CONDITIONING AN ADDITIVE FUNCTIONAL OF A MARKOV CHAIN TO STAY NON-NEGATIVE II: HITTING A HIGH LEVEL ${ }^{1}$

Saul D Jacka, University of Warwick
Zorana Najdanovic, University of Warwick
Jon Warren, University of Warwick

Abstract

Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous-time irreducible Markov chain on a finite statespace E, let $v: E \rightarrow \mathbb{R} \backslash\{0\}$ and let $\left(\varphi_{t}\right)_{t \geq 0}$ be defined by $\varphi_{t}=\int_{0}^{t} v\left(X_{s}\right) d s$. We consider the cases where the process $\left(\varphi_{t}\right)_{t \geq 0}$ is oscillating and where $\left(\varphi_{t}\right)_{t \geq 0}$ has a negative drift. In each of the cases we condition the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on the event that $\left(\varphi_{t}\right)_{t \geq 0}$ hits level y before hitting zero and prove weak convergence of the conditioned process as $y \rightarrow \infty$. In addition, we show the relation between conditioning the process $\left(\varphi_{t}\right)_{t \geq 0}$ with a negative drift to oscillate and conditioning it to stay non-negative until large time, and relation between conditioning $\left(\varphi_{t}\right)_{t \geq 0}$ with a negative drift to drift to drift to $+\infty$ and conditioning it to hit large levels before hitting zero.

1 Introduction

Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous-time irreducible Markov chain on a finite statespace E, let v be a map $v: E \rightarrow \mathbb{R} \backslash\{0\}$, let $\left(\varphi_{t}\right)_{t \geq 0}$ be an additive functional defined by $\varphi_{t}=$ $\int_{0}^{t} v\left(X_{s}\right) d s$ and let $H_{y}, y \in \mathbb{R}$, be the first hitting time of level y by the process $\left(\varphi_{t}\right)_{t \geq 0}$. In the previous paper Jacka, Najdanovic, Warren (2004) we discussed the problem of conditioning the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on the event that the process $\left(\varphi_{t}\right)_{t \geq 0}$ stays nonnegative, that is the event $\left\{H_{0}=+\infty\right\}$. In the oscillating case and in the case of the negative drift of the process $\left(\varphi_{t}\right)_{t \geq 0}$, when the event $\left\{H_{0}=+\infty\right\}$ is of zero probability, the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ can instead be conditioned on some approximation of the event $\left\{H_{0}=+\infty\right\}$. In Jacka et al. (2004) we considered the approximation by the events $\left\{H_{0}>T\right\}, T>0$, and proved weak convergence as $T \rightarrow \infty$ of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ conditioned on this approximation.

In this paper we look at another approximation of the event $\left\{H_{0}=+\infty\right\}$ which is the approximation by the events $\left\{H_{0}>H_{y}\right\}, y \in \mathbb{R}$. Again, we are interested in weak convergence as $y \rightarrow \infty$ of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ conditioned on this approximation.

[^0]Our motivation comes from a work by Bertoin and Doney. In Bertoin, Doney (1994) the authors considered a real-valued random walk $\left\{S_{n}, n \geq 0\right\}$ that does not drift to $+\infty$ and conditioned it to stay non-negative. They discussed two interpretations of this conditioning, one was conditioning S to exceed level n before hitting zero, and another was conditioning S to stay non-negative up to time n. As it will be seen, results for our process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ conditioned on the event $\left\{H_{0}=+\infty\right\}$ appear to be analogues of the results for a random walk.

Furthermore, similarly to the results obtained in Bertoin, Doney (1994) for a realvalued random walk $\left\{S_{n}, n \geq 0\right\}$ that does not drift to $+\infty$, we show that in the negative drift case
(i) taking the limit as $y \rightarrow \infty$ of conditioning the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{y}<+\infty\right\}$ and then further conditioning on the event $\left\{H_{0}=+\infty\right\}$ yields the same result as the limit as $y \rightarrow \infty$ of conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on the event $\left\{H_{0}>H_{y}\right\}$;
(ii) conditioning the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on the event that the process $\left(\varphi_{t}\right)_{t \geq 0}$ oscillates and then further conditioning on $\left\{H_{0}=+\infty\right\}$ yields the same result as the limit as $T \rightarrow \infty$ of conditioning the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{0}>T\right\}$.

The organisation of the paper is as follows: in Section 2 we state the main theorems in the oscillating and in the negative drift case; in Section 3 we prove the main theorem in the oscillating case; in Section 4 we prove the main theorem in the negative drift case. Sections 5 and 6 deal with the negative drift case of the process $\left(\varphi_{t}\right)_{t \geq 0}$ and commuting diagrams in conditioning the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{y}<H_{0}\right\}$ and $\left\{H_{0}>\right.$ $T\}$, respectively, listed in (i) and (ii) above. Finally, Section 7 is concerned with the Green's function of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ and some auxiliary results needed for the proofs in previous sections.

All the notation in the present paper is taken from Jacka et al. (2004).

2 Main theorems

For fixed $y>0$, let $P_{(e, \varphi)}^{y}$ denote the law of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$, starting at $(e, \varphi) \in$ E_{0}^{+}, conditioned on the event $\left\{H_{y}<H_{0}\right\}$, and let $P_{(e, \varphi)}^{y} \mid \mathcal{F}_{t}, t \geq 0$, be the restriction of $P_{(e, \varphi)}^{y}$ to \mathcal{F}_{t}. We are interested in weak convergence of $\left(P_{(e, \varphi)}^{y} \mid \mathcal{F}_{t}\right)_{T \geq 0}$ as $y \rightarrow+\infty$.

Theorem 2.1 Suppose that the process $\left(\varphi_{t}\right)_{t \geq 0}$ oscillate. Then, for fixed $(e, \varphi) \in$ E_{0}^{+}and $t \geq 0$, the measures $\left(P_{(e, \varphi)}^{y} \mid \mathcal{F}_{t}\right)_{y \geq 0}$ converge weakly to the probability measure $P_{(e, \varphi)}^{r} \mid \mathcal{F}_{t}$ as $y \rightarrow \infty$. The measure $P_{(e, \varphi)}^{r}$ is defined by

$$
P_{(e, \varphi)}^{r}(A)=\frac{E_{(e, \varphi)}\left(I(A) h_{r}\left(X_{t}, \varphi_{t}\right) I\left\{t<H_{0}\right\}\right)}{h_{r}(e, \varphi)}, \quad t \geq 0, A \in \mathcal{F}_{t}
$$

where the function h_{r} is given by

$$
h_{r}(e, y)=e^{-y V^{-1} Q} J_{1} \Gamma_{2} r(e), \quad(e, y) \in E \times \mathbb{R}
$$

and $V^{-1} Q r=1$.
By comparing Theorem 2.1 and Theorem 2.1 in Jacka et al. (2004) we see that the measures $\left(P_{(e, \varphi)}^{y}\right)_{y \geq 0}$ and $\left(P_{(e, \varphi)}^{T}\right)_{T \geq 0}$ converge weakly to the same limit. Therefore, in the oscillating case conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{y}<H_{0}\right\}, y>0$, and conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{0}>T\right\}, T>0$, yield the same result.

