negative drift case

- (i) taking the limit as $y \to \infty$ of conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < +\infty\}$ and then further conditioning on the event $\{H_0 = +\infty\}$ yields the same result as the limit as $y \to \infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on the event $\{H_0 > H_y\}$;
- (ii) conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on the event that the process $(\varphi_t)_{t\geq 0}$ oscillates and then further conditioning on $\{H_0 = +\infty\}$ yields the same result as the limit as $T \to \infty$ of conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_0 > T\}$.

The organisation of the paper is as follows: in Section 2 we state the main theorems in the oscillating and in the negative drift case; in Section 3 we prove the main theorem in the oscillating case; in Section 4 we prove the main theorem in the negative drift case. Sections 5 and 6 deal with the negative drift case of the process $(\varphi_t)_{t\geq 0}$ and commuting diagrams in conditioning the process $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}$ and $\{H_0 > T\}$, respectively, listed in (i) and (ii) above. Finally, Section 7 is concerned with the Green's function of the process $(X_t, \varphi_t)_{t\geq 0}$ and some auxiliary results needed for the proofs in previous sections.

All the notation in the present paper is taken from Jacka et al. (2004).

2 Main theorems

For fixed y > 0, let $P_{(e,\varphi)}^y$ denote the law of the process $(X_t, \varphi_t)_{t\geq 0}$, starting at $(e,\varphi) \in E_0^+$, conditioned on the event $\{H_y < H_0\}$, and let $P_{(e,\varphi)}^y|_{\mathcal{F}_t}, t\geq 0$, be the restriction of $P_{(e,\varphi)}^y$ to \mathcal{F}_t . We are interested in weak convergence of $(P_{(e,\varphi)}^y|_{\mathcal{F}_t})_{T\geq 0}$ as $y \to +\infty$.

Theorem 2.1 Suppose that the process $(\varphi_t)_{t\geq 0}$ oscillate. Then, for fixed $(e,\varphi) \in E_0^+$ and $t \geq 0$, the measures $(P_{(e,\varphi)}^y|_{\mathcal{F}_t})_{y\geq 0}$ converge weakly to the probability measure $P_{(e,\varphi)}^r|_{\mathcal{F}_t}$ as $y \to \infty$. The measure $P_{(e,\varphi)}^r$ is defined by

$$P_{(e,\varphi)}^r(A) = \frac{E_{(e,\varphi)}\Big(I(A)h_r(X_t,\varphi_t)I\{t < H_0\}\Big)}{h_r(e,\varphi)}, \qquad t \ge 0, \ A \in \mathcal{F}_t$$

where the function h_r is given by

$$h_r(e,y) = e^{-yV^{-1}Q} J_1 \Gamma_2 r(e), \qquad (e,y) \in E \times \mathbb{R},$$

and $V^{-1}Qr = 1$.

By comparing Theorem 2.1 and Theorem 2.1 in Jacka et al. (2004) we see that the measures $(P_{(e,\varphi)}^y)_{y\geq 0}$ and $(P_{(e,\varphi)}^T)_{T\geq 0}$ converge weakly to the same limit. Therefore, in the oscillating case conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}, y > 0$, and conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_0 > T\}, T > 0$, yield the same result.

Theorem 2.2 Suppose that the process $(\varphi_t)_{t\geq 0}$ drifts to $-\infty$. Then, for fixed $(e, \varphi) \in E_0^+$ and $t \geq 0$, the measures $(P_{(e,\varphi)}^y|_{\mathcal{F}_t})_{y\geq 0}$ converge weakly to the probability measure $P_{(e,\varphi)}^{f_{max}}|_{\mathcal{F}_t}$ as $y \to \infty$ given by

$$P_{(e,\varphi)}^{f_{max}}(A) = \frac{E_{(e,\varphi)}\Big(I(A)h_{f_{max}}(X_t,\varphi_t)I\{t < H_0\}\Big)}{h_{f_{max}}(e,\varphi)}, \qquad t \ge 0, \ A \in \mathcal{F}_t$$

where the function $h_{f_{max}}$ is

$$h_{f_{max}}(e, y) = e^{-yV^{-1}Q} J_1 \Gamma_2 f_{max}(e), \qquad (e, y) \in E \times \mathbb{R}.$$

3 The oscillating case: Proof of Theorem 2.1

Let $t \ge 0$ be fixed and let $A \in \mathcal{F}_t$. We start by looking at the limit of $P_{(e,\varphi)}^y(A)$ as $y \to +\infty$. For $(e,\varphi) \in E_0^+$ and $y > \varphi$, by (viii) in Jacka et al. (2004), the event $P_{(e,\varphi)}(H_y < H_0) > 0, y > 0$. Hence, by the Markov property, for any $(e,\varphi) \in E_0^+$ and any $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{y}(A) = P_{(e,\varphi)}(A \mid H_{y} < H_{0})$$

$$= \frac{1}{P_{(e,\varphi)}(H_{y} < H_{0})} E_{(e,\varphi)} \Big(I(A)(I\{t < H_{0} \land H_{y}\}P_{(X_{t},\varphi_{t})}(H_{y} < H_{0})$$

$$+ I\{H_{y} \le t < H_{0}\} + I\{H_{y} < H_{0} \le t\}) \Big).$$
(1)

Lemma 3.1 Let r be a vector such that $V^{-1}Qr = 1$. Then

(i)
$$h_r(e,\varphi) \equiv e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r(e) > 0, \quad (e,\varphi) \in E_0^+,$$

(ii) $\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} = \frac{e^{-\varphi' V^{-1}Q} J_1 \Gamma_2 r(e')}{e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r(e)}, \quad (e,\varphi), (e',\varphi') \in E_0^+.$

Proof: (i) Let the matrices A_{-y} and C_{-y} be as given in (14). Then,

$$h_r(\cdot,\varphi) = e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r = \begin{pmatrix} A_{\varphi}(r^+ - \Pi^- r^-) \\ C_{\varphi}(r^+ - \Pi^- r^-) \end{pmatrix}$$

The outline of the proof is the following: first we show that the vector $A_{\varphi}(r^+ - \Pi^- r^-)$ is positive by showing that it is a Perron-Frobenius vector of some positive matrix. Then, because $C_{\varphi}(r^+ - \Pi^- r^-) = C_{\varphi}A_{\varphi}^{-1} A_{\varphi}(r^+ - \Pi^- r^-)$ and that the matrix $C_{\varphi}A_{\varphi}^{-1}$ is, by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), positive, we conclude that the vector $C_{\varphi}(r^+ - \Pi^- r^-)$ is also positive and that the function h_r is positive.

Therefore, all we have to prove is that the vector $A_{\varphi}(r^+ - \Pi^- r^-)$ is positive for any $\varphi \in \mathbb{R}$. Let r be fixed vector such that $V^{-1}Qr = 1$. Then

$$e^{yV^{-1}Q}r = r + y1 \quad \Leftrightarrow \quad \begin{array}{c} A_{-y}r^+ + B_{-y}r^- = r^+ + y1^+ \\ C_{-y}r^+ + D_{-y}r^- = r^- + y1^-. \end{array}$$

By (17), the matrix A_{φ} is invertible. Thus, because $1^+ = \Pi^- 1^-$, $(A_{-y} - \Pi^- C_{-y}) = (A_y - \Pi^- C_y)^{-1}$ and $(B_{-y} - \Pi^- D_{-y}) = -(A_{-y} - \Pi^- C_{-y})\Pi^-$,

$$\left(A_{\varphi}(A_y - \Pi^- C_y)^{-1} A_{\varphi}^{-1}\right) A_{\varphi}(r^+ - \Pi^- r^-) = A_{\varphi}(r^+ - \Pi^- r^-).$$

By Theorem 7.3 the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}$ is positive. By Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), the matrix A_{φ}^{-1} is also positive. Hence, the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$ is positive and it has the Perron-Frobenius eigenvector which is also positive.

