AN INTRODUCTION TO (THE ART OF) STOCHASTIC CONTROL ${ }^{1}$

SAUL JACKA

Probability $A_{t} W_{\text {arwick workshop }}$

University of Warwick
July 2006

[^0]
1 Introduction

We start by giving some examples

1.1 Some examples

1. Drift control Suppose that

$$
d X_{t}=\sigma d B_{t}+\mu_{t} d t \text { with }\left|\mu_{t}\right| \leq c \text { for all } t:
$$

find an upper/lower bound for
(i) $E \int_{0}^{\infty} e^{-\alpha t} X_{t}^{2} d t$;
(ii) $P_{x}\left(\tau_{0}>t\right)$, where $\tau_{0}=\inf \left\{t \geq 0: X_{t}=0\right)$.
2. Tracking/coupling Suppose that we have a fixed Brownian motion (BM) B on the filtration $\left(\mathcal{F}_{t}\right)$ and two processes, X and Y, satisfying:

$$
d X_{t}=\sigma_{t}^{1} d B_{t}
$$

and

$$
d Y_{t}=\sigma_{t}^{2} d W_{t}
$$

Choose W from amongst all the BMs on the filtration $\left(\mathcal{F}_{t}\right)$:
(i) to minimise $E\left(X_{T}-Y_{T}\right)^{2}$;
(ii) to minimise $P\left(\tau_{0}(X-Y)>T\right)$, where $\tau_{0}(X-Y)=\inf \{t \geq 0$: $\left.X_{t}-Y_{t}=0\right)$.
3. Investment/consumption Suppose that we have $n+1$ assets: S^{0}, \ldots, S^{n}; and

$$
d S_{t}^{0}=\mu_{0} S_{t}^{0} d t
$$

while, for each $1 \leq i \leq n$,

$$
d S_{t}^{i}=S_{t}^{i}\left(\sum_{j} \sigma^{i, j} d B_{t}^{j}+\mu_{i} d t\right)
$$

Suppose that we may invest in these assets so that our wealth process $X^{\pi, c}$ satisfies (after consumption):

$$
d X_{t}^{\pi, c}=X^{\pi, c}\left(\sum_{i} \pi_{t}^{i} \frac{d S_{t}^{i}}{S_{t}^{i}}-c_{t} d t\right)
$$

where π and c are constrained to be adapted and to satisfy $\sum_{i} \pi_{t}^{i}=1$ and $c \geq 0$, for all t.
Given $p<1$, find

$$
\sup _{\pi, c} E_{x}\left[\int_{0}^{\infty}\left(c_{t} X_{t}^{\pi, c}\right)^{p} d t\right] .
$$

4. Good Lambda Inequalities Suppose that X and Y are two increasing processes (e.g. $X_{t}=B_{t}^{*} \equiv \sup _{s<t}\left|B_{s}\right|$ and $Y_{t} \equiv t^{\frac{1}{2}}$): find the best constant, c, appearing in the inequality

$$
P\left(X_{\tau} \geq x, Y_{\tau}<y\right) \leq c P\left(X_{\tau}>z\right) \text { for all stopping times } \tau
$$

5. Stopping Time Inequalities

(i) Find

$$
\sup _{\tau} E\left(B_{\tau}^{*}-k \tau\right)
$$

where τ runs through all stopping times.
(ii) Find the best constant, c, appearing in the inequality

$$
E\left(B_{\tau}^{*}\right)^{p} \leq c\left\|B_{\tau}^{p}\right\|_{q} \text { for all stopping times } \tau
$$

2 The Bellman principle and HJB equation

2.1 A Typical Problem

Problems in (continuous time) stochastic control usually involve a controlled Ito process in \mathbb{R}^{d} :

$$
d X_{t}^{u}=b\left(u_{t}, X_{t}^{u}\right) d t+\sigma\left(u_{t}, X_{t}^{u}\right) d B_{t}
$$

where u_{t} may be chosen from a control set A so that u (the control) may be any adapted process taking values in A.

A typical problem would then be:
find the value function

$$
\begin{equation*}
v(x)=\sup _{u} E_{x} J\left(u, X^{u}\right) \tag{2.1}
\end{equation*}
$$

where the performance functional J is given by

$$
J\left(u, X^{u}\right)=\int_{0}^{\infty} e^{-\int_{0}^{t} \alpha\left(u_{s}, X_{s}^{u}\right) d s} f\left(u_{t}, X_{t}^{u}\right) d t
$$

Remark 1. Notice that we can be charged for the control as, in general, f depends on u. Notice also that minimisation problems just correspond to replacing f by $-f$. The process $\phi_{t}^{u} \equiv \int_{0}^{t} \alpha\left(u_{s}, X_{s}^{u}\right) d s$ is referred to as the discount process.