Theorem 2.2 Suppose that the process $\left(\varphi_{t}\right)_{t \geq 0}$ drifts to $-\infty$. Then, for fixed $(e, \varphi) \in$ E_{0}^{+}and $t \geq 0$, the measures $\left(P_{(e, \varphi)}^{y} \mid \mathcal{F}_{t}\right)_{y \geq 0}$ converge weakly to the probability measure $\left.P_{(e, \varphi)}^{f_{\text {max }}}\right|_{\mathcal{F}_{t}}$ as $y \rightarrow \infty$ given by

$$
P_{(e, \varphi)}^{f_{\max }}(A)=\frac{E_{(e, \varphi)}\left(I(A) h_{f_{\max }}\left(X_{t}, \varphi_{t}\right) I\left\{t<H_{0}\right\}\right)}{h_{f_{\max }}(e, \varphi)}, \quad t \geq 0, A \in \mathcal{F}_{t}
$$

where the function $h_{f_{\max }}$ is

$$
h_{f_{\max }}(e, y)=e^{-y V^{-1} Q} J_{1} \Gamma_{2} f_{\max }(e), \quad(e, y) \in E \times \mathbb{R}
$$

3 The oscillating case: Proof of Theorem 2.1

Let $t \geq 0$ be fixed and let $A \in \mathcal{F}_{t}$. We start by looking at the limit of $P_{(e, \varphi)}^{y}(A)$ as $y \rightarrow+\infty$. For $(e, \varphi) \in E_{0}^{+}$and $y>\varphi$, by (viii) in Jacka et al. (2004), the event $P_{(e, \varphi)}\left(H_{y}<H_{0}\right)>0, y>0$. Hence, by the Markov property, for any $(e, \varphi) \in E_{0}^{+}$and any $A \in \mathcal{F}_{t}$,

$$
\begin{align*}
P_{(e, \varphi)}^{y}(A)= & P_{(e, \varphi)}\left(A \mid H_{y}<H_{0}\right) \\
= & \frac{1}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)} E_{(e, \varphi)}\left(I (A) \left(I\left\{t<H_{0} \wedge H_{y}\right\} P_{\left(X_{t}, \varphi_{t}\right)}\left(H_{y}<H_{0}\right)\right.\right. \\
& \left.\left.\quad+I\left\{H_{y} \leq t<H_{0}\right\}+I\left\{H_{y}<H_{0} \leq t\right\}\right)\right) . \tag{1}
\end{align*}
$$

Lemma 3.1 Let r be a vector such that $V^{-1} Q r=1$. Then
(i) $\quad h_{r}(e, \varphi) \equiv e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} r(e)>0, \quad(e, \varphi) \in E_{0}^{+}$,
(ii) $\lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<H_{0}\right)}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)}=\frac{e^{-\varphi^{\prime} V^{-1} Q} J_{1} \Gamma_{2} r\left(e^{\prime}\right)}{e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} r(e)}, \quad(e, \varphi),\left(e^{\prime}, \varphi^{\prime}\right) \in E_{0}^{+}$.

Proof: (i) Let the matrices A_{-y} and C_{-y} be as given in (14). Then,

$$
h_{r}(\cdot, \varphi)=e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} r=\binom{A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)}{C_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)}
$$

The outline of the proof is the following: first we show that the vector $A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)$ is positive by showing that it is a Perron-Frobenius vector of some positive matrix. Then, because $C_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)=C_{\varphi} A_{\varphi}^{-1} A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)$and that the matrix $C_{\varphi} A_{\varphi}^{-1}$ is, by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), positive, we conclude that the vector $C_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)$is also positive and that the function h_{r} is positive.

Therefore, all we have to prove is that the vector $A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)$is positive for any $\varphi \in \mathbb{R}$. Let r be fixed vector such that $V^{-1} Q r=1$. Then

By (17), the matrix A_{φ} is invertible. Thus, because $1^{+}=\Pi^{-} 1^{-},\left(A_{-y}-\Pi^{-} C_{-y}\right)=$ $\left(A_{y}-\Pi^{-} C_{y}\right)^{-1}$ and $\left(B_{-y}-\Pi^{-} D_{-y}\right)=-\left(A_{-y}-\Pi^{-} C_{-y}\right) \Pi^{-}$,

$$
\left(A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} A_{\varphi}^{-1}\right) A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)=A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)
$$

By Theorem 7.3 the matrix $A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1}$ is positive. By Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), the matrix A_{φ}^{-1} is also positive. Hence, the matrix $A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} A_{\varphi}^{-1}$ is positive and it has the Perron-Frobenius eigenvector which is also positive.

Suppose that $A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)=0$. Then, because A_{φ} is invertible, $\left(r^{+}-\Pi^{-} r^{-}\right)=0$. If $r^{+}=\Pi^{-} r^{-}$then r is a linear combination of the vectors $g_{k}, k=1, \ldots, m$ in the basis \mathcal{B}, but that is not possible because r is also in the basis \mathcal{B} and therefore independent from $g_{k}, k=1, \ldots, m$. Hence, the vector $A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right) \neq 0$ and by the last equation it is the eigenvector of the matrix $A_{\varphi}\left(A_{-y}-\Pi^{-} C_{-y}\right) A_{\varphi}^{-1}$ which corresponds to its eigenvalue 1.

It follows from

$$
\begin{equation*}
\left(A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} A_{\varphi}^{-1}\right) A_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right)=A_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) e^{y G^{+}} \tag{2}
\end{equation*}
$$

that if α is a non-zero eigenvalue of the matrix G^{+}with some algebraic multiplicity, then $e^{\alpha y}$ is an eigenvalue of the matrix $A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} A_{\varphi}^{-1}$ with the same algebraic multiplicity. Since all $n-1$ non-zero eigenvalues of G^{+}are with negative real parts, all eigenvalues $e^{\alpha_{j} y}, \alpha_{j} \neq 0, j=1, \ldots, n$, of $A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} A_{\varphi}^{-1}$ have real parts strictly less than 1 . Thus, 1 is the Perron-Frobenius eigenvalue of the matrix $A_{\varphi}\left(A_{y}-\right.$ $\left.\Pi^{-} C_{y}\right)^{-1} A_{\varphi}^{-1}$ and the vector $A_{\varphi}\left(r^{+}-\Pi^{-} r^{-}\right)$is its Perron-Frobenius eigenvector, and therefore positive.
(ii) The statement follows directly from the equality

$$
\lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<H_{0}\right)}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)}=\lim _{y \rightarrow+\infty} \frac{G_{0}\left(\varphi^{\prime}, y\right) 1\left(e^{\prime}\right)}{G_{0}(\varphi, y) 1(e)}
$$

where $G_{0}(\varphi, y)$ is the Green's function for the killed process defined in Appendix, and from the representation of $G_{0}(\varphi, y)$ given by

$$
G_{0}(\varphi, y) 1=\sum_{j, \alpha_{j} \neq 0} a_{j} e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} e^{y V^{-1} Q} f_{j}+c e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} r
$$

for some constants $a_{j}, j=1, \ldots, n$ and $c \neq 0$. For the details of the proof see Najdanovic (2003).

Proof of Theorem 2.1: For fixed $(e, \varphi) \in E_{0}^{+}, t \in[0,+\infty)$ and $y \geq 0$, let $h_{y}(e, \varphi, t)$ be a random variable defined on the probability space $\left(\Omega, \mathcal{F}, P_{(e, \varphi)}\right)$ by

$$
\begin{aligned}
h_{y}(e, \varphi, t)= & \frac{1}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)}\left(I\left\{t<H_{0} \wedge H_{y}\right\} P_{\left(X_{t}, \varphi_{t}\right)}\left(H_{y}<H_{0}\right)\right. \\
& \left.+I\left\{H_{y} \leq t<H_{0}\right\}+I\left\{H_{y}<H_{0} \leq t\right\}\right)
\end{aligned}
$$

By Lemma 3.1 (ii) and by Lemmas 3.2, 3.3 and 3.4 in Jacka et al. (2004) the random variables $h_{y}(e, \varphi, t)$ converge to $\frac{h_{r}\left(X_{t}, \varphi_{t}\right)}{h_{r}(e, \varphi)} I\left\{t<H_{0}\right\}$ in $L^{1}\left(\Omega, \mathcal{F}, P_{(e, \varphi)}\right)$ as $y \rightarrow+\infty$. Therefore, by (1), for fixed $t \geq 0$ and $A \in \mathcal{F}_{t}$,

$$
\lim _{y \rightarrow+\infty} P_{(e, \varphi)}^{y}(A)=\lim _{y \rightarrow+\infty} E_{(e, \varphi)}\left(I(A) h_{y}(e, \varphi, t)\right)=P_{(e, \varphi)}^{r}(A)
$$

which, by Lemma 3.3 (ii) in Jacka et al. (2004), implies that the measures $\left(P_{(e, \varphi)}^{y} \mid \mathcal{F}_{t}\right)_{y \geq 0}$ converge weakly to $\left.P_{(e, \varphi)}^{r}\right|_{\mathcal{F}_{t}}$ as $y \rightarrow \infty$.

4 The negative drift case: Proof of Theorem 2.2

Again, as in the oscillating case, we start with the limit of $P_{(e, \varphi)}^{y}(A)$ as $y \rightarrow+\infty$ by looking at $\lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<H_{0}\right)}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)}$. First we prove an auxiliary lemma.

Lemma 4.1 For any vector g on $E \lim _{y \rightarrow+\infty} F(y) g=0$.
In addition, for any non-negative vector g on $E \lim _{y \rightarrow+\infty} e^{-\alpha_{\max } y} F(y) g=c J_{1} f_{\max }$ for some positive constant $c \in \mathbb{R}$.