Suppose that $A_{\varphi}(r^+ - \Pi^- r^-) = 0$. Then, because A_{φ} is invertible, $(r^+ - \Pi^- r^-) = 0$. If $r^+ = \Pi^- r^-$ then r is a linear combination of the vectors g_k , $k = 1, \ldots, m$ in the basis \mathcal{B} , but that is not possible because r is also in the basis \mathcal{B} and therefore independent from g_k , $k = 1, \ldots, m$. Hence, the vector $A_{\varphi}(r^+ - \Pi^- r^-) \neq 0$ and by the last equation it is the eigenvector of the matrix $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$ which corresponds to its eigenvalue 1.

It follows from

$$\left(A_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1}A_{\varphi}^{-1}\right)A_{\varphi}(I - \Pi^{-}\Pi^{+}) = A_{\varphi}(I - \Pi^{-}\Pi^{+})e^{yG^{+}}$$
(2)

that if α is a non-zero eigenvalue of the matrix G^+ with some algebraic multiplicity, then $e^{\alpha y}$ is an eigenvalue of the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$ with the same algebraic multiplicity. Since all n-1 non-zero eigenvalues of G^+ are with negative real parts, all eigenvalues $e^{\alpha_j y}$, $\alpha_j \neq 0$, $j = 1, \ldots, n$, of $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$ have real parts strictly less than 1. Thus, 1 is the Perron-Frobenius eigenvalue of the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}A_{\varphi}^{-1}$ and the vector $A_{\varphi}(r^+ - \Pi^- r^-)$ is its Perron-Frobenius eigenvector, and therefore positive.

(ii) The statement follows directly from the equality

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} = \lim_{y \to +\infty} \frac{G_0(\varphi',y)\mathbf{1}(e')}{G_0(\varphi,y)\mathbf{1}(e)},$$

where $G_0(\varphi, y)$ is the Green's function for the killed process defined in Appendix, and from the representation of $G_0(\varphi, y)$ given by

$$G_0(\varphi, y) 1 = \sum_{j, \alpha_j \neq 0} a_j \ e^{-\varphi V^{-1}Q} J_1 \Gamma_2 \ e^{yV^{-1}Q} f_j + \ c \ e^{-\varphi V^{-1}Q} J_1 \Gamma_2 r_j$$

for some constants a_j , j = 1, ..., n and $c \neq 0$. For the details of the proof see Najdanovic (2003).

Proof of Theorem 2.1: For fixed $(e, \varphi) \in E_0^+$, $t \in [0, +\infty)$ and $y \ge 0$, let $h_y(e, \varphi, t)$ be a random variable defined on the probability space $(\Omega, \mathcal{F}, P_{(e,\varphi)})$ by

$$h_{y}(e,\varphi,t) = \frac{1}{P_{(e,\varphi)}(H_{y} < H_{0})} \Big(I\{t < H_{0} \land H_{y}\} P_{(X_{t},\varphi_{t})}(H_{y} < H_{0}) + I\{H_{y} \le t < H_{0}\} + I\{H_{y} < H_{0} \le t\} \Big).$$

By Lemma 3.1 (ii) and by Lemmas 3.2, 3.3 and 3.4 in Jacka et al. (2004) the random variables $h_y(e, \varphi, t)$ converge to $\frac{h_r(X_t, \varphi_t)}{h_r(e, \varphi)} I\{t < H_0\}$ in $L^1(\Omega, \mathcal{F}, P_{(e, \varphi)})$ as $y \to +\infty$. Therefore, by (1), for fixed $t \ge 0$ and $A \in \mathcal{F}_t$,

$$\lim_{y \to +\infty} P^y_{(e,\varphi)}(A) = \lim_{y \to +\infty} E_{(e,\varphi)}\Big(I(A)h_y(e,\varphi,t)\Big) = P^r_{(e,\varphi)}(A),$$

which, by Lemma 3.3 (ii) in Jacka et al. (2004), implies that the measures $(P_{(e,\varphi)}^y|_{\mathcal{F}_t})_{y\geq 0}$ converge weakly to $P_{(e,\varphi)}^r|_{\mathcal{F}_t}$ as $y \to \infty$.

4 The negative drift case: Proof of Theorem 2.2

Again, as in the oscillating case, we start with the limit of $P_{(e,\varphi)}^y(A)$ as $y \to +\infty$ by looking at $\lim_{y\to+\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)}$. First we prove an auxiliary lemma.

Lemma 4.1 For any vector g on E $\lim_{y\to+\infty} F(y)g = 0$.

In addition, for any non-negative vector g on $E \lim_{y\to+\infty} e^{-\alpha_{max}y}F(y)g = c J_1 f_{max}$ for some positive constant $c \in \mathbb{R}$.

Proof: Let

$$g = \begin{pmatrix} g^+ \\ g^- \end{pmatrix}$$
 and $g^+ = \sum_{j=1}^n a_j f_j^+$,

for some coefficients a_j , j = 1, ..., n, where vectors f_j^+ , j = 1, ..., n, form the basis \mathcal{N}^+ and are associated with the eigenvalues α_j , j = 1, ..., n (see Jacka *et.al* (2004)). Then, the first equality in the lemma follows from

$$F(y)g = \begin{pmatrix} e^{yG^+} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} g^+\\ g^- \end{pmatrix} = \begin{pmatrix} e^{yG^+}g^+\\ 0 \end{pmatrix} = \sum_{j=1}^n a_j \begin{pmatrix} e^{yG^+}f_j^+\\ 0 \end{pmatrix}, \qquad y > 0, \qquad (3)$$

since, for $Re(\alpha_j) < 0, j = 1, \dots, n, e^{yG^+}f_j^+ \to 0$ as $y \to +\infty$.

Moreover, by (iii) in Jacka et al. (2004), the matrix G^+ is an irreducible Q-matrix with the Perron-Frobenius eigenvalue α_{max} and Perron-Frobenius eigenvector f_{max}^+ . Thus, for any non-negative vector g on E^+ , by (VII) in Jacka et al. (2004),

$$\lim_{y \to +\infty} e^{-\alpha_{max}y} e^{yG^+}g(e) = c f^+_{max}(e), \tag{4}$$

for some positive constant $c \in \mathbb{R}$. Therefore, from (3) and (4)

$$\lim_{y \to +\infty} e^{-\alpha_{max}y} F(y)g = \lim_{y \to +\infty} \begin{pmatrix} e^{-\alpha_{max}y} e^{yG^+}g^+ \\ 0 \end{pmatrix} = c \begin{pmatrix} f_{max}^+ \\ 0 \end{pmatrix} = c J_1 f_{max}.$$

Now we find the limit $\lim_{y\to+\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)}$.