2.2 Bellman's Principle

Suppose that we follow some control u up to time t and then control optimally (using the control \hat{u}) thereafter. Call the resulting control \bar{u}; then

$$
J\left(\bar{u}, X^{\bar{u}}\right)=\int_{0}^{\infty} e^{-\phi_{s}^{\bar{u}}} f\left(\bar{u}_{s}, X_{s}^{\bar{u}}\right) d s
$$

Splitting up the range of integration we get

$$
J\left(\bar{u}, X^{\bar{u}}\right)=\int_{0}^{t} e^{-\phi_{s}^{u}} f\left(u_{s}, X_{s}^{u}\right) d s+e^{-\phi_{t}^{u}} \int_{t}^{\infty} e^{-\phi_{s-t}^{\hat{u}}} f\left(\hat{u}_{s}, X_{s}^{\hat{u}}\right) d s
$$

It follows that (since \hat{u} is optimal)

$$
V_{t}^{u} \equiv E\left[J\left(\bar{u}, X^{\bar{u}}\right) \mid \mathcal{F}_{t}\right]=\int_{0}^{t} e^{-\phi_{s}^{u}} f\left(u_{s}, X_{s}^{u}\right) d s+e^{-\phi_{t}^{u}} v\left(X_{t}^{u}\right)
$$

Now the longer we follow an arbitrary policy u the longer we fail to follow the optimal policy \hat{u} and so the worse we expect to perform, whilst if $u=\hat{u}$ then we behave optimally throughout. We get from this:

Bellman's Principle Under every u, V^{u} is a supermartingale while under the optimal control $\hat{u}, V^{\hat{u}}$ is a martingale.

2.3 A Converse

Suppose we are given a function \tilde{v} and for each policy u we define the process \tilde{V}^{u} by

$$
\tilde{V}_{t}^{u} \equiv \int_{0}^{t} e^{-\phi_{s}^{u}} f\left(u_{s}, X_{s}^{u}\right) d s+e^{-\phi_{t}^{u}} \tilde{v}\left(X_{t}^{u}\right)
$$

now consider the following four conditions (the first three of which are assumed to hold for all controls u and all initial conditions x):
(1) \tilde{V}^{u} is a supermartingale;
(2) $E_{x}\left[e^{-\phi_{t}^{u}} \tilde{v}\left(X_{t}^{u}\right)\right] \rightarrow 0$ as $t \rightarrow \infty$;
(3) $E_{x}\left[\int_{0}^{t} e^{-\phi_{s}^{u}} f\left(u_{s}, X_{s}^{u}\right) d s\right] \rightarrow E_{x}\left[J\left(u, X^{u}\right)\right]$ as $t \rightarrow \infty$;
and
(4) for all x there exists a \hat{u} such that $\tilde{V}^{\hat{u}}$ is a martingale.

Theorem 2. Suppose that conditions (1) to (3) hold then

$$
\tilde{v} \geq v
$$

If, in addition, (4) holds, then

$$
\tilde{v}=v .
$$

Proof: from (1) it follows that

$$
\begin{equation*}
\tilde{v}(x)=\tilde{V}_{0}^{u} \geq E_{x} \tilde{V}_{t}^{u}=E_{x}\left[\int_{0}^{t} e^{-\phi_{s}^{u}} f\left(u_{s}, X_{s}^{u}\right) d s\right]+E_{x}\left[e^{-\phi_{t}^{u}} \tilde{v}\left(X_{t}^{u}\right)\right] \tag{2.2}
\end{equation*}
$$

Now, taking limits as $t \rightarrow \infty$ in equation (2.2), (2) and (3) imply that

$$
\tilde{v}(x) \geq E_{x}\left[J\left(u, X^{u}\right)\right],
$$

and, since this holds for arbitrary u and x we see that

$$
\tilde{v} \geq v
$$

If, in addition (4) holds, then we have equality in (2.2) when $u \equiv \tilde{u}$, so

$$
\tilde{v}(x)=E_{x}\left[J\left(\hat{u}, X^{\hat{u}}\right)\right]
$$

and thus

$$
\tilde{v}(x) \leq v(x)=\sup _{u} E_{x}\left[J\left(u, X^{u}\right)\right]
$$

2.4 Extensions

- We may make the problem time-dependent by enlarging the statespace (so $\left(X_{t}^{u}\right)_{t \geq 0}$ becomes $\left.\left(\left(X_{t}^{u}, t\right)\right)_{t \geq 0}\right)$.
- We can now consider finite time-horizon problems by setting $f\left(u_{t}, X_{t}^{u}, t\right)=$ 0 for $t \geq T$.
- We may 'stop' the problem on first exit from a domain D, setting v to a prescribed function, g, on ∂D.
- We may also incorporate optional stopping (v is then set to a prescribed function, g, at a stopping time of our choice).