Proof: Let

$$
g=\binom{g^{+}}{g^{-}} \text {and } g^{+}=\sum_{j=1}^{n} a_{j} f_{j}^{+}
$$

for some coefficients $a_{j}, j=1, \ldots, n$, where vectors $f_{j}^{+}, j=1, \ldots, n$, form the basis \mathcal{N}^{+} and are associated with the eigenvalues $\alpha_{j}, j=1, \ldots, n$ (see Jacka et.al (2004)).

Then, the first equality in the lemma follows from

$$
F(y) g=\left(\begin{array}{cc}
e^{y G^{+}} & 0 \tag{3}\\
0 & 0
\end{array}\right)\binom{g^{+}}{g^{-}}=\binom{e^{y G^{+}} g^{+}}{0}=\sum_{j=1}^{n} a_{j}\binom{e^{y G^{+}} f_{j}^{+}}{0}, \quad y>0
$$

since, for $\operatorname{Re}\left(\alpha_{j}\right)<0, j=1, \ldots, n, e^{y G^{+}} f_{j}^{+} \rightarrow 0$ as $y \rightarrow+\infty$.
Moreover, by (iii) in Jacka et al. (2004), the matrix G^{+}is an irreducible Q-matrix with the Perron-Frobenius eigenvalue $\alpha_{\max }$ and Perron-Frobenius eigenvector $f_{\max }^{+}$. Thus, for any non-negative vector g on E^{+}, by (VII) in Jacka et al. (2004),

$$
\begin{equation*}
\lim _{y \rightarrow+\infty} e^{-\alpha_{\max } y} e^{y G^{+}} g(e)=c f_{\max }^{+}(e) \tag{4}
\end{equation*}
$$

for some positive constant $c \in \mathbb{R}$. Therefore, from (3) and (4)

$$
\lim _{y \rightarrow+\infty} e^{-\alpha_{\max } y} F(y) g=\lim _{y \rightarrow+\infty}\binom{e^{-\alpha_{\max } y} e^{y G^{+}} g^{+}}{0}=c\binom{f_{\max }^{+}}{0}=c J_{1} f_{\max }
$$

Now we find the limit $\lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<H_{0}\right)}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)}$.

Lemma 4.2

$$
\begin{aligned}
& \text { (i) } h_{f_{\max }}(e, \varphi) \equiv e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} f_{\max }(e)>0, \quad(e, \varphi) \in E_{0}^{+}, \\
& \text {(ii) } \quad \lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<H_{0}\right)}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)}=\frac{e^{-\varphi^{\prime} V^{-1} Q} J_{1} \Gamma_{2} f_{\max }\left(e^{\prime}\right)}{e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} f_{\max }(e)}, \quad(e, \varphi),\left(e^{\prime}, \varphi^{\prime}\right) \in E_{0}^{+}
\end{aligned}
$$

Proof: (i) The function $h_{f_{\max }}$ can be rewritten as

$$
h_{f_{\max }}(\cdot, \varphi)=e^{-\varphi V^{-1} Q} J_{1} \Gamma_{2} f_{\max }=\binom{A_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) f_{\max }^{+}}{C_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) f_{\max }^{+}}
$$

where A_{φ} and C_{φ} are given by (14).
First we show that the vector $A_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) f_{\max }^{+}$is positive. By (16), (iv) and (ii) in Jacka et al. (2004) the matrix $\left(I-\Pi^{-} \Pi^{+}\right)$is invertible and by (17) the matrix A_{φ} is invertible. Therefore,

$$
A_{\varphi}\left(A_{-y}-\Pi^{-} C_{-y}\right) A_{\varphi}^{-1}=A_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) e^{y G^{+}}\left(I-\Pi^{-} \Pi^{+}\right)^{-1} A_{\varphi}^{-1}
$$

By Theorem 7.3 the matrix $A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1}$ is positive and by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al.(2004), the matrix A_{φ}^{-1} is also positive. Hence, the matrix $A_{\varphi}\left(A_{-y}-\Pi^{-} C_{-y}\right) A_{\varphi}^{-1}$ is positive and is similar to $e^{y G^{+}}$. Thus, $A_{\varphi}\left(A_{-y}-\Pi^{-} C_{-y}\right) A_{\varphi}^{-1}$ and $e^{y G^{+}}$have the same Perron-Frobenius eigenvalue and because the Perron-Frobenius
eigenvector of $e^{y G^{+}}$is $f_{\text {max }}^{+}$, it follows that $A_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) f_{\text {max }}^{+}$is the Perron-Frobenius eigenvector of $A_{\varphi}\left(A_{-y}-\Pi^{-} C_{-y}\right) A_{\varphi}^{-1}$ and therefore positive. In addition,

$$
C_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) f_{\max }^{+}=C_{\varphi} A_{\varphi}^{-1} A_{\varphi}\left(I-\Pi^{-} \Pi^{+}\right) f_{\max }^{+}
$$

and by Lemma 7.2, Theorem 7.3 and by (viii) in Jacka et al. (2004), the matrix $C_{\varphi} A_{\varphi}^{-1}$ is positive. Therefore, the function $h_{f_{\max }}$ is positive.
(ii) By Lemmas 7.2, 4.1 and Theorem 7.3

$$
\lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<H_{0}\right)}{P_{(e, \varphi)}\left(H_{y}<H_{0}\right)}==\lim _{y \rightarrow+\infty} \frac{e^{-\varphi^{\prime} V^{-1} Q} \Gamma \Gamma_{2} F(y) 1\left(e^{\prime}\right)}{e^{-\varphi V^{-1} Q} \Gamma_{2} F(y) 1(e)} .
$$

Since the vector 1 is non-negative and because $\Gamma \Gamma_{2} J_{1} f_{\max }=J_{1} \Gamma_{2} f_{\text {max }}$, the statement in the lemma follows from Lemma 4.1.

The function $h_{f_{\max }}$ has the property that the process $\left\{h_{f_{\max }}\left(X_{t}, \varphi_{t}\right) I\left\{t<H_{0}\right\}\right.$, $t \geq 0\}$ is a martingale under $P_{(e, \varphi)}$. We prove this in the following lemma.
Lemma 4.3 The process $\left\{h_{f_{\text {max }}}\left(X_{t}, \varphi_{t}\right) I\left\{t<H_{0}\right\}, t \geq 0\right\}$ is a martingale under $P_{(e, \varphi)}$.
Proof: The function $h_{f_{\text {max }}}(e, \varphi)$ is continuously differentiable in φ and therefore by (15) in Jacka et al. (2004) it is in the domain of the infinitesimal generator \mathcal{G} of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ and $\mathcal{G} h_{f_{\max }}=0$. The rest of the proof is analogous to the proof of Lemma 3.3 in Jacka et al. (2004).

Proof of Theorem 2.2: The theorem is proved in the same way as Theorem 2.1, the only difference is that Lemma 4.2 is used instead of Lemma 3.1.

5 The negative drift case: conditioning $\left(\varphi_{t}\right)_{t \geq 0}$ to drift to $+\infty$

The process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ can also be conditioned first on the event that $\left(\varphi_{t}\right)_{t \geq 0}$ hits large levels y regardless of crossing zero (that is taking the limit as $y \rightarrow \infty$ of conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{y}<+\infty\right\}$), and then the resulting process can be conditioned on the event that $\left(\varphi_{t}\right)_{t \geq 0}$ stays non-negative. In this section we show that these two conditionings performed in the stated order yield the same result as the limit as $y \rightarrow+\infty$ of conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{y}<H_{0}\right\}$.

Let $(e, \varphi) \in E_{0}^{+}$and $y>\varphi$. Then, by (ix) in Jacka et al. (2004), the event $\left\{H_{y}<+\infty\right\}$ is of positive probability and the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ can be conditioned on $\left\{H_{y}<+\infty\right\}$ in the standard way.