Lemma 4.2

(i)
$$h_{f_{max}}(e,\varphi) \equiv e^{-\varphi V^{-1}Q} J_1 \Gamma_2 f_{max}(e) > 0, \quad (e,\varphi) \in E_0^+,$$

(ii) $\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} = \frac{e^{-\varphi' V^{-1}Q} J_1 \Gamma_2 f_{max}(e')}{e^{-\varphi V^{-1}Q} J_1 \Gamma_2 f_{max}(e)}, \quad (e,\varphi), (e',\varphi') \in E_0^+.$

Proof: (i) The function $h_{f_{max}}$ can be rewritten as

$$h_{f_{max}}(\cdot,\varphi) = e^{-\varphi V^{-1}Q} J_1 \Gamma_2 f_{max} = \begin{pmatrix} A_{\varphi}(I - \Pi^- \Pi^+) f_{max}^+ \\ C_{\varphi}(I - \Pi^- \Pi^+) f_{max}^+ \end{pmatrix}$$

where A_{φ} and C_{φ} are given by (14).

First we show that the vector $A_{\varphi}(I - \Pi^{-}\Pi^{+})f_{max}^{+}$ is positive. By (16), (iv) and (ii) in Jacka et al. (2004) the matrix $(I - \Pi^{-}\Pi^{+})$ is invertible and by (17) the matrix A_{φ} is invertible. Therefore,

$$A_{\varphi}(A_{-y} - \Pi^{-}C_{-y})A_{\varphi}^{-1} = A_{\varphi}(I - \Pi^{-}\Pi^{+})e^{yG^{+}}(I - \Pi^{-}\Pi^{+})^{-1}A_{\varphi}^{-1}.$$

By Theorem 7.3 the matrix $A_{\varphi}(A_y - \Pi^- C_y)^{-1}$ is positive and by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al.(2004), the matrix A_{φ}^{-1} is also positive. Hence, the matrix $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$ is positive and is similar to e^{yG^+} . Thus, $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$ and e^{yG^+} have the same Perron-Frobenius eigenvalue and because the Perron-Frobenius

eigenvector of e^{yG^+} is f_{max}^+ , it follows that $A_{\varphi}(I - \Pi^-\Pi^+)f_{max}^+$ is the Perron-Frobenius eigenvector of $A_{\varphi}(A_{-y} - \Pi^- C_{-y})A_{\varphi}^{-1}$ and therefore positive. In addition,

$$C_{\varphi}(I - \Pi^{-}\Pi^{+})f_{max}^{+} = C_{\varphi}A_{\varphi}^{-1} A_{\varphi}(I - \Pi^{-}\Pi^{+})f_{max}^{+},$$

and by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), the matrix $C_{\varphi}A_{\varphi}^{-1}$ is positive. Therefore, the function $h_{f_{max}}$ is positive.

(ii) By Lemmas 7.2, 4.1 and Theorem 7.3

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < H_0)}{P_{(e,\varphi)}(H_y < H_0)} == \lim_{y \to +\infty} \frac{e^{-\varphi' V^{-1}Q} \Gamma \Gamma_2 F(y) \mathbf{1}(e')}{e^{-\varphi V^{-1}Q} \Gamma \Gamma_2 F(y) \mathbf{1}(e)}.$$

Since the vector 1 is non-negative and because $\Gamma\Gamma_2 J_1 f_{max} = J_1 \Gamma_2 f_{max}$, the statement in the lemma follows from Lemma 4.1.

The function $h_{f_{max}}$ has the property that the process $\{h_{f_{max}}(X_t, \varphi_t)I\{t < H_0\}, t \ge 0\}$ is a martingale under $P_{(e,\varphi)}$. We prove this in the following lemma.

Lemma 4.3 The process $\{h_{f_{max}}(X_t, \varphi_t) | \{t < H_0\}, t \ge 0\}$ is a martingale under $P_{(e,\varphi)}$.

Proof: The function $h_{f_{max}}(e, \varphi)$ is continuously differentiable in φ and therefore by (15) in Jacka et al. (2004) it is in the domain of the infinitesimal generator \mathcal{G} of the process $(X_t, \varphi_t)_{t\geq 0}$ and $\mathcal{G}h_{f_{max}} = 0$. The rest of the proof is analogous to the proof of Lemma 3.3 in Jacka et al. (2004).

Proof of Theorem 2.2: The theorem is proved in the same way as Theorem 2.1, the only difference is that Lemma 4.2 is used instead of Lemma 3.1. \Box

5 The negative drift case: conditioning $(\varphi_t)_{t\geq 0}$ to drift to $+\infty$

The process $(X_t, \varphi_t)_{t\geq 0}$ can also be conditioned first on the event that $(\varphi_t)_{t\geq 0}$ hits large levels y regardless of crossing zero (that is taking the limit as $y \to \infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < +\infty\}$), and then the resulting process can be conditioned on the event that $(\varphi_t)_{t\geq 0}$ stays non-negative. In this section we show that these two conditionings performed in the stated order yield the same result as the limit as $y \to +\infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}$.

Let $(e, \varphi) \in E_0^+$ and $y > \varphi$. Then, by (ix) in Jacka et al. (2004), the event $\{H_y < +\infty\}$ is of positive probability and the process $(X_t, \varphi_t)_{t\geq 0}$ can be conditioned on $\{H_y < +\infty\}$ in the standard way.

For fixed $t \geq 0$ and any $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}(A \mid H_y < +\infty) = \frac{E_{(e,\varphi)}\Big(I(A)P_{(X_t,\varphi_t)}(H_y < +\infty)I\{t < H_y\} + I(A)I\{H_y < t\}\Big)}{P_{(e,\varphi)}(H_y < +\infty)}.$$
(5)

Lemma 5.1 For any $(e, \varphi), (e', \varphi') \in E_0^+$,

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < +\infty)}{P_{(e,\varphi)}(H_y < +\infty)} = \frac{e^{-\alpha_{max}\varphi'}f_{max}(e')}{e^{-\alpha_{max}\varphi}f_{max}(e)}.$$

Proof: By Lemma 5.5 in Jacka et al. (2004), for $0 \le \varphi < y$,

$$P_{(e,\varphi)}(H_y < +\infty) = P_{(e,\varphi-y)}(H_0 < +\infty) = \Gamma F(y-\varphi)1.$$

The vector 1 is non-negative. Hence, by Lemma 4.1 and because $\Gamma J_1 f_{max} = f_{max}$,

$$\lim_{y \to +\infty} \frac{P_{(e',\varphi')}(H_y < +\infty)}{P_{(e,\varphi)}(H_y < +\infty)} = \lim_{y \to +\infty} \frac{e^{-\alpha_{max}\varphi'}\Gamma e^{-\alpha_{max}(y-\varphi')}F(y-\varphi)\mathbf{1}(e')}{e^{-\alpha_{max}\varphi'}\Gamma e^{-\alpha_{max}(y-\varphi)}F(y-\varphi)\mathbf{1}(e)} = \frac{e^{-\alpha_{max}\varphi'}f_{max}(e')}{e^{-\alpha_{max}\varphi}f_{max}(e)}.$$

Let $h_{max}(e,\varphi)$ be a function on $E \times \mathbb{R}$ defined by

$$h_{max}(e,\varphi) = e^{-\alpha_{max}\varphi} f_{max}(e).$$

Lemma 5.2 The process $(h_{max}(X_t, \varphi_t))_{t \geq 0}$ is a martingale under $P_{(e,\varphi)}$.

Proof: The function $h_{max}(e, \varphi)$ is continuously differentiable in φ which implies that it is in the domain of the infinitesimal generator \mathcal{G} of the process $(X_t, \varphi_t)_{t\geq 0}$. In addition, $\mathcal{G}h_{max} = 0$. It follows that the process $(h_{max}(X_t, \varphi_t))_{t\geq 0}$ is a local martingale under $P_{(e,\varphi)}$ and, because it is bounded on every finite interval, the process $(h_{max}(X_t, \varphi_t))_{t\geq 0}$ is a martingale under $P_{(e,\varphi)}$.