2.5 The Hamilton-Jacobi-Bellman (HJB) equation

Suppose that the solution to problem (2.1) is v, and that v is C^{2}. Ito's formula tells us that (omitting the argument $\left(u_{t}, X_{t}^{u}\right)$ wherever it should appear, and denoting $\sigma \sigma^{T}$ by a):

$$
\begin{array}{r}
d V_{t}^{u}=e^{-\phi_{t}^{u}}\left(\left[\frac{1}{2} \sum_{i, j} a_{i, j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}+\sum_{i} b_{i} \frac{\partial v}{\partial x_{i}}-\alpha v+f\right] d t\right. \\
\left.+\sum_{i, j} \sigma_{i, j} \frac{\partial v}{\partial x_{i}} d B_{t}^{j}\right)
\end{array}
$$

or, defining the differential operator L^{u} by

$$
L^{u}: g \mapsto L^{u} g
$$

where

$$
\begin{aligned}
L^{u} g(x)= & \frac{1}{2} \sum_{i, j} a_{i, j}(u, x) \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}(x) \\
& +\sum_{i} b_{i} \frac{\partial g}{\partial x_{i}}(x) \quad-\alpha(u, x) g(x), \\
d V_{t}^{u} & =e^{-\phi_{t}^{u}}\left(\left[L^{u} v+f\right]+\sum_{i, j} \sigma_{i, j} \frac{\partial^{v}}{\partial x_{i}} d B_{t}^{j}\right)
\end{aligned}
$$

Now Bellman's principle tells us that V^{u} is a supermartingale and should be a martingale under the optimal control: it follows that for each u we want

$$
L^{u} v+f \leq 0
$$

and for $u=\hat{u}$ we want

$$
L^{\hat{u}} v+f=0
$$

or, more succinctly

$$
\begin{equation*}
\sup _{u \in A}\left[L^{u} v+f\right]=0 \tag{2.3}
\end{equation*}
$$

Equation (2.3) is known as the Hamilton-Jacobi-Bellman (HJB) equation.

2.6 A worked example

Problem Find

$$
\begin{equation*}
v(x) \equiv \inf _{u \in \mathcal{A}} E_{x} \int_{0}^{\infty} e^{-\alpha t} f\left(X_{t}^{u}\right) d t \tag{2.4}
\end{equation*}
$$

where α is a fixed positive constant, the process X^{u} satisfies

$$
\begin{gathered}
d X_{t}^{u}=d B_{t}+u_{t} d t \\
\mathcal{A}=\left\{\text { adapted } u:\left|u_{t}\right| \leq 1 \text { for all } t\right\}
\end{gathered}
$$

and

$$
f: x \mapsto x^{2}
$$

Solution The HJB equation is

$$
\inf _{|u| \leq 1} \frac{1}{2} v^{\prime \prime}(x)+u v^{\prime}(x)-\alpha v+x^{2}=0 .
$$

Guess, by symmetry, that v is symmetric and increasing for $x \geq 0$. It follows that the infimum is attained (for $x>0$) at $u=-1$. It follows that we want to solve

$$
\begin{equation*}
\frac{1}{2} w^{\prime \prime}(x)-w^{\prime}(x)-\alpha w+x^{2}=0 \tag{2.5}
\end{equation*}
$$

The general solution is

$$
w=A e^{\left(\gamma+\frac{1}{2}\right) x}+B e^{\left(-\gamma+\frac{1}{2}\right) x}+\frac{1}{\alpha} x^{2}-\frac{2}{\alpha^{2}} x+\frac{1}{\alpha^{2}}-\frac{2}{\alpha^{3}},
$$

where

$$
\gamma=\frac{\sqrt{1+2 \alpha}}{2}
$$

We want a C^{2} symmetric solution, so we want $w^{\prime}(0)=0$. We can also conclude that $A=0$ (by comparison with the Brownian motion case where $u \equiv 0$ and by positivity). This results in the guess:

$$
v=w \equiv-\frac{2}{\alpha^{2}\left(\gamma-\frac{1}{2}\right)} e^{\left(-\gamma+\frac{1}{2}\right)|x|}+\frac{1}{\alpha} x^{2}-\frac{2}{\alpha^{2}}|x|+\frac{1}{\alpha^{2}}-\frac{2}{\alpha^{3}} .
$$