For fixed $t \geq 0$ and any $A \in \mathcal{F}_{t}$,

$$
\begin{equation*}
P_{(e, \varphi)}\left(A \mid H_{y}<+\infty\right)=\frac{E_{(e, \varphi)}\left(I(A) P_{\left(X_{t}, \varphi_{t}\right)}\left(H_{y}<+\infty\right) I\left\{t<H_{y}\right\}+I(A) I\left\{H_{y}<t\right\}\right)}{P_{(e, \varphi)}\left(H_{y}<+\infty\right)} . \tag{5}
\end{equation*}
$$

Lemma 5.1 For any $(e, \varphi),\left(e^{\prime}, \varphi^{\prime}\right) \in E_{0}^{+}$,

$$
\lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<+\infty\right)}{P_{(e, \varphi)}\left(H_{y}<+\infty\right)}=\frac{e^{-\alpha_{\max } \varphi^{\prime}} f_{\max }\left(e^{\prime}\right)}{e^{-\alpha_{\max } \varphi} f_{\max }(e)}
$$

Proof: By Lemma 5.5 in Jacka et al. (2004), for $0 \leq \varphi<y$,

$$
P_{(e, \varphi)}\left(H_{y}<+\infty\right)=P_{(e, \varphi-y)}\left(H_{0}<+\infty\right)=\Gamma F(y-\varphi) 1
$$

The vector 1 is non-negative. Hence, by Lemma 4.1 and because $\Gamma J_{1} f_{\max }=f_{\max }$,

$$
\begin{aligned}
\lim _{y \rightarrow+\infty} \frac{P_{\left(e^{\prime}, \varphi^{\prime}\right)}\left(H_{y}<+\infty\right)}{P_{(e, \varphi)}\left(H_{y}<+\infty\right)} & =\lim _{y \rightarrow+\infty} \frac{e^{-\alpha_{\max } \varphi^{\prime}} \Gamma e^{-\alpha_{\max }\left(y-\varphi^{\prime}\right)} F(y-\varphi) 1\left(e^{\prime}\right)}{e^{-\alpha_{\max } \varphi} \Gamma e^{-\alpha_{\max }(y-\varphi)} F(y-\varphi) 1(e)} \\
& =\frac{e^{-\alpha_{\max } \varphi^{\prime}} f_{\max }\left(e^{\prime}\right)}{e^{-\alpha_{\max } \varphi} f_{\max }(e)}
\end{aligned}
$$

Let $h_{\max }(e, \varphi)$ be a function on $E \times \mathbb{R}$ defined by

$$
h_{\max }(e, \varphi)=e^{-\alpha_{\max } \varphi} f_{\max }(e)
$$

Lemma 5.2 The process $\left(h_{\max }\left(X_{t}, \varphi_{t}\right)\right)_{t \geq 0}$ is a martingale under $P_{(e, \varphi)}$.
Proof: The function $h_{\max }(e, \varphi)$ is continuously differentiable in φ which implies that it is in the domain of the infinitesimal generator \mathcal{G} of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$. In addition, $\mathcal{G} h_{\max }=0$. It follows that the process $\left(h_{\max }\left(X_{t}, \varphi_{t}\right)\right)_{t \geq 0}$ is a local martingale under $P_{(e, \varphi)}$ and, because it is bounded on every finite interval, the process $\left(h_{\max }\left(X_{t}, \varphi_{t}\right)\right)_{t \geq 0}$ is a martingale under $P_{(e, \varphi)}$.

By Lemmas 5.1 and 5.2 we prove
Theorem 5.1 For fixed $(e, \varphi) \in E_{0}^{+}$, let $P_{(e, \varphi)}^{h_{\max }}$ be a measure defined by

$$
P_{(e, \varphi)}^{h_{\max }}(A)=\frac{E_{(e, \varphi)}\left(I(A) h_{\max }\left(X_{t}, \varphi_{t}\right)\right)}{h_{\max }(e, \varphi)}, \quad t \geq 0, A \in \mathcal{F}_{t} .
$$

Then, $P_{(e, \varphi)}^{h_{\max }}$ is a probability measure and, for fixed $t \geq 0$,

$$
\lim _{y \rightarrow+\infty} P_{(e, \varphi)}\left(A \mid H_{y}<+\infty\right)=P_{(e, \varphi)}^{h_{\max }}(A), \quad A \in \mathcal{F}_{t}
$$

Proof: By the definition, the function $h_{\max }$ is positive. Hence $P_{(e, \varphi)}^{h_{\max }}$ is a measure. In addition, by Lemma 5.2, the process $\left(h_{\max }\left(X_{t}, \varphi_{t}\right)\right)_{t \geq 0}$ is a martingale under $P_{(e, \varphi)}$. Hence, $P_{(e, \varphi)}^{h_{\max }}$ is a probability measure.

For fixed $(e, \varphi) \in E_{0}^{+}$and $t, y \geq 0$, let $h_{y}(e, \varphi, t)$ be a random variable defined on the probability space $\left(\Omega, \mathcal{F}, P_{(e, \varphi)}\right)$ by

$$
h_{y}(e, \varphi, t)=\frac{P_{\left(X_{t}, \varphi_{t}\right)}\left(H_{y}<+\infty\right) I\left\{t<H_{y}\right\}+I(A) I\left\{H_{y}<t\right\}}{P_{(e, \varphi)}\left(H_{y}<+\infty\right)}
$$

The random variables $h_{y}(e, \varphi, t), y \geq 0$, are non-negative and, by Lemma 5.1,

$$
\lim _{y \rightarrow+\infty} h_{y}(e, \varphi, t)=\frac{h_{\max }\left(X_{t}, \varphi_{t}\right)}{h_{\max }(e, \varphi)}, \quad \text { a.s.. }
$$

The rest of the proof is analogous to the proof of Theorem 2.1.
We now want to condition the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\max }}$ on the event $\left\{H_{0}=\right.$ $+\infty\}$. By Theorem 7.4, $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\max }}$ is Markov with the irreducible conservative Q-matrix $Q^{h_{\max }}$ given by

$$
Q^{h_{\max }}\left(e, e^{\prime}\right)=\frac{f_{\max }\left(e^{\prime}\right)}{f_{\max }(e)}\left(Q-\alpha_{\max } V\right)\left(e, e^{\prime}\right), \quad e, e^{\prime} \in E
$$

and, by the same theorem, the process $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\max }}$ drifts to $+\infty$. We find the Wiener-Hopf factorization of the matrix $V^{-1} Q^{h_{\max }}$.

Lemma 5.3 The unique Wiener-Hopf factorization of the matrix $V^{-1} Q^{h_{\max }}$ is given by $V^{-1} Q^{h_{\max }} \Gamma^{h_{\max }}=\Gamma^{h_{\max }} G^{h_{\max }}$, where, for any $\left(e, e^{\prime}\right) \in E \times E$,

$$
G^{h_{\max }}\left(e, e^{\prime}\right)=\frac{f_{\max }\left(e^{\prime}\right)}{f_{\max }(e)}\left(G-\alpha_{\max } I\right)\left(e, e^{\prime}\right) \quad \text { and } \quad \Gamma^{h_{\max }}\left(e, e^{\prime}\right)=\frac{f_{\max }\left(e^{\prime}\right)}{f_{\max }(e)} \Gamma\left(e, e^{\prime}\right)
$$

In addition, if

$$
G^{h_{\max }}=\left(\begin{array}{cc}
G^{h_{\max },+} & 0 \\
0 & -G^{h_{\max },-}
\end{array}\right) \quad \text { and } \quad \Gamma^{h_{\max }}=\left(\begin{array}{cc}
I & \Pi^{h_{\max },-} \\
\Pi^{h_{\max },+} & I
\end{array}\right)
$$

then $G^{h_{\max },+}$ is a conservative $Q-$ matrix and $\Pi^{h_{\max },+}$ is stochastic, and $G^{h_{\max },-}$ is not a conservative Q-matrix and $\Pi^{h_{\max },-}$ is strictly substochastic.