By Lemmas 5.1 and 5.2 we prove

Theorem 5.1 For fixed $(e, \varphi) \in E_0^+$, let $P_{(e,\varphi)}^{h_{max}}$ be a measure defined by

$$P_{(e,\varphi)}^{h_{max}}(A) = \frac{E_{(e,\varphi)}\Big(I(A) \ h_{max}(X_t,\varphi_t)\Big)}{h_{max}(e,\varphi)}, \qquad t \ge 0, A \in \mathcal{F}_t$$

Then, $P_{(e,\varphi)}^{h_{max}}$ is a probability measure and, for fixed $t \geq 0$,

$$\lim_{y \to +\infty} P_{(e,\varphi)}(A \mid H_y < +\infty) = P^{h_{max}}_{(e,\varphi)}(A), \quad A \in \mathcal{F}_t.$$

Proof: By the definition, the function h_{max} is positive. Hence $P_{(e,\varphi)}^{h_{max}}$ is a measure. In addition, by Lemma 5.2, the process $(h_{max}(X_t,\varphi_t))_{t\geq 0}$ is a martingale under $P_{(e,\varphi)}$. Hence, $P_{(e,\varphi)}^{h_{max}}$ is a probability measure. For fixed $(e, \varphi) \in E_0^+$ and $t, y \ge 0$, let $h_y(e, \varphi, t)$ be a random variable defined on the probability space $(\Omega, \mathcal{F}, P_{(e,\varphi)})$ by

$$h_y(e,\varphi,t) = \frac{P_{(X_t,\varphi_t)}(H_y < +\infty)I\{t < H_y\} + I(A)I\{H_y < t\}}{P_{(e,\varphi)}(H_y < +\infty)}$$

The random variables $h_y(e, \varphi, t), y \ge 0$, are non-negative and, by Lemma 5.1,

$$\lim_{y \to +\infty} h_y(e,\varphi,t) = \frac{h_{max}(X_t,\varphi_t)}{h_{max}(e,\varphi)}, \quad a.s..$$

The rest of the proof is analogous to the proof of Theorem 2.1.

We now want to condition the process $(X_t, \varphi_t)_{t \ge 0}$ under $P_{(e,\varphi)}^{h_{max}}$ on the event $\{H_0 = +\infty\}$. By Theorem 7.4, $(X_t)_{t \ge 0}$ under $P_{(e,\varphi)}^{h_{max}}$ is Markov with the irreducible conservative Q-matrix $Q^{h_{max}}$ given by

$$Q^{h_{max}}(e,e') = \frac{f_{max}(e')}{f_{max}(e)}(Q - \alpha_{max}V)(e,e'), \qquad e, e' \in E,$$

and, by the same theorem, the process $(\varphi_t)_{t\geq 0}$ under $P^{h_{max}}_{(e,\varphi)}$ drifts to $+\infty$. We find the Wiener-Hopf factorization of the matrix $V^{-1}Q^{h_{max}}$.

Lemma 5.3 The unique Wiener-Hopf factorization of the matrix $V^{-1}Q^{h_{max}}$ is given by $V^{-1}Q^{h_{max}} \Gamma^{h_{max}} = \Gamma^{h_{max}} G^{h_{max}}$, where, for any $(e, e') \in E \times E$,

$$G^{h_{max}}(e, e') = \frac{f_{max}(e')}{f_{max}(e)} \ (G - \alpha_{max}I)(e, e') \quad and \quad \Gamma^{h_{max}}(e, e') = \frac{f_{max}(e')}{f_{max}(e)} \ \Gamma(e, e').$$

In addition, if

$$G^{h_{max}} = \begin{pmatrix} G^{h_{max},+} & 0\\ 0 & -G^{h_{max},-} \end{pmatrix} \quad and \quad \Gamma^{h_{max}} = \begin{pmatrix} I & \Pi^{h_{max},-}\\ \Pi^{h_{max},+} & I \end{pmatrix},$$

then $G^{h_{max},+}$ is a conservative Q-matrix and $\Pi^{h_{max},+}$ is stochastic, and $G^{h_{max},-}$ is not a conservative Q-matrix and $\Pi^{h_{max},-}$ is strictly substochastic.

Proof: By the definition the matrices $G^{h_{max},+}$ and $G^{h_{max},-}$ are essentially non-negative. In addition, for any $e \in E^+$, $G^{h_{max},+}1(e) = 0$. Hence, $G^{h_{max},+}$ is a conservative Q-matrix. By Lemma 4.2 (i),

$$h_{f_{max}}^{-} = (\Pi^{+}e^{-\varphi G^{+}} - e^{\varphi G^{-}}\Pi^{+})f_{max}^{+} = e^{-\alpha_{max}\varphi}(I - e^{\varphi(G^{-} + \alpha_{max}I)})f_{max}^{-} > 0$$

Since

$$\lim_{\varphi \to 0} \frac{\left(I - e^{\varphi(G^- + \alpha_{max}I)}\right) f_{max}^-}{\varphi} = -(G^- + \alpha_{max}I)f_{max}^-,$$

and $(I - e^{\varphi(G^- + \alpha_{max}I)})f_{max}^- > 0$, it follows that $(G^- + \alpha_{max}I)f_{max}^- \leq 0$. Thus, $G^{h_{max},-1^-} \leq 0$ and so $G^{h_{max},-}$ is a Q-matrix. Moreover, if $(G^- + \alpha_{max}I)f_{max}^- = 0$ then $h_{f_{max}}(e,\varphi) = 0$ for $e \in E^-$ which is a contradiction to Lemma 4.2. Therefore, the matrix $G^{h_{max},-}$ is not conservative.

The matrices $G^{h_{max}}$ and $\Gamma^{h_{max}}$ satisfy the equality $V^{-1}Q^{h_{max}}$ $\Gamma^{h_{max}} = \Gamma^{h_{max}} G^{h_{max}}$, which, by Lemma 5.4 in Jacka et al. (2004), gives the unique Wiener-Hopf factorization of the matrix $V^{-1}Q^{h_{max}}$. Finally, by (iv) in Jacka et al. (2004), $\Pi^{h_{max},+}$ is a stochastic and $\Pi^{h_{max},-}$ is a strictly substochastic matrix.

Finally, we prove the main result in this section

Theorem 5.2 Let $P_{(e,\varphi)}^{f_{\max}}$ be as defined in Theorem 2.2. Then, for any $(e,\varphi) \in E_0^+$ and any $t \ge 0$,

$$P_{(e,\varphi)}^{h_{max}}(A \mid H_0 = \infty) = P_{(e,\varphi)}^{f_{max}}(A), \qquad A \in \mathcal{F}_t$$

Proof: By Theorem 7.4 the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ drifts to $+\infty$. Since in the positive drift case the event $\{H_0 = +\infty\}$ is of positive probability, for any $t \geq 0$ and any $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{h_{\max}}(A \mid H_0 = \infty) = \frac{E_{(e,\varphi)}^{h_{\max}}(I(A) P_{(X_t,\varphi_t)}^{h_{\max}}(H_0 = +\infty) I\{t < H_0\})}{P_{(e,\varphi)}^{h_{\max}}(H_0 = +\infty)}.$$
 (6)