It's easy to check that w is increasing on \mathbb{R}^{+}, since we've set $w^{\prime}(0)$ to zero and w " is clearly positive. It follows that w satisfies the HJB equation. It is now relatively easy to check that w satisfies the conditions of Theorem 2, since properties (2) and (3) follow from the fact that $\left|X_{t}^{u}\right| \leq\left|B_{t}\right|+t$, whilst (1) and (4) follow from the fact that w satisfies the HJB equation.

Exercise 1: solve the problem when $f: x \mapsto x^{4}$.

3 Optimal Portfolio Allocation/Consumption

Recall the setup of example 3.

3.1 Case 1

Suppose that there is no risk-free asset $\left(S^{0}\right)$ and $n=d=1$ (so there is no allocation problem $-\pi \equiv 1$).

We get

$$
\begin{equation*}
L^{c} g(x)=\frac{1}{2} \sigma^{2} x^{2} \frac{d^{2} g}{d x^{2}}+(\mu-c) x \frac{d g}{d x} \tag{3.1}
\end{equation*}
$$

with $\alpha=0$ and $f(c, x)=(c x)^{p}$.
A quick check shows that everything scales in x, so we must have $v(x)=$ $k x^{p}$ for a suitable k.

The HJB equation is

$$
\begin{equation*}
\sup _{c}\left[-\frac{1}{2} \sigma^{2} p(1-p) k+(\mu-c) p k+c^{p}\right] x^{p}=0 \tag{3.2}
\end{equation*}
$$

or, setting $\delta=\frac{1}{2} \sigma^{2} p(1-p)-\mu p$ and since $x>0$

$$
\begin{equation*}
\sup _{c}\left[c^{p}-c p k-\delta k\right]=0 . \tag{3.3}
\end{equation*}
$$

The supremum in (3.3) is attained at $\hat{c}=k^{-\frac{1}{1-p}}$ and so, substituting back in (3.3), we get

$$
k=\left(\frac{1-p}{\delta}\right)^{\frac{1-p}{p}}
$$

provided

$$
\begin{equation*}
\mu<\frac{1}{2} \sigma^{2}(1-p) \tag{3.4}
\end{equation*}
$$

Exercise 2: by considering consumption policies of the form $c_{t} \equiv c_{0}$ for suitable values of c_{0}, show that if (3.4) fails then $v \equiv \infty$.

Now, assuming that (3.4) holds, we can check conditions (1)-(4).
(3) holds by positivity and monotone convergence - notice this is always OK if $f \geq 0$. (2) follows from (3.4) and the fact that $X_{t}^{c} \leq X_{t}^{0}$, (1) and (4) follow from the HJB equation.

3.2 Case 2

Now assume that $n \geq d$ and there is a risk-free asset present.
We get

$$
\begin{equation*}
L^{\pi, c} g(x)=\frac{1}{2} \tilde{\pi}^{T} a \tilde{\pi} x^{2} \frac{d^{2} g}{d x^{2}}+\left(\tilde{\mu}^{T} \tilde{\pi}+\mu_{0} \pi_{0}-c\right) x \frac{d g}{d x} \tag{3.5}
\end{equation*}
$$

where $a=\sigma \sigma^{T}, \mu^{T}=\left(\mu_{0}, \tilde{\mu}\right)$ and $\pi=\left(\pi_{0}, \tilde{\pi}\right)$.
The HJB equation is

$$
\sup _{\pi, c}\left[L^{\pi, c} v+(c x)^{p}\right]=0
$$

Scaling again forces a solution of the form $v(x)=k x^{p}$, and so we get

$$
\sup _{\pi, c}\left[-\frac{1}{2} \tilde{\pi}^{T} a \tilde{\pi} p(1-p) k+\left(\tilde{\mu}^{T} \tilde{\pi}+\mu_{0} \pi_{0}-c\right) p k+c^{p}\right]=0
$$

Notice that the maximization in c is independent of π. It follows that it's essentially the same problem as Case 1 , unless a is not of full rank. If not then $\sup _{\pi}=\infty$ unless

$$
\begin{equation*}
\operatorname{Ker}(a) \equiv \operatorname{Ker}(\sigma) \perp\left(\tilde{\mu}-\mu_{0} 1\right) \tag{3.6}
\end{equation*}
$$