Proof: By the definition the matrices $G^{h_{\max },+}$ and $G^{h_{\max },-}$ are essentially non-negative. In addition, for any $e \in E^{+}, G^{h_{\max },+} 1(e)=0$. Hence, $G^{h_{\max },+}$ is a conservative Q matrix. By Lemma 4.2 (i),

$$
h_{f_{\max }}^{-}=\left(\Pi^{+} e^{-\varphi G^{+}}-e^{\varphi G^{-}} \Pi^{+}\right) f_{\max }^{+}=e^{-\alpha_{\max } \varphi}\left(I-e^{\varphi\left(G^{-}+\alpha_{\max } I\right)}\right) f_{\max }^{-}>0
$$

Since

$$
\lim _{\varphi \rightarrow 0} \frac{\left(I-e^{\varphi\left(G^{-}+\alpha_{\max } I\right)}\right) f_{\max }^{-}}{\varphi}=-\left(G^{-}+\alpha_{\max } I\right) f_{\max }^{-}
$$

and $\left(I-e^{\varphi\left(G^{-}+\alpha_{\max } I\right)}\right) f_{\max }^{-}>0$, it follows that $\left(G^{-}+\alpha_{\max } I\right) f_{\max }^{-} \leq 0$. Thus, $G^{h_{\max },-1} 1^{-} \leq 0$ and so $G^{h_{\max },-}$ is a Q-matrix. Moreover, if $\left(G^{-}+\alpha_{\max } I\right) f_{\max }^{-}=0$ then $h_{f_{\max }}(e, \varphi)=0$ for $e \in E^{-}$which is a contradiction to Lemma 4.2. Therefore, the matrix $G^{h_{\text {max }},-}$ is not conservative.

The matrices $G^{h_{\text {max }}}$ and $\Gamma^{h_{\text {max }}}$ satisfy the equality $V^{-1} Q^{h_{\text {max }}} \Gamma^{h_{\text {max }}}=\Gamma^{h_{\text {max }}} G^{h_{\text {max }}}$, which, by Lemma 5.4 in Jacka et al. (2004), gives the unique Wiener-Hopf factorization of the matrix $V^{-1} Q^{h_{\text {max }}}$. Finally, by (iv) in Jacka et al. (2004), $\Pi^{h_{\text {max }},+}$ is a stochastic and $\Pi^{h_{\text {max }},-}$ is a strictly substochastic matrix.

Finally, we prove the main result in this section
Theorem 5.2 Let $P_{(e, \varphi)}^{f_{\text {max }}}$ be as defined in Theorem 2.2. Then, for any $(e, \varphi) \in E_{0}^{+}$and any $t \geq 0$,

$$
P_{(e, \varphi)}^{h_{\text {max }}}\left(A \mid H_{0}=\infty\right)=P_{(e, \varphi)}^{f_{\text {max }}}(A), \quad A \in \mathcal{F}_{t} .
$$

Proof: By Theorem 7.4 the process $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\text {max }}}$ drifts to $+\infty$. Since in the positive drift case the event $\left\{H_{0}=+\infty\right\}$ is of positive probability, for any $t \geq 0$ and any $A \in \mathcal{F}_{t}$,

$$
\begin{equation*}
P_{(e, \varphi)}^{h_{\max }}\left(A \mid H_{0}=\infty\right)=\frac{E_{(e, \varphi)}^{h_{\max }}\left(I(A) P_{\left(X_{t, \varphi t}\right)}^{h_{\max }}\left(H_{0}=+\infty\right) I\left\{t<H_{0}\right\}\right)}{P_{(e, \varphi)}^{h_{\max }}\left(H_{0}=+\infty\right)} . \tag{6}
\end{equation*}
$$

By Lemma 5.5 in Jacka et al. (2004) and by Lemma 5.3, for $\varphi>0$,

$$
\begin{align*}
P_{(e, \varphi)}^{h_{\max }}\left(H_{0}=+\infty\right) & =1-\frac{e^{\alpha_{\max } \varphi}}{f_{\max }(e)} \sum_{e^{\prime \prime} \in E} \Gamma e^{-\varphi G}\left(e, e^{\prime \prime}\right) J_{2} 1\left(e^{\prime \prime}\right) f_{\max }\left(e^{\prime \prime}\right) \\
& =\frac{1}{h_{\max }(e, \varphi)}\left(e^{-\alpha_{\max } \varphi} f_{\max }-\Gamma F(-\varphi) f_{\max }\right)(e) \\
& =\frac{h_{f_{\max }(e, \varphi)}}{h_{\max }(e, \varphi)}, \tag{7}
\end{align*}
$$

where $h_{f_{\max }}$ is as defined in Lemma 4.2. Similarly, for $e \in E^{+}$,

$$
P_{(e, 0)}^{h_{\max }}\left(H_{0}=+\infty\right)=\frac{\left.f_{\max }^{+}-\Pi^{-} f_{\max }^{-}\right)(e)}{f_{\max }^{+}(e)}=\frac{h_{f_{\max }(e, 0)}}{h_{\max }(e, 0)} .
$$

Therefore, the statement in the theorem follows from Theorem 5.1, (6) and (7).
We summarize the results from this section: in the negative drift case, making the h-transform of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ with the function $h_{\max }(e, \varphi)=e^{-\alpha_{\max } \varphi} f_{\max }(e)$ yields the probability measure $P_{(e, \varphi)}^{h_{\text {max }}}$ such that $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\text {max }}}$ is Markov and that $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\text {max }}}$ is with a positive drift. The process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\text {max }}}$ is also the limiting process as $y \rightarrow+\infty$ in conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}$ on $\left\{H_{y}<+\infty\right\}$. Further conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\text {max }}}$ on $\left\{H_{0}=+\infty\right\}$ yields the same result as the limit as $y \rightarrow+\infty$ of conditioning $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on $\left\{H_{y}<H_{0}\right\}$. In other words, the diagram in Figure 1 commutes.

Figure 1: The negative drift case of conditioning the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on the events $\left\{H_{y}<H_{0}\right\}, y \geq 0$.

6 The negative drift case: conditioning $\left(\varphi_{t}\right)_{t \geq 0}$ to oscillate

In this section we condition the process $\left(\varphi_{t}\right)_{t \geq 0}$ with a negative drift to oscillate, and then condition the resulting oscillating process to stay non-negative. Let $P_{(e, \varphi)}^{h}$ denote the h-transformed measure $P_{(e, \varphi)}$ with a function h. We want to find a function h such that the process $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h}$ is Markov and that the process $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h}$ oscillates. By Theorem 7.4, there does not exist such function defined on $E \times \mathbb{R}$. But, by Theorem 7.5, there exists exactly one such function defined on $E \times \mathbb{R} \times[0,+\infty)$ which is given by

$$
h_{0}(e, \varphi, t)=e^{-\alpha_{0} t} e^{-\beta_{0} \varphi} g_{0}(e),
$$

where $\alpha(\beta)$ is the Perron-Frobenius eigenvalue of the matrix $(Q-\beta V), \beta_{0}$ is the argmin of $\alpha(\cdot), \alpha_{0}=\alpha\left(\beta_{0}\right)$ and g_{0} is the Perron-Frobenius eigenvector of the matrix $\left(Q-\beta_{0} V\right)$.

For fixed $(e, \varphi) \in E_{0}^{+}$, let a measure $P_{(e, \varphi)}^{h_{0}}$ be defined by

$$
\begin{equation*}
P_{(e, \varphi)}^{h_{0}}(A)=\frac{E_{(e, \varphi)}\left(I(A) h_{0}\left(X_{t}, \varphi_{t}, t\right)\right)}{h_{0}(e, \varphi, 0)}, \quad A \in \mathcal{F}_{t}, t \geq 0 . \tag{8}
\end{equation*}
$$

Then, the process $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ is Markov with the Q-matrix Q^{0} given by

$$
\begin{equation*}
Q^{0}\left(e, e^{\prime}\right)=\frac{g_{0}\left(e^{\prime}\right)}{g_{0}(e)}\left(Q-\alpha_{0} I-\beta_{0} V\right)\left(e, e^{\prime}\right), \quad e, e^{\prime} \in E . \tag{9}
\end{equation*}
$$

and, by Theorem 7.5, the process $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ oscillates.
The aim now is to condition $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ on the event that $\left(\varphi_{t}\right)_{t \geq 0}$ stays non-negative. The following theorem determines the law of this new conditioned process.

Theorem 6.1 For fixed $(e, \varphi) \in E_{0}^{+}$, let a measure $P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}$ be defined by

$$
P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}(A)=\frac{E_{(e, \varphi)}^{h_{0}}\left(I(A) h_{r}^{0}\left(X_{t}, \varphi_{t}\right) I\left\{t<H_{0}\right\}\right)}{h_{r}^{0}(e, \varphi)}, \quad A \in \mathcal{F}_{t}, t \geq 0
$$

where the function h_{r}^{0} is given by $h_{r}^{0}(e, y)=e^{-y V^{-1} Q^{0}} J_{1} \Gamma_{2} r^{0}(e),(e, y) \in E \times \mathbb{R}$, and $V^{-1} Q^{0} r^{0}=1$. Then, $P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}$ is a probability measure.