By Lemma 5.5 in Jacka et al. (2004) and by Lemma 5.3, for $\varphi > 0$,

$$P_{(e,\varphi)}^{h_{max}}(H_0 = +\infty) = 1 - \frac{e^{\alpha_{max}\varphi}}{f_{max}(e)} \sum_{e'' \in E} \Gamma e^{-\varphi G}(e, e'') J_2 1(e'') f_{max}(e'')$$
$$= \frac{1}{h_{max}(e,\varphi)} \Big(e^{-\alpha_{max}\varphi} f_{max} - \Gamma F(-\varphi) f_{max} \Big)(e)$$
$$= \frac{h_{f_{max}}(e,\varphi)}{h_{max}(e,\varphi)},$$
(7)

where $h_{f_{max}}$ is as defined in Lemma 4.2. Similarly, for $e \in E^+$,

$$P_{(e,0)}^{h_{max}}(H_0 = +\infty) = \frac{f_{max}^+ - \Pi^- f_{max}^-)(e)}{f_{max}^+(e)} = \frac{h_{f_{max}}(e,0)}{h_{max}(e,0)}.$$

Therefore, the statement in the theorem follows from Theorem 5.1, (6) and (7). \Box

We summarize the results from this section: in the negative drift case, making the *h*-transform of the process $(X_t, \varphi_t)_{t\geq 0}$ with the function $h_{max}(e, \varphi) = e^{-\alpha_{max}\varphi} f_{max}(e)$ yields the probability measure $P_{(e,\varphi)}^{h_{max}}$ such that $(X_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ is Markov and that $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ is with a positive drift. The process $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ is also the limiting process as $y \to +\infty$ in conditioning $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}$ on $\{H_y < +\infty\}$. Further conditioning $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ on $\{H_0 = +\infty\}$ yields the same result as the limit as $y \to +\infty$ of conditioning $(X_t, \varphi_t)_{t\geq 0}$ on $\{H_y < H_0\}$. In other words, the diagram in Figure 1 commutes.

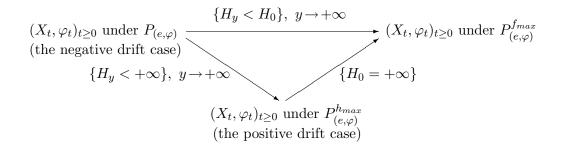


Figure 1: The negative drift case of conditioning the process $(X_t, \varphi_t)_{t \ge 0}$ on the events $\{H_y < H_0\}, y \ge 0.$

The negative drift case: conditioning $(\varphi_t)_{t\geq 0}$ to oscillate 6

In this section we condition the process $(\varphi_t)_{t\geq 0}$ with a negative drift to oscillate, and then condition the resulting oscillating process to stay non-negative. Let $P_{(e,\varphi)}^h$ denote the h-transformed measure $P_{(e,\varphi)}$ with a function h. We want to find a function h such that the process $(X_t)_{t\geq 0}$ under $P_{(e,\varphi)}^h$ is Markov and that the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^h$ oscillates. By Theorem 7.4, there does not exist such function defined on $E \times \mathbb{R}$. But, by Theorem 7.5, there exists exactly one such function defined on $E \times \mathbb{R} \times [0, +\infty)$ which is given by

$$h_0(e,\varphi,t) = e^{-\alpha_0 t} e^{-\beta_0 \varphi} g_0(e),$$

where $\alpha(\beta)$ is the Perron-Frobenius eigenvalue of the matrix $(Q - \beta V)$, β_0 is the argmin of $\alpha(\cdot)$, $\alpha_0 = \alpha(\beta_0)$ and g_0 is the Perron-Frobenius eigenvector of the matrix $(Q - \beta_0 V)$.

For fixed $(e, \varphi) \in E_0^+$, let a measure $P_{(e,\varphi)}^{h_0}$ be defined by

$$P^{h_0}_{(e,\varphi)}(A) = \frac{E_{(e,\varphi)}\Big(I(A)h_0(X_t,\varphi_t,t)\Big)}{h_0(e,\varphi,0)}, \quad A \in \mathcal{F}_t, \ t \ge 0.$$

$$\tag{8}$$

Then, the process $(X_t)_{t\geq 0}$ under $P^{h_0}_{(e,\varphi)}$ is Markov with the *Q*-matrix Q^0 given by

$$Q^{0}(e,e') = \frac{g_{0}(e')}{g_{0}(e)}(Q - \alpha_{0}I - \beta_{0}V)(e,e'), \qquad e,e' \in E.$$
(9)

and, by Theorem 7.5, the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ oscillates. The aim now is to condition $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ on the event that $(\varphi_t)_{t\geq 0}$ stays non-negative. The following theorem determines the law of this new conditioned process.

Theorem 6.1 For fixed $(e, \varphi) \in E_0^+$, let a measure $P_{(e,\varphi)}^{h_0,h_0^-}$ be defined by

$$P_{(e,\varphi)}^{h_0,h_r^0}(A) = \frac{E_{(e,\varphi)}^{h_0}\Big(I(A)h_r^0(X_t,\varphi_t)I\{t < H_0\}\Big)}{h_r^0(e,\varphi)}, \quad A \in \mathcal{F}_t, \ t \ge 0$$

where the function h_r^0 is given by $h_r^0(e, y) = e^{-yV^{-1}Q^0}J_1\Gamma_2 r^0(e), \ (e, y) \in E \times \mathbb{R}$, and $V^{-1}Q^0r^0 = 1. \text{ Then, } P^{h_0,h_r^0}_{(e,\varphi)} \text{ is a probability measure.}$ In addition, for $t \geq 0$ and $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{h_0,h_r^0}(A) = \lim_{y \to \infty} P_{(e,\varphi)}^{h_0}(A \mid H_y < H_0) = \lim_{T \to \infty} P_{(e,\varphi)}^{h_0}(A \mid H_0 > T),$$

and

$$P^{h_0,h^0_r}_{(e,\varphi)}(A) = P^{r^0}_{(e,\varphi)}(A),$$

where $P_{(e,\varphi)}^{r^0}$ is as defined in Theorem 2.2 in Jacka et al. (2004).

Proof: By Lemma 5.9 and (16) in Jacka et al. (2004), the *Q*-matrix Q^0 of the process $(X_t)_{t\geq 0}$ under $P^{h_0}_{(e,\varphi)}$ is conservative and irreducible and the process $(\varphi_t)_{t\geq 0}$ under $P^{h_0}_{(e,\varphi)}$ oscillates. Thus, if $P_{(e,\varphi)}^{h_0,h_r^0}$ denotes the law of $(X_t,\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_0}$ conditioned on $\{H_0 = +\infty\}$, then, by Theorem 2.1 in Jacka et al. (2004) and by Theorem 2.1, $P_{(e,\varphi)}^{h_0,h_v^0}$ is a probability measure and

$$P_{(e,\varphi)}^{h_0,h_0^{-}}(A) = \lim_{y \to \infty} P_{(e,\varphi)}^{h_0}(A|H_y < H_0) = \lim_{T \to \infty} P_{(e,\varphi)}^{h_0}(A|H_0 > T).$$

In addition, by definition (8) of the measure $P_{(e,\varphi)}^{h_0}$, for $t \ge 0$ and $A \in \mathcal{F}_t$,

$$P_{(e,\varphi)}^{h_0,h_r^0}(A) = \frac{E_{(e,\varphi)}\Big(I(A) \ h_0(X_t,\varphi_t,t) \ h_r^0(X_t,\varphi_t) \ I\{t < H_0\}\Big)}{h_0(e,\varphi,0) \ h_r^0(e,\varphi)} = P_{(e,\varphi)}^{r^0}(A),$$

since $h_0(e,\varphi,t)$ $h_r^0(e,\varphi) = h_{r^0}(e,\varphi,t)$ where $h_{r^0}(e,\varphi,t)$ is as defined in Theorem 2.2 in Jacka et al. (2004). \square