In financial terms, there is an arbitrage unless (3.6) holds. Assuming that (3.6) does hold, we may assume wlog that a is of full rank). Now we need

$$
\mu_{0}+\frac{1}{2} \frac{\left(\tilde{\mu}-\mu_{0} 1\right)^{T} a^{-1}\left(\tilde{\mu}-\mu_{0} 1\right)}{1-p}<0 .
$$

3.3 Case 3

We revert to a single asset but now we wish to find

$$
\sup _{c} E_{x}\left[\int_{0}^{T}\left(c_{s} X_{s}\right)^{p} d s+\lambda\left(X_{T}^{c}\right)^{p}\right]
$$

Note that this is (a shift of) the Lagrangian for the constrained problem

$$
\sup _{c} E_{x}\left[\int_{0}^{T}\left(c_{s} X_{s}\right)^{p} d s\right] \text { subject to } E_{x}\left[\left(X_{T}^{c}\right)^{p}\right]=b
$$

Once more by scaling, we can see that the solution must be of the form

$$
v(x, T)=k_{\lambda}(T) x^{p}
$$

The HJB equation is

$$
\sup _{c} \frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2} v}{\partial x^{2}}+(\mu-c) x \frac{\partial v}{\partial x}-\frac{\partial v}{\partial t}+(c x)^{p}=0
$$

(WHY?), with the boundary condition

$$
v(x, 0)=\lambda x^{p}
$$

Substituting the 'solution' $v(x, t)=k_{\lambda}(t) x^{p}$, we get

$$
\sup _{c}\left[(1-p) r k_{\lambda}-p c k_{\lambda}-k_{\lambda}^{\prime}\right]=0,
$$

with $(1-p) r=\mu p-\frac{1}{2} \sigma^{2} p(1-p)$.
As before $\hat{c}=k^{-\frac{1}{1-p}}$. Amazingly, if we set $\xi=k_{\lambda}^{\frac{1}{1-p}}$ we get linear (affine) differential equation for ξ :

$$
\xi^{\prime}=1+r \xi .
$$

Finally, we can solve and substitute to obtain v and $E_{x}\left[\left(X_{T}^{c}\right)^{p}\right]$. Finally, by varying λ we can solve the constrained problem (for a range of b.
QUESTION: If we use the corresponding optimal control policy, what will the value of X_{T} be?

4 Tracking Problems

Exercise 3: Let A be the set of $d \times d$ symmetric real matrices a, satisfying the inequalities:

$$
\mu|x|^{2} \leq x^{T} a x \leq \nu|x|^{2},
$$

where $0<\mu<\nu$. This is the collection of real symmetric matrices with each eigenvalue in the interval $[\mu, \nu]$. Let $\mathcal{A}=\left\{\right.$ adapted $\sigma: \sigma_{t} \sigma_{t}^{T} \in$ A for each $t\}$.

Suppose that $0<\epsilon<R$, the domain D is given by $D=\left\{x \in \mathbb{R}^{d}: \epsilon<\right.$ $|x|<R\}$ and τ_{D} is the first exit time of D.

Find

$$
\sup _{\sigma \in \mathcal{A}} E_{x} g\left(\left|X_{\tau_{D}}^{\sigma}\right|\right)
$$

where

$$
d X_{t}^{\sigma}=\sigma_{t} d B_{t}
$$

and

$$
g(\epsilon)=1-g(R)=1
$$

4.1 Tracking Problem 1

Recall Problem 2(i) from the introduction:
suppose that we have a fixed Brownian motion (BM) B on the filtration $\left(\mathcal{F}_{t}\right)$ and two processes, X and Y, satisfying:

$$
d X_{t}=\sigma_{1}\left(X_{t}\right) d B_{t}, \quad X_{0}=x
$$

and

$$
d Y_{t}^{W}=\sigma_{2}\left(Y_{t}\right) d W_{t}, Y_{0}=y
$$

Choose W from \mathcal{V}, the set of all the BMs on the filtration $\left(\mathcal{F}_{t}\right)$, to minimise $E\left(X_{T}-Y_{T}\right)^{2}$.

Before we continue, let us add the assumption that
σ_{2} is Lipschitz, and σ_{1} is Hölder continuous with Hölder parameter $\alpha>0$.

Under this assumption,
(i) For any W, Y is a strong solution and is adapted to the filtration of W;
(ii) X is unique in law but need not be adapted to the filtration of B.

Remark 3. for any $W \in \mathcal{V}$, there is a predictable H and a $\tilde{B} \in V$ such that

- $W .=\int_{0} \cos H_{s} d B_{s}+\int_{0} \sin H_{s} d \tilde{B}_{s}$
- X is unique in law but need not be a strong solution and hence may not be adapted to the filtration of B.