In addition, for $t \geq 0$ and $A \in \mathcal{F}_{t}$,

$$
P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}(A)=\lim _{y \rightarrow \infty} P_{(e, \varphi)}^{h_{0}}\left(A \mid H_{y}<H_{0}\right)=\lim _{T \rightarrow \infty} P_{(e, \varphi)}^{h_{0}}\left(A \mid H_{0}>T\right)
$$

and

$$
P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}(A)=P_{(e, \varphi)}^{r^{0}}(A),
$$

where $P_{(e, \varphi)}^{r^{0}}$ is as defined in Theorem 2.2 in Jacka et al. (2004).
Proof: By Lemma 5.9 and (16) in Jacka et al. (2004), the Q-matrix Q^{0} of the process $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ is conservative and irreducible and the process $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ oscillates. Thus, if $P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}$ denotes the law of $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ conditioned on $\left\{H_{0}=+\infty\right\}$, then, by Theorem 2.1 in Jacka et al. (2004) and by Theorem 2.1, $P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}$ is a probability measure and

$$
P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}(A)=\lim _{y \rightarrow \infty} P_{(e, \varphi)}^{h_{0}}\left(A \mid H_{y}<H_{0}\right)=\lim _{T \rightarrow \infty} P_{(e, \varphi)}^{h_{0}}\left(A \mid H_{0}>T\right)
$$

In addition, by definition (8) of the measure $P_{(e, \varphi)}^{h_{0}}$, for $t \geq 0$ and $A \in \mathcal{F}_{t}$,

$$
P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}(A)=\frac{E_{(e, \varphi)}\left(I(A) h_{0}\left(X_{t}, \varphi_{t}, t\right) h_{r}^{0}\left(X_{t}, \varphi_{t}\right) I\left\{t<H_{0}\right\}\right)}{h_{0}(e, \varphi, 0) h_{r}^{0}(e, \varphi)}=P_{(e, \varphi)}^{r^{0}}(A),
$$

since $h_{0}(e, \varphi, t) h_{r}^{0}(e, \varphi)=h_{r^{0}}(e, \varphi, t)$ where $h_{r^{0}}(e, \varphi, t)$ is as defined in Theorem 2.2 in Jacka et al. (2004).

We summarize the results in this section: in the negative drift case, making the h-transform of the process $\left(X_{t}, \varphi_{t}, t\right)_{t \geq 0}$ with the function $h_{0}(e, \varphi)=e^{-\alpha_{0} \varphi} e^{-\beta_{0} \varphi} g_{0}(e)$ yields the probability measure $P_{(e, \varphi)}^{h_{0}}$ such that $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ is Markov and that $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ oscillates. Then the law of $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{0}}$ conditioned on the event $\left\{H_{0}=+\infty\right\}$ is equal to $P_{(e, \varphi)}^{h_{0}, h_{r}^{0}}=P_{(e, \varphi)}^{r^{0}}$. On the other hand, by Theorem 2.2 in Jacka et al. (2004), under the condition that all non-zero eigenvalues of the matrix $V^{-1} Q^{0}$ are simple, $P_{(e, \varphi)}^{r^{0}}$ is the limiting law as $T \rightarrow+\infty$ of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{r^{0}}$ conditioned on $\left\{H_{0}>T\right\}$. Hence, under the condition that all non-zero eigenvalues of the matrix $V^{-1} Q^{0}$ are simple, the diagram in Figure 2 commutes.

Figure 2: The negative drift case of conditioning the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ on the events $\left\{H_{0}>T\right\}, T \geq 0$.

7 Appendix: The Green's function

The Green's function of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$, denoted by $G((e, \varphi),(f, y))$, for any $(e, \varphi),(f, y) \in E \times \mathbb{R}$, is defined as

$$
G((e, \varphi),(f, y))=E_{(e, \varphi)}\left(\sum_{0 \leq s<\infty} I\left(X_{s}=f, \varphi_{s}=y\right)\right),
$$

noting that the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ hits any fixed state at discrete times. For simplicity of notation, let $G(\varphi, y)$ denote the matrix $(G((\cdot, \varphi),(\cdot, y)))_{E \times E}$.

Theorem 7.1 In the drift cases,

$$
G(0,0)=\Gamma_{2}^{-1}=\left(\begin{array}{cc}
\left(I-\Pi^{-} \Pi^{+}\right)^{-1} & \Pi^{-}\left(I-\Pi^{+} \Pi^{-}\right)^{-1} \\
\Pi^{+}\left(I-\Pi^{-} \Pi^{+}\right)^{-1} & \left(I-\Pi^{+} \Pi^{-}\right)^{-1}
\end{array}\right) .
$$

In the oscillating case, $G(0,0)=+\infty$.
Proof: By the definition of $G(0,0)$ and the matrices Π^{+}, Π^{-}and Γ_{2},

$$
G(0,0)=\sum_{n=1}^{\infty}\left(\begin{array}{cc}
0 & \Pi^{-} \\
\Pi^{+} & 0
\end{array}\right)^{n}=\sum_{n=1}^{\infty}\left(I-\Gamma_{2}\right)^{n} .
$$

Suppose that the process $\left(\varphi_{t}\right)_{t \geq 0}$ drifts either to $+\infty$ of $-\infty$. Then by (16) and (IV) in Jacka et al. (2004) exactly one of the matrices Π^{+}and Π^{-}is strictly substochastic.

In addition, the matrix $\Pi^{-} \Pi^{+}$is positive and thus primitive. Therefore, the PerronFrobenius eigenvalue λ of $\Pi^{-} \Pi^{+}$satisfies $0<\lambda<1$ which, by the Perron-Frobenius theorem for primitive matrices, implies that

$$
\lim _{n \rightarrow \infty} \frac{\left(\Pi^{-} \Pi^{+}\right)^{n}}{(1+\lambda)^{n}}=\text { const } . \neq 0
$$

Therefore, $\left(\Pi^{-} \Pi^{+}\right)^{n} \rightarrow 0$ elementwise as $n \rightarrow+\infty$, and similarly $\left(\Pi^{+} \Pi^{-}\right)^{n} \rightarrow 0$ elementwise as $n \rightarrow+\infty$. Hence, $\left(I-\Gamma_{2}\right)^{n} \rightarrow 0, n \rightarrow+\infty$. Since

$$
I-\left(I-\Gamma_{2}\right)^{n+1}=\Gamma_{2} \sum_{k=0}^{n}\left(I-\Gamma_{2}\right)^{k}
$$

and, by (II) in Jacka et al. (2004), Γ_{2}^{-1} exists, by letting $n \rightarrow+\infty$ we obtain

$$
\begin{equation*}
G(0,0)=\sum_{n=0}^{\infty}\left(I-\Gamma_{2}\right)^{n}=\Gamma_{2}^{-1} \tag{10}
\end{equation*}
$$

Suppose now that the process $\left(\varphi_{t}\right)_{t \geq 0}$ oscillates. Then again by (16) and (IV) in Jacka et al. (2004), the matries Π^{+}and Π^{-}are stochastic. Thus, $\left(I-\Gamma_{2}\right) 1=1$ and

$$
\begin{equation*}
G(0,0) 1=\sum_{n=0}^{\infty}\left(I-\Gamma_{2}\right)^{n} 1=\sum_{n=0}^{\infty} 1=+\infty \tag{11}
\end{equation*}
$$

Since the matrix Q is irreducible, it follows that $G(0,0)=+\infty$.