We summarize the results in this section: in the negative drift case, making the *h*-transform of the process $(X_t, \varphi_t, t)_{t \ge 0}$ with the function $h_0(e, \varphi) = e^{-\alpha_0 \varphi} e^{-\beta_0 \varphi} g_0(e)$ yields the probability measure $P_{(e,\varphi)}^{h_0}$ such that $(X_t)_{t \ge 0}$ under $P_{(e,\varphi)}^{h_0}$ is Markov and that $(\varphi_t)_{t\geq 0}$ under $P^{h_0}_{(e,\varphi)}$ oscillates. Then the law of $(X_t,\varphi_t)_{t\geq 0}$ under $P^{h_0}_{(e,\varphi)}$ conditioned on the event $\{H_0 = +\infty\}$ is equal to $P_{(e,\varphi)}^{h_0,h_r^0} = P_{(e,\varphi)}^{r^0}$. On the other hand, by Theorem 2.2 in Jacka et al. (2004), under the condition that all non-zero eigenvalues of the matrix $V^{-1}Q^0$ are simple, $P_{(e,\varphi)}^{r^0}$ is the limiting law as $T \to +\infty$ of the process $(X_t, \varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{r^0}$ conditioned on $\{H_0 > T\}$. Hence, under the condition that all non-zero eigenvalues of the matrix $V^{-1}Q^0$ are simple, the diagram in Figure 2 commutes.

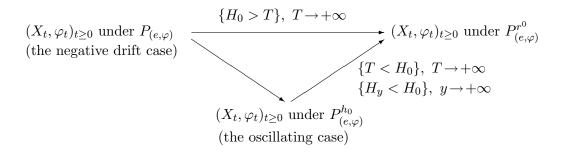


Figure 2: The negative drift case of conditioning the process $(X_t, \varphi_t)_{t \ge 0}$ on the events $\{H_0 > T\}, T \ge 0$.

7 Appendix: The Green's function

The Green's function of the process $(X_t, \varphi_t)_{t \ge 0}$, denoted by $G((e, \varphi), (f, y))$, for any $(e, \varphi), (f, y) \in E \times \mathbb{R}$, is defined as

$$G((e,\varphi),(f,y)) = E_{(e,\varphi)}\Big(\sum_{0 \le s < \infty} I(X_s = f,\varphi_s = y)\Big),$$

noting that the process $(X_t, \varphi_t)_{t \ge 0}$ hits any fixed state at discrete times. For simplicity of notation, let $G(\varphi, y)$ denote the matrix $(G((\cdot, \varphi), (\cdot, y)))_{E \times E}$.

Theorem 7.1 In the drift cases,

$$G(0,0) = \Gamma_2^{-1} = \begin{pmatrix} (I - \Pi^- \Pi^+)^{-1} & \Pi^- (I - \Pi^+ \Pi^-)^{-1} \\ \Pi^+ (I - \Pi^- \Pi^+)^{-1} & (I - \Pi^+ \Pi^-)^{-1} \end{pmatrix}.$$

In the oscillating case, $G(0,0) = +\infty$.

Proof: By the definition of G(0,0) and the matrices Π^+ , Π^- and Γ_2 ,

$$G(0,0) = \sum_{n=1}^{\infty} \begin{pmatrix} 0 & \Pi^{-} \\ \Pi^{+} & 0 \end{pmatrix}^{n} = \sum_{n=1}^{\infty} (I - \Gamma_{2})^{n}.$$

Suppose that the process $(\varphi_t)_{t\geq 0}$ drifts either to $+\infty$ of $-\infty$. Then by (16) and (IV) in Jacka et al. (2004) exactly one of the matrices Π^+ and Π^- is strictly substochastic.

In addition, the matrix $\Pi^{-}\Pi^{+}$ is positive and thus primitive. Therefore, the Perron-Frobenius eigenvalue λ of $\Pi^{-}\Pi^{+}$ satisfies $0 < \lambda < 1$ which, by the Perron-Frobenius theorem for primitive matrices, implies that

$$\lim_{n \to \infty} \frac{(\Pi^- \Pi^+)^n}{(1+\lambda)^n} = const. \neq 0.$$

Therefore, $(\Pi^{-}\Pi^{+})^{n} \to 0$ elementwise as $n \to +\infty$, and similarly $(\Pi^{+}\Pi^{-})^{n} \to 0$ elementwise as $n \to +\infty$. Hence, $(I - \Gamma_{2})^{n} \to 0, n \to +\infty$. Since

$$I - (I - \Gamma_2)^{n+1} = \Gamma_2 \sum_{k=0}^n (I - \Gamma_2)^k,$$

and, by (II) in Jacka et al. (2004), Γ_2^{-1} exists, by letting $n \to +\infty$ we obtain

$$G(0,0) = \sum_{n=0}^{\infty} (I - \Gamma_2)^n = \Gamma_2^{-1}.$$
 (10)

Suppose now that the process $(\varphi_t)_{t\geq 0}$ oscillates. Then again by (16) and (IV) in Jacka et al. (2004), the matrices Π^+ and Π^- are stochastic. Thus, $(I - \Gamma_2)1 = 1$ and

$$G(0,0)1 = \sum_{n=0}^{\infty} (I - \Gamma_2)^n 1 = \sum_{n=0}^{\infty} 1 = +\infty.$$
 (11)

Since the matrix Q is irreducible, it follows that $G(0,0) = +\infty$.

Theorem 7.2 In the drift cases, the Green's function $G((e, \varphi), (f, y))$ of the process $(X_t, \varphi_t)_{t\geq 0}$ is given by the $E \times E$ matrix $G(\varphi, y)$, where

$$G(\varphi, y) = \begin{cases} \Gamma \ F(y - \varphi) \ \Gamma_2^{-1}, & \varphi \neq y \\ \Gamma_2^{-1}, & \varphi = y. \end{cases}$$

Proof: By Theorem 7.1, $G(y, y) = G(0, 0) = \Gamma_2^{-1}$. and by Lemma 5.5 in Jacka et al. (2004),

$$P_{(e,\varphi-y)}(X_{H_0} = e', H_0 < +\infty) = \Gamma F(y-\varphi)(e, e'), \qquad \varphi \neq y.$$

The theorem now follows from

$$G((e,\varphi),(f,y)) = \sum_{e' \in E} P_{(e,\varphi-y)}(X_{H_0} = e', H_0 < +\infty) \ G((e',0),(f,0)).$$

The Green's function $G_0((e,\varphi), (f,y)), (e,\varphi), (f,y) \in E \times \mathbb{R}$, (in matrix notation $G_0(\varphi, y)$) of the process $(X_t, \varphi_t)_{t \geq 0}$ killed when the process $(\varphi_t)_{t \geq 0}$ crosses zero is defined by

$$G_0((e,\varphi),(f,y)) = E_{(e,\varphi)}\Big(\sum_{0 \le s < H_0} I(X_s = f,\varphi_s = y)\Big).$$

It follows that $G_0(\varphi, y) = 0$ if $\varphi y < 0$, that $G_0(\varphi, 0) = 0$ if $\varphi \neq 0$, and that $G_0(0,0) = I$. To calculate $G_0(\varphi, y)$ for $|\varphi| \le |y|, \varphi y \ge 0, y \ne 0$, we use the following lemma:

Lemma 7.1 Let $(f, y) \in E^+ \times (0, +\infty)$ be fixed and let the process $(X_t, \varphi_t)_{t\geq 0}$ start at $(e, \varphi) \in E \times (0, y)$. Let $(e, \varphi) \mapsto h((e, \varphi), (f, y))$ be a bounded function on $E \times (0, y)$ such that the process $(h((X_{t \wedge H_0 \wedge H_y}, \varphi_{t \wedge H_0 \wedge H_y}), (f, y)))_{t\geq 0}$ is a uniformly integrable martingale and that

$$h((e,0),(f,y)) = 0, \qquad e \in E^-$$
 (12)

$$h((e,y),(f,y)) = G_0((e,y),(f,y)).$$
 (13)

Then

$$h((e,\varphi),(f,y)) = G_0((e,\varphi),(f,y)), \quad (e,\varphi) \in E \times (0,y).$$

Proof: The proof of the lemma is based on the fact that a uniformly integrable martingale in a region which is zero on the boundary of that region is zero everywhere. Therefore we omit the proof. \Box

Let A_y, B_y, C_y and D_y be components of the matrix $e^{-yV^{-1}Q}$ such that, for any $y \in \mathbb{R}$,

$$e^{-yV^{-1}Q} = \begin{pmatrix} A_y & B_y \\ C_y & D_y \end{pmatrix}.$$
 (14)

Theorem 7.3 The Green's function $G_0((e, \varphi), (f, y)), |\varphi| \leq |y|, \varphi y \geq 0, y \neq 0, e, f \in E$, is given by the $E \times E$ matrix $G_0(\varphi, y)$ with the components

$$G_{0}(\varphi, y) = \begin{cases} \begin{pmatrix} A_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1} & A_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1}\Pi^{-} \\ C_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1} & C_{\varphi}(A_{y} - \Pi^{-}C_{y})^{-1}\Pi^{-} \end{pmatrix}, & 0 \leq \varphi < y \\ \begin{pmatrix} B_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1}\Pi^{+} & B_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1} \\ D_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1}\Pi^{+} & D_{\varphi}(D_{y} - \Pi^{+}B_{y})^{-1} \end{pmatrix}, & y < \varphi \leq 0, \\ \begin{pmatrix} (I - \Pi^{-}C_{y}A_{y}^{-1})^{-1} & \Pi^{-}(I - C_{y}A_{y}^{-1}\Pi^{-})^{-1} \\ C_{y}A_{y}^{-1}(I - \Pi^{-}C_{y}A_{y}^{-1})^{-1} & (I - C_{y}A_{y}^{-1}\Pi^{-})^{-1} \end{pmatrix}, & \varphi = y > 0 \\ \begin{pmatrix} (I - B_{y}D_{y}^{-1}\Pi^{+})^{-1} & ByD_{y}^{-1}(I - \Pi^{+}B_{y}D_{y}^{-1})^{-1} \\ \Pi^{+}(I - B_{y}D_{y}^{-1}\Pi^{+})^{-1} & (I - \Pi^{+}B_{y}D_{y}^{-1})^{-1} \end{pmatrix}, & \varphi = y < 0, \end{cases}$$

In the drift cases, $G_0(\varphi, y)$ written in matrix notation is given by

$$G_{0}(\varphi, y) = \begin{cases} \Gamma e^{-\varphi G} \Gamma_{2} F(y) \Gamma_{2}^{-1}, & 0 \leq \varphi < y \quad or \quad y < \varphi \leq 0\\ \Gamma F(-\varphi) \Gamma_{2} e^{yG} \Gamma_{2}^{-1}, & 0 < y < \varphi \quad or \quad \varphi < y < 0\\ \left(I - \Gamma F(-y) \Gamma F(y)\right) \Gamma_{2}^{-1}, & \varphi = y \neq 0. \end{cases}$$

In addition, the Green's function $G_0(\varphi, y)$ is positive for all $\varphi, y \in \mathbb{R}$ except for y = 0and for $\varphi y < 0$.

Proof: We prove the theorem for y > 0. The case y < 0 can be proved in the same way.

Let y > 0. First we calculate the Green's function $G_0(y, y)$. Let Y_y denote a matrix on $E^- \times E^+$ with entries

$$Y_y(e, e') = P_{(e,y)}(X_{H_y} = e', H_y < H_0)$$

Then

$$G_0(y,y) = \begin{pmatrix} I & \Pi^- \\ Y_y & I \end{pmatrix} \begin{pmatrix} \sum_{n=0}^{\infty} (\Pi^- Y_y)^n & 0 \\ 0 & \sum_{n=0}^{\infty} (Y_y \Pi^-)^n \end{pmatrix}$$

By (viii) in Jacka et al. (2004), the matrix Y_y is positive and $0 < Y_y 1^+ < 1^-$. Hence, $\Pi^- Y_y$ is positive and therefore irreducible and its Perron-Frobenius eigenvalue λ satisfies $0 < \lambda < 1$. Thus,

$$\lim_{n \to \infty} \frac{(\Pi^- Y_y)^n}{(1+\lambda)^n} = const. \neq 0,$$

which implies that $(\Pi^- Y_y)^n \to 0$ elementwise as $n \to +\infty$. Similarly, $(Y_y \Pi^-)^n \to 0$ elementwise as $n \to +\infty$.

Furthermore, the essentially non-negative matrices $(\Pi^- Y_y - I)$ and $(Y_y \Pi^- - I)$ are invertible because their Perron-Frobenius eigenvalues are negative and, by the same argument, the matrices $(I - \Pi^- Y_y)^{-1}$ and $(I - Y_y \Pi^-)^{-1}$ are positive. Since

$$\begin{split} &\sum_{k=0}^{n} (\Pi^{-}Y_{y})^{k} = (I - \Pi^{-}Y_{y})^{-1} (I - (\Pi^{-}Y_{y})^{n+1}) \\ &\sum_{k=0}^{n} (Y_{y}\Pi^{-})^{k} = (I - Y_{y}\Pi^{-})^{-1} (I - (Y_{y}\Pi^{-})^{n+1}). \end{split}$$

by letting $n \to \infty$ we finally obtain

$$G_0(y,y) = \begin{pmatrix} (I - \Pi^- Y_y)^{-1} & \Pi^- (I - \Pi^- Y_y)^{-1} \\ Y_y (I - Y_y \Pi^-)^{-1} & (I - Y_y \Pi^-)^{-1} \end{pmatrix} = \begin{pmatrix} I & -\Pi^- \\ -Y_y^{-1} & I \end{pmatrix}^{-1}.$$
 (15)

By (i) and (viii) in Jacka et al. (2004), the matrices Π^- and Y_y are positive. Since the matrices $(I - \Pi^- Y_y)^{-1}$ and $(I - Y_y \Pi^-)^{-1}$ are also positive, it follows that $G_0(y, y)$, y > 0 is positive.

Now we calculate the Green's function $G_0(\varphi, y)$ for $0 \leq \varphi < y$. Let $(f, y) \in E^+ \times (0, +\infty)$ be fixed and let the process $(X_t, \varphi_t)_{t\geq 0}$ start in $E \times (0, y)$. Let

$$h((e,\varphi),(f,y)) = e^{-\varphi V^{-1}Q} g_{f,y}(e),$$
(16)

for some vector $g_{f,y}$ on E. Since by (15) in Jacka et.al (2004) $\mathcal{A}h = 0$, the process $(h((X_t, \varphi_t), (f, y)))_{t\geq 0}$ is a local martingale, and because the function h is bounded on every finite interval, it is a martingale. In addition, $(h((X_{t\wedge H_0\wedge H_y}, \varphi_{t\wedge H_0\wedge H_y}), (f, y)))_{t\geq 0}$ is a bounded martingale and therefore a uniformly integrable martingale.