Let's generalise the problem (without making it any harder): fix $T>0$ and suppose that Φ is C^{2}, convex and of polynomial growth:

$$
\begin{equation*}
\text { find } \psi(x, y, T) \equiv \inf _{W \in \mathcal{V}} E_{x, y} \Phi\left(X_{T}-Y_{T}^{W}\right) \tag{4.1}
\end{equation*}
$$

Theorem 4. The infimum in (4.1) is attained by setting $W=B$.
Corollary 5. If σ_{1} is such that no strong solution for X exists then

$$
\eta \stackrel{\text { def }}{=} \inf _{y \in \mathbb{R}, W \in \mathcal{V}, \sigma_{2} \text { Lipschitz }} E_{x, y}\left[X_{T}-Y^{W, \sigma_{2}}\right]^{2}>0
$$

and so we cannot approximate X by a sequence of adapted strong solutions in L^{2} with Lipschitz coefficients.

Sketch proof: suppose we could, i.e we have a sequence $\left(y_{n}, W^{n}, \sigma_{n}\right)$ s.t.

$$
E\left[X_{T}-Y_{T}^{n}\right]^{2} \rightarrow 0
$$

then by Theorem $4, Z^{n}$ given by $Z_{t}^{n}=y_{n}+\int_{0}^{t} \sigma_{n}\left(Z_{s}^{n}\right) d B_{s}$ will do at least as well and so $E\left[Z_{T}^{n}-X_{T}\right]^{2} \rightarrow 0$, which implies, by Doob's maximal inequality, that

$$
E \sup _{0 \leq t \leq T}\left(Z_{t}^{n}-X_{t}\right)^{2} \rightarrow 0
$$

But each Z^{n} is adapted so X is adapted, which is a contradiction.
Sketch proof of Theorem 4: the candidate optimal policy is $\hat{W} \equiv B$, so define

$$
\begin{equation*}
w(x, y, t)=\mathbb{E}_{x, y} \Phi\left(X_{t}-Y_{t}^{B}\right) . \tag{4.2}
\end{equation*}
$$

Now look at the HJB equation (with

$$
W .=\int_{0} C_{s} d B_{s}+\int_{0} S_{s} d \tilde{B}_{s}
$$

with C and S adapted and $C^{2}+S^{2}=1$).
Assuming that v is $C^{2,1}$:

$$
\begin{equation*}
d v\left(X_{t}, Y_{t}^{W}, T-t\right)=\left(\frac{1}{2} \sigma_{1}^{2} v_{x x}+C_{t} \sigma_{1} \sigma_{2} v_{x y}+\frac{1}{2} \sigma_{2}^{2} v_{y y}-v_{t}\right) d t+d M_{t}^{C} \tag{4.3}
\end{equation*}
$$

where M^{C} is a martingale; then it follows that the HJB equation is:

$$
\inf _{c \in[-1,1]}\left(\frac{1}{2} \sigma_{1}^{2} v_{x x}+c \sigma_{1} \sigma_{2} v_{x y}+\frac{1}{2} \sigma_{2}^{2} v_{y y}-v_{t}\right)=0
$$

If we apply this to w we see that we want optimal $c \equiv 1$ (corresponding to $W=B$), so it's (nearly) necessary and sufficient that $w_{x y} \leq 0$. Again, assuming that w is $C^{2,1}$, we need only show that

$$
I_{R} \equiv \iint_{R} w_{x y} d x d y \leq 0
$$

for any rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$.

Now

$$
\begin{aligned}
I_{R}= & w\left(x^{\prime}, y^{\prime}, t\right)-w\left(x, y^{\prime}, t\right)-w\left(x^{\prime}, y, t\right)+w(x, y, t) \\
= & E\left[\Phi\left(X_{t}\left(x^{\prime}\right)-Y_{t}^{B}\left(y^{\prime}\right)\right)-\Phi\left(X_{t}\left(x^{\prime}\right)-Y_{t}^{B}(y)\right)\right. \\
& \left.-\Phi\left(X_{t}(x)-Y_{t}^{B}\left(y^{\prime}\right)\right)+\Phi\left(X_{t}(x)-Y_{t}^{B}(y)\right)\right] \\
= & -E\left[\iint_{R^{\prime}} \Phi^{\prime \prime}(u-v) d u d v\right],
\end{aligned}
$$

where $R^{\prime}=\left[X_{t}(x), X_{t}\left(x^{\prime}\right)\right] \times\left[Y_{t}^{B}(y), Y_{t}^{B}\left(y^{\prime}\right)\right]$. So, since $\Phi^{\prime \prime} \geq 0$ we are done provided that $Y_{t}^{B}(y) \leq Y_{t}^{B}\left(y^{\prime}\right)$ and $X_{t}(x) \leq X_{t}\left(x^{\prime}\right)$ whenever $x<x^{\prime}$ and $y<y^{\prime}$. This follows for Y from the skip-free property for one-dimensional strong solutions. For X we need to take the two solutions and paste them when they collide to get the required property.