Theorem 7.2 In the drift cases, the Green's function $G((e, \varphi),(f, y))$ of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ is given by the $E \times E$ matrix $G(\varphi, y)$, where

$$
G(\varphi, y)=\left\{\begin{array}{cl}
\Gamma F(y-\varphi) \Gamma_{2}^{-1}, & \varphi \neq y \\
\Gamma_{2}^{-1}, & \varphi=y
\end{array}\right.
$$

Proof: By Theorem 7.1, $G(y, y)=G(0,0)=\Gamma_{2}^{-1}$. and by Lemma 5.5 in Jacka et al. (2004),

$$
P_{(e, \varphi-y)}\left(X_{H_{0}}=e^{\prime}, H_{0}<+\infty\right)=\Gamma F(y-\varphi)\left(e, e^{\prime}\right), \quad \varphi \neq y
$$

The theorem now follows from

$$
G((e, \varphi),(f, y))=\sum_{e^{\prime} \in E} P_{(e, \varphi-y)}\left(X_{H_{0}}=e^{\prime}, H_{0}<+\infty\right) G\left(\left(e^{\prime}, 0\right),(f, 0)\right)
$$

The Green's function $G_{0}((e, \varphi),(f, y)),(e, \varphi),(f, y) \in E \times \mathbb{R}$, (in matrix notation $\left.G_{0}(\varphi, y)\right)$ of the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ killed when the process $\left(\varphi_{t}\right)_{t \geq 0}$ crosses zero is defined by

$$
G_{0}((e, \varphi),(f, y))=E_{(e, \varphi)}\left(\sum_{0 \leq s<H_{0}} I\left(X_{s}=f, \varphi_{s}=y\right)\right)
$$

It follows that $G_{0}(\varphi, y)=0$ if $\varphi y<0$, that $G_{0}(\varphi, 0)=0$ if $\varphi \neq 0$, and that $G_{0}(0,0)=I$. To calculate $G_{0}(\varphi, y)$ for $|\varphi| \leq|y|, \varphi y \geq 0, y \neq 0$, we use the following lemma:

Lemma 7.1 Let $(f, y) \in E^{+} \times(0,+\infty)$ be fixed and let the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ start at $(e, \varphi) \in E \times(0, y)$. Let $(e, \varphi) \mapsto h((e, \varphi),(f, y))$ be a bounded function on $E \times(0, y)$ such that the process $\left(h\left(\left(X_{t \wedge H_{0} \wedge H_{y}}, \varphi_{t \wedge H_{0} \wedge H_{y}}\right),(f, y)\right)\right)_{t \geq 0}$ is a uniformly integrable martingale and that

$$
\begin{align*}
& h((e, 0),(f, y))=0, \quad e \in E^{-} \tag{12}\\
& h((e, y),(f, y))=G_{0}((e, y),(f, y)) . \tag{13}
\end{align*}
$$

Then

$$
h((e, \varphi),(f, y))=G_{0}((e, \varphi),(f, y)), \quad(e, \varphi) \in E \times(0, y)
$$

Proof: The proof of the lemma is based on the fact that a uniformly integrable martingale in a region which is zero on the boundary of that region is zero everywhere. Therefore we omit the proof.

Let A_{y}, B_{y}, C_{y} and D_{y} be components of the matrix $e^{-y V^{-1} Q}$ such that, for any $y \in \mathbb{R}$,

$$
e^{-y V^{-1} Q}=\left(\begin{array}{cc}
A_{y} & B_{y} \tag{14}\\
C_{y} & D_{y}
\end{array}\right)
$$

Theorem 7.3 The Green's function $G_{0}((e, \varphi),(f, y)),|\varphi| \leq|y|, \varphi y \geq 0, y \neq 0, e, f \in$ E, is given by the $E \times E$ matrix $G_{0}(\varphi, y)$ with the components

$$
\begin{aligned}
& \left(\begin{array}{cc}
A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} & A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} \Pi^{-} \\
C_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} & C_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} \Pi^{-}
\end{array}\right), \quad 0 \leq \varphi<y
\end{aligned}
$$

In the drift cases, $G_{0}(\varphi, y)$ written in matrix notation is given by

$$
G_{0}(\varphi, y)=\left\{\begin{array}{lc}
\Gamma e^{-\varphi G} \Gamma_{2} F(y) \Gamma_{2}^{-1}, & 0 \leq \varphi<y \text { or } y<\varphi \leq 0 \\
\Gamma F(-\varphi) \Gamma_{2} e^{y G} \Gamma_{2}^{-1}, & 0<y<\varphi \text { or } \varphi<y<0 \\
(I-\Gamma F(-y) \Gamma F(y)) \Gamma_{2}^{-1}, & \varphi=y \neq 0
\end{array}\right.
$$

In addition, the Green's function $G_{0}(\varphi, y)$ is positive for all $\varphi, y \in \mathbb{R}$ except for $y=0$ and for $\varphi y<0$.

Proof: We prove the theorem for $y>0$. The case $y<0$ can be proved in the same way.
Let $y>0$. First we calculate the Green's function $G_{0}(y, y)$. Let Y_{y} denote a matrix on $E^{-} \times E^{+}$with entries

$$
Y_{y}\left(e, e^{\prime}\right)=P_{(e, y)}\left(X_{H_{y}}=e^{\prime}, H_{y}<H_{0}\right)
$$

Then

$$
G_{0}(y, y)=\left(\begin{array}{cc}
I & \Pi^{-} \\
Y_{y} & I
\end{array}\right)\left(\begin{array}{cc}
\sum_{n=0}^{\infty}\left(\Pi^{-} Y_{y}\right)^{n} & 0 \\
0 & \sum_{n=0}^{\infty}\left(Y_{y} \Pi^{-}\right)^{n}
\end{array}\right)
$$

By (viii) in Jacka et al. (2004), the matrix Y_{y} is positive and $0<Y_{y} 1^{+}<1^{-}$. Hence, $\Pi^{-} Y_{y}$ is positive and therefore irreducible and its Perron-Frobenius eigenvalue λ satisfies $0<\lambda<1$. Thus,

$$
\lim _{n \rightarrow \infty} \frac{\left(\Pi^{-} Y_{y}\right)^{n}}{(1+\lambda)^{n}}=\text { const. } \neq 0
$$

which implies that $\left(\Pi^{-} Y_{y}\right)^{n} \rightarrow 0$ elementwise as $n \rightarrow+\infty$. Similarly, $\left(Y_{y} \Pi^{-}\right)^{n} \rightarrow 0$ elementwise as $n \rightarrow+\infty$.

Furthermore, the essentially non-negative matrices $\left(\Pi^{-} Y_{y}-I\right)$ and $\left(Y_{y} \Pi^{-}-I\right)$ are invertible because their Perron-Frobenius eigenvalues are negative and, by the same argument, the matrices $\left(I-\Pi^{-} Y_{y}\right)^{-1}$ and $\left(I-Y_{y} \Pi^{-}\right)^{-1}$ are positive. Since

$$
\begin{aligned}
\sum_{k=0}^{n}\left(\Pi^{-} Y_{y}\right)^{k} & =\left(I-\Pi^{-} Y_{y}\right)^{-1}\left(I-\left(\Pi^{-} Y_{y}\right)^{n+1}\right) \\
\sum_{k=0}^{n}\left(Y_{y} \Pi^{-}\right)^{k} & =\left(I-Y_{y} \Pi^{-}\right)^{-1}\left(I-\left(Y_{y} \Pi^{-}\right)^{n+1}\right)
\end{aligned}
$$

by letting $n \rightarrow \infty$ we finally obtain

$$
G_{0}(y, y)=\left(\begin{array}{cc}
\left(I-\Pi^{-} Y_{y}\right)^{-1} & \Pi^{-}\left(I-\Pi^{-} Y_{y}\right)^{-1} \tag{15}\\
Y_{y}\left(I-Y_{y} \Pi^{-}\right)^{-1} & \left(I-Y_{y} \Pi^{-}\right)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
I & -\Pi^{-} \\
-Y_{y}^{-1} & I
\end{array}\right)^{-1}
$$

By (i) and (viii) in Jacka et al. (2004), the matrices Π^{-}and Y_{y} are positive. Since the matrices $\left(I-\Pi^{-} Y_{y}\right)^{-1}$ and $\left(I-Y_{y} \Pi^{-}\right)^{-1}$ are also positive, it follows that $G_{0}(y, y)$, $y>0$ is positive.

Now we calculate the Green's function $G_{0}(\varphi, y)$ for $0 \leq \varphi<y$. Let $(f, y) \in E^{+} \times$ $(0,+\infty)$ be fixed and let the process $\left(X_{t}, \varphi_{t}\right)_{t \geq 0}$ start in $E \times(0, y)$. Let

$$
\begin{equation*}
h((e, \varphi),(f, y))=e^{-\varphi V^{-1} Q} g_{f, y}(e) \tag{16}
\end{equation*}
$$

for some vector $g_{f, y}$ on E. Since by (15) in Jacka et.al (2004) $\mathcal{A} h=0$, the process $\left(h\left(\left(X_{t}, \varphi_{t}\right),(f, y)\right)\right)_{t \geq 0}$ is a local martingale, and because the function h is bounded on every finite interval, it is a martingale. In addition, $\left(h\left(\left(X_{t \wedge H_{0} \wedge H_{y}}, \varphi_{t \wedge H_{0} \wedge H_{y}}\right),(f, y)\right)\right)_{t \geq 0}$ is a bounded martingale and therefore a uniformly integrable martingale.