We want the function h to satisfy the boundary conditions in Lemma 7.1. Let $h_y(\varphi)$ be an $E \times E^+$ matrix with entries

$$h_y(\varphi)(e, f) = h((e, \varphi), (f, y)).$$

Then, from (16) and the boundary condition (12),

$$h_y(\varphi) = \begin{pmatrix} A_\varphi & B_\varphi \\ C_\varphi & D_\varphi \end{pmatrix} \begin{pmatrix} M_y \\ 0 \end{pmatrix} = \begin{pmatrix} A_\varphi M_y \\ C_\varphi M_y \end{pmatrix}, \quad 0 \le \varphi < y,$$

for some $E^+ \times E^+$ matrix M_y . From the boundary condition (13),

$$A_y M_y = (I - \Pi^- Y_y)^{-1}$$
 and $C_y M_y = Y_y (I - \Pi^- Y_y)^{-1}$, (17)

which implies that $M_y = (A_y - \Pi^- C_y)^{-1}$ and $Y_y = C_y A_y^{-1}$. Hence,

$$h_y(\varphi) = \begin{pmatrix} A_\varphi (A_y - \Pi^- C_y)^{-1} \\ C_\varphi (A_y - \Pi^- C_y)^{-1} \end{pmatrix}, \qquad 0 \le \varphi < y,$$

and the function $h((e, \varphi), (f, y))$ satisfies the boundary conditions (12) and (13) in Lemma 7.1. Therefore, for $0 \leq \varphi < y$, $G_0(\varphi, y) = h_y(\varphi)$ on $E \times E^+$, and because $G_0(\varphi, y) = h_y(\varphi)\Pi^-$ on $E \times E^-$,

$$G_0(\varphi, y) = \begin{pmatrix} A_{\varphi}(A_y - \Pi^- C_y)^{-1} & A_{\varphi}(A_y - \Pi^- C_y)^{-1}\Pi^- \\ C_{\varphi}(A_y - \Pi^- C_y)^{-1} & C_{\varphi}(A_y - \Pi^- C_y)^{-1}\Pi^- \end{pmatrix}, \qquad 0 \le \varphi < y.$$

Finally, since $G_0(y, y)$, y > 0, is positive, by irreducibility $G_0(\varphi, y)$ for $0 \le \varphi < y$ is also positive.

Lemma 7.2 For $y \neq 0$ and any $(e, f) \in E \times E$

$$P_{(e,\varphi)}(X_{H_y} = f, H_y < H_0) = G_0(\varphi, y)(G_0(y, y))^{-1}(e, f), \qquad 0 < |\varphi| < |y|,$$

$$P_{(e,y)}(X_{H_y} = f, H_y < H_0) = \left(I - (G_0(y, y))^{-1}\right)(e, f).$$

Proof: By Theorem 7.3, the matrix $G_0(y, y)$ is invertible. Therefore, the equalities

$$G_0((e,\varphi),(f,y)) = \sum_{e' \in E} P_{(e,\varphi)}(X_{H_y} = e', H_y < H_0) \ G_0((e',y),(f,y)), \ \varphi \neq y \neq 0,$$

$$G_0((e,y),(f,y)) = I(e,f) + \sum_{e' \in E} P_{(e,y)}(X_{H_y} = e', H_y < H_0)G_0((e',y),(f,y)), y \neq 0,$$

prove the lemma.

We close the section by stating two results which were proved in Najdanovic (2003) and which were used in the previous sections. Let $h(e, \varphi, t)$ be a positive function on $E \times \mathbb{R} \times [0, +\infty)$ such that the process $(h(X_t, \varphi_t, t))_{t\geq 0}$ is a martingale. For fixed $(e, \varphi) \in E \times \mathbb{R}$, define a probability measure $P^h_{(e,\varphi)}$ by

$$P_{(e,\varphi)}^{h}(A) = \frac{E_{(e,\varphi)}\Big(I(A) \ h(X_t,\varphi_t,t)\Big)}{h(e,\varphi,0)}, \qquad A \in \mathcal{F}_t.$$
(18)

Theorem 7.4 There exist only two functions $h(e, \varphi)$ on $E \times \mathbb{R}$ continuously differentiable in φ such that the process $(X_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ is Markov and they are

 $h_{max}(e,\varphi) = e^{-\alpha_{max}\varphi} f_{max}(e)$ and $h_{min}(e,\varphi) = e^{-\beta_{min}\varphi} g_{min}(e).$

Moreover,

1) if the process $(\varphi_t)_{t\geq 0}$ drifts to $+\infty$ then $h_{max} = 1$ and the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{min}}$ drifts to $-\infty$; 2) if the process $(\varphi_t)_{t\geq 0}$ drifts to $-\infty$ then $h_{min} = 1$ and the process $(\varphi_t)_{t\geq 0}$ under $P_{(e,\varphi)}^{h_{max}}$ drifts to $+\infty$; 3) if the process $(\varphi_t)_{t\geq 0}$ oscillates then $h_{max} = h_{min} = 1$.

Theorem 7.5 All functions $h(e, \varphi, t)$ on $E \times \mathbb{R} \times [0, +\infty)$ continuously differentiable in φ and t for which the process $(X_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ is Markov are of the form

$$h(e,\varphi,t) = e^{-\alpha t} e^{-\beta \varphi} g(e), \quad (e,\varphi,t) \in E \times \mathbb{R} \times [0,+\infty),$$

where, for fixed $\beta \in \mathbb{R}$, α is the Perron-Frobenius eigenvalue and g is the right Perron-Frobenius eigenvector of the matrix $(Q - \beta V)$.

Moreover, there exists unique $\beta_0 \in \mathbb{R}$ such that

$(\varphi_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ drifts to $+\infty$	$i\!f\!f$	$\beta < \beta_0$
$(\varphi_t)_{t\geq 0} \text{ under } P_{(e,\varphi)}^h \text{ oscillates}$	$i\!f\!f$	$\beta = \beta_0$
$(\varphi_t)_{t\geq 0}$ under $P^h_{(e,\varphi)}$ drifts to $-\infty$	$i\!f\!f$	$\beta > \beta_0,$

and β_0 is determined by the equation $\alpha'(\beta_0) = 0$, where $\alpha(\beta)$ is the Perron-Frobenius eigenvalue of $(Q - \beta V)$.

References

- Bertoin, J., Doney, R.A. (1994). On conditioning a random walk to stay nonnegative. Ann. Prob. Vol.22, No.4, 2152-2167.
- [2] Jacka,S.D., Najdanovic,Z., Warren,J.(2004). Conditioning an additive functional of a Markov chain to stay non-negative I: survival for a long time. submitted
- [3] Najdanovic, Z.(2003). Conditioning a Markov chain upon the behaviour of an additive functional. PhD thesis

Authors:

Saul D Jacka, Department of Statistics, University of Warwick, Coventry, CV4 7AL, S.D.Jacka@warwick.ac.uk

Zorana Najdanovic, Department of Mathematics, University of Warwick, Coventry, CV4 7AL, Z.Najdanovic@warwick.ac.uk

Jon Warren, Department of Statistics, University of Warwick, Coventry, CV4 7AL, J.Warren@warwick.ac.uk