One small problem: $I S w$ a $C^{2,1}$ function?
Trick: fix a finite square domain, freeze (X, Y) on exit from this domain, restrict controls to the interval

$$
[-1+\epsilon, 1-\epsilon]
$$

then (PDEs result) the corresponding w is $C^{2,1}$ so is the value function for the revised problem. Now let $\epsilon \rightarrow 0$ and the domain $\uparrow \mathbb{R}^{2}$.

4.2 Tracking Problem 2: coupling

Now we seek (with the same X and Y as above) to find

$$
\begin{equation*}
v(x, y, t)=\inf _{W \in V} P_{x, y}\left(\tau_{0}\left(X-Y^{W}\right)>t\right) \tag{4.4}
\end{equation*}
$$

Note that we have the boundary condition $v(x, y, 0)=1_{x \neq y}$ and we stop the problem on the diagonal $x=y$ so that

$$
v(x, x, t)=0
$$

As in the previous problem, the HJB equation is

$$
\inf _{c \in[-1,1]}\left(\frac{1}{2} \sigma_{1}^{2} v_{x x}+c \sigma_{1} \sigma_{2} v_{x y}+\frac{1}{2} \sigma_{2}^{2} v_{y y}-v_{t}\right)=0
$$

Now coupling ideas suggest that mirror coupling might be best: i.e. to choose $W=-B$ (at least assuming that σ_{1} and σ_{2} have the same sign). Choosing $W=-B$ corresponds to $c \equiv-1$ in the HJB equation. So, set

$$
\psi(x, y, t)=P_{x, y}\left(\tau_{0}\left(X-Y^{-B}\right)>t\right)
$$

Then, we want to show that the inf in the HJB equation is attained at -1 which means we want $\psi_{x y} \geq 0$.

Example Suppose that $\sigma_{1} \equiv 1, \sigma_{2} \equiv \sigma>0$.
Now

$$
X_{t}-Y_{t}^{-B}=(x-y)+(1+\sigma) B_{t} .
$$

So τ_{0} is the first hitting time by $-B$ of the point $\frac{x-y}{1+\sigma}$. It follows that (assuming w.l.o.g. that $x>y$)

$$
\psi(x, y, t)=P\left(\left|B_{t}\right|<\frac{x-y}{1+\sigma}\right)=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\frac{x-y}{(1+\sigma) \sqrt{ } t}} e^{-\frac{u^{2}}{2}} d u
$$

Now

$$
\psi_{x y}=k(x-y) \exp \left(-\frac{(x-y)^{2}}{2(1+\sigma)^{2} t}\right)
$$

for some constant $k>0$ (and ψ is $C^{2,1}$). This establishes (1) and (4) and the optimality of mirror coupling.

4.3 Tracking Problem 3: 'staying small'

We have the drift control setup of initial problem 1:

$$
d X_{t}^{u}=\sigma d B_{t}+u_{t} d t
$$

with $u \in[-a, a]$. We seek to find

$$
v(x, t)=\inf _{u} E_{x} f\left(X_{t}^{u}\right)
$$

where f is C^{2}, symmetric, increasing and bounded.
We still guess that the optimal control is that v is an increasing function of $|x|$ and hence to set $\hat{u}_{t}=-\operatorname{a.sign}\left(X_{t}\right)$.

The HJB equation is

$$
\inf _{-a \leq u \leq a} \frac{1}{2} \sigma^{2} v_{x x}+u v_{x}-v_{t}=0
$$

with boundary condition $v(x, 0)=f(x)$. Following our guess, let

$$
w(x, t)=E_{x} f\left(X_{t}^{\hat{u}}\right)
$$

Standard arguments show that w is $C^{2,1}$ except on $\{0\} \times \mathbb{R}_{+}$, where $w_{x}=0$. It follows that

$$
\begin{equation*}
\frac{1}{2} \sigma^{2} w_{x x}-a w_{x}-w_{t}=0 \tag{4.5}
\end{equation*}
$$

on $x>0$ and so, from Tanaka's generalisation of Ito's formula, that w satisfies the HJB equation (and is optimal) provided that w is increasing on \mathbb{R}_{+}.