We want the function h to satisfy the boundary conditions in Lemma 7.1. Let $h_{y}(\varphi)$ be an $E \times E^{+}$matrix with entries

$$
h_{y}(\varphi)(e, f)=h((e, \varphi),(f, y))
$$

Then, from (16) and the boundary condition (12),

$$
h_{y}(\varphi)=\left(\begin{array}{ll}
A_{\varphi} & B_{\varphi} \\
C_{\varphi} & D_{\varphi}
\end{array}\right)\binom{M_{y}}{0}=\binom{A_{\varphi} M_{y}}{C_{\varphi} M_{y}}, \quad 0 \leq \varphi<y
$$

for some $E^{+} \times E^{+}$matrix M_{y}. From the boundary condition (13),

$$
\begin{equation*}
A_{y} M_{y}=\left(I-\Pi^{-} Y_{y}\right)^{-1} \quad \text { and } \quad C_{y} M_{y}=Y_{y}\left(I-\Pi^{-} Y_{y}\right)^{-1} \tag{17}
\end{equation*}
$$

which implies that $M_{y}=\left(A_{y}-\Pi^{-} C_{y}\right)^{-1}$ and $Y_{y}=C_{y} A_{y}^{-1}$. Hence,

$$
h_{y}(\varphi)=\binom{A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1}}{C_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1}}, \quad 0 \leq \varphi<y
$$

and the function $h((e, \varphi),(f, y))$ satisfies the boundary conditions (12) and (13) in Lemma 7.1. Therefore, for $0 \leq \varphi<y, G_{0}(\varphi, y)=h_{y}(\varphi)$ on $E \times E^{+}$, and because $G_{0}(\varphi, y)=h_{y}(\varphi) \Pi^{-}$on $E \times E^{-}$,

$$
G_{0}(\varphi, y)=\left(\begin{array}{ll}
A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} & A_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} \Pi^{-} \\
C_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} & C_{\varphi}\left(A_{y}-\Pi^{-} C_{y}\right)^{-1} \Pi^{-}
\end{array}\right), \quad 0 \leq \varphi<y
$$

Finally, since $G_{0}(y, y), y>0$, is positive, by irreducibility $G_{0}(\varphi, y)$ for $0 \leq \varphi<y$ is also positive.

Lemma 7.2 For $y \neq 0$ and any $(e, f) \in E \times E$

$$
\begin{aligned}
& P_{(e, \varphi)}\left(X_{H_{y}}=f, H_{y}<H_{0}\right)=G_{0}(\varphi, y)\left(G_{0}(y, y)\right)^{-1}(e, f), \quad 0<|\varphi|<|y| \\
& P_{(e, y)}\left(X_{H_{y}}=f, H_{y}<H_{0}\right)=\left(I-\left(G_{0}(y, y)\right)^{-1}\right)(e, f) .
\end{aligned}
$$

Proof: By Theorem 7.3, the matrix $G_{0}(y, y)$ is invertible. Therefore, the equalities

$$
\begin{gathered}
G_{0}((e, \varphi),(f, y))=\sum_{e^{\prime} \in E} P_{(e, \varphi)}\left(X_{H_{y}}=e^{\prime}, H_{y}<H_{0}\right) G_{0}\left(\left(e^{\prime}, y\right),(f, y)\right), \varphi \neq y \neq 0 \\
G_{0}((e, y),(f, y))=I(e, f)+\sum_{e^{\prime} \in E} P_{(e, y)}\left(X_{H_{y}}=e^{\prime}, H_{y}<H_{0}\right) G_{0}\left(\left(e^{\prime}, y\right),(f, y)\right), y \neq 0
\end{gathered}
$$

prove the lemma.
We close the section by stating two results which were proved in Najdanovic (2003) and which were used in the previous sections. Let $h(e, \varphi, t)$ be a positive function on $E \times \mathbb{R} \times[0,+\infty)$ such that the process $\left(h\left(X_{t}, \varphi_{t}, t\right)\right)_{t \geq 0}$ is a martingale. For fixed $(e, \varphi) \in E \times \mathbb{R}$, define a probability measure $P_{(e, \varphi)}^{h}$ by

$$
\begin{equation*}
P_{(e, \varphi)}^{h}(A)=\frac{E_{(e, \varphi)}\left(I(A) h\left(X_{t}, \varphi_{t}, t\right)\right)}{h(e, \varphi, 0)}, \quad A \in \mathcal{F}_{t} . \tag{18}
\end{equation*}
$$

Theorem 7.4 There exist only two functions $h(e, \varphi)$ on $E \times \mathbb{R}$ continuously differentiable in φ such that the process $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h}$ is Markov and they are

$$
h_{\max }(e, \varphi)=e^{-\alpha_{\max } \varphi} f_{\max }(e) \quad \text { and } \quad h_{\min }(e, \varphi)=e^{-\beta_{\min } \varphi} g_{\min }(e)
$$

Moreover,

1) if the process $\left(\varphi_{t}\right)_{t \geq 0}$ drifts to $+\infty$ then $h_{\max }=1$ and the process $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\min }}$ drifts to $-\infty$;
2) if the process $\left(\varphi_{t}\right)_{t \geq 0}$ drifts to $-\infty$ then $h_{\min }=1$ and the process $\left(\varphi_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h_{\max }}$ drifts to $+\infty$;
3) if the process $\left(\varphi_{t}\right)_{t \geq 0}$ oscillates then $h_{\max }=h_{\min }=1$.

Theorem 7.5 All functions $h(e, \varphi, t)$ on $E \times \mathbb{R} \times[0,+\infty)$ continuously differentiable in φ and t for which the process $\left(X_{t}\right)_{t \geq 0}$ under $P_{(e, \varphi)}^{h}$ is Markov are of the form

$$
h(e, \varphi, t)=e^{-\alpha t} e^{-\beta \varphi} g(e), \quad(e, \varphi, t) \in E \times \mathbb{R} \times[0,+\infty)
$$

where, for fixed $\beta \in \mathbb{R}, \alpha$ is the Perron-Frobenius eigenvalue and g is the right PerronFrobenius eigenvector of the matrix $(Q-\beta V)$.

Moreover, there exists unique $\beta_{0} \in \mathbb{R}$ such that

$$
\begin{array}{cll}
\left(\varphi_{t}\right)_{t \geq 0} \text { under } P_{(e, \varphi)}^{h} \text { drifts to }+\infty & \text { iff } & \beta<\beta_{0} \\
\left(\varphi_{t}\right)_{t \geq 0} \text { under } P_{(e, \varphi)}^{h} \text { oscillates } & \text { iff } & \beta=\beta_{0} \\
\left(\varphi_{t}\right)_{t \geq 0} \text { under } P_{(e, \varphi)}^{h} \text { drifts to }-\infty & \text { iff } & \beta>\beta_{0}
\end{array}
$$

and β_{0} is determined by the equation $\alpha^{\prime}\left(\beta_{0}\right)=0$, where $\alpha(\beta)$ is the Perron-Frobenius eigenvalue of $(Q-\beta V)$.

References

[1] Bertoin,J., Doney,R.A. (1994). On conditioning a random walk to stay nonnegative. Ann.Prob. Vol.22, No.4, 2152-2167.
[2] Jacka,S.D., Najdanovic,Z., Warren,J.(2004). Conditioning an additive functional of a Markov chain to stay non-negative I: survival for a long time. submitted
[3] Najdanovic, Z.(2003). Conditioning a Markov chain upon the behaviour of an additive functional. PhD thesis

Authors:

Saul D Jacka, Department of Statistics, University of Warwick, Coventry, CV4 7AL, S.D.Jacka@warwick.ac.uk

Zorana Najdanovic, Department of Mathematics, University of Warwick, Coventry, CV4 7AL, Z.Najdanovic@warwick.ac.uk

Jon Warren, Department of Statistics, University of Warwick, Coventry, CV4 7AL, J.Warren@warwick.ac.uk

[^0]: ${ }^{1}$ MSC Classification: Primary 60J27, Secondary 60B10
 Keywords: Markov chain, conditional law, weak convergence