How do we prove this?
Well, look at w_{x}. It's (fairly) clear, by differentiating (4.5), that w_{x} satisfies

$$
\frac{1}{2} \sigma^{2}\left(w_{x}\right)_{x x}-a\left(w_{x}\right) x-\left(w_{x}\right)_{t}=0
$$

on $\mathbb{R}_{+} \times \mathbb{R}_{+}$, with the boundary conditions $w_{x}=0$ on $\{0\} \times \mathbb{R}_{+}, w_{x}=f^{\prime}(x)$ on $\mathbb{R}_{+} \times\{0\}$ and $w_{x} \rightarrow 0$ as $x \uparrow \infty$ (this follows from the fact that f is bounded and continuous).

It follows from the strong minimum principle for parabolic operators that w_{x} has no negative minima on $D \equiv\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)^{o}$. But w_{x} is non-negative on the 'boundary' of D so it follows that w_{x} is non-negative on $\mathbb{R}_{+} \times \mathbb{R}_{+}$.

Now we can approximate arbitrary increasing f by C^{2} bounded, increasing f and so it follows that \hat{u} achieves the stochastic minimum of the X_{t}^{u}.

5 Optimal Stopping

5.1 The HJB equation

The Problem: we seek optional τ (i.e. τ is a stopping time) to achieve

$$
\sup _{\tau} E_{x}\left[\int_{0}^{\tau} f\left(X_{t}\right) d t+g\left(X_{\tau}\right)\right],
$$

where

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t
$$

To see what we should do, Krylov's trick is to allow randomised stopping at a rate r_{t} with $0 \leq r_{t} \leq n$. Thus

$$
v^{(n)}(x)=\sup _{\text {predictable } r} E_{x}\left[\int_{0}^{\infty} e^{-\phi_{t}^{r}}\left(f\left(X_{t}\right)+r_{t} g\left(X_{t}\right)\right) d t\right],
$$

where $\phi_{t}=\int_{0}^{t} r_{s} d s$.
Then the HJB equation is

$$
\sup _{r \in[0, n]}\left[L v^{(n)}+f-r v^{(n)}\right]+r g=0,
$$

where $L=\frac{1}{2} \sum_{i, j} a_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i} b_{i} \frac{\partial v}{\partial x_{i}}$.
Clearly the supremum in the HJB equation is attained at $r=0$ if $v^{(n)}>g$ and at n if $v^{(n)} \leq g$, so the HJB equation is

$$
L v^{(n)}+f+n\left(g-v^{(n)}\right)^{+}=0 .
$$

Thus we 'want to stop 'when $v^{(n)} \leq g$ and continue otherwise, when $L v^{(n)}+$ $f=0$.

Formally, if we let $n \rightarrow \infty$ then we see that we get

$$
\begin{gathered}
L v+f \leq 0 \\
v \geq g
\end{gathered}
$$

and

$$
L v^{(n)}+f=0
$$

whenever $v>g$.

5.2 The Snell envelope

Given a process X satisfying weak integrability conditions, define

$$
V_{t}=\underset{\text { optional }}{\text { ess } \sup _{\tau \geq t}} E\left[X_{\tau} \mid \mathcal{F}_{t}\right] .
$$

Notice that by setting $\tau=t$ we see that $V_{t} \geq X_{t}$ a.s.
V is called the Snell envelope for X. Under weak conditions V is the minimal supermartingale dominating X.

Theorem 6. Suppose that

$$
V_{t}=\underset{\text { bounded optional }}{\substack{\text { ess } \\ \tau \geq t}} E\left[X_{\tau} \mid \mathcal{F}_{t}\right]
$$

(for example, if X is bounded below) and suppose that \tilde{V} is a process satisfying the following three conditions:
(5) $\tilde{V} \geq X$;
(6) \tilde{V} is a supermartingale;
(7) for every t, there is an optional $\tau \geq t$ such that

$$
E\left[X_{\tau} \mid \mathcal{F}_{t}\right]=\tilde{V}_{t}
$$

then

$$
\tilde{V}=V
$$

Proof: take a bounded optional $\tau \geq t$, then (5), (6) and the optional sampling theorem tell us that

$$
\tilde{V}_{t} \geq E\left[\tilde{V}_{\tau} \mid \mathcal{F}_{t}\right] \geq E\left[X_{\tau} \mid \mathcal{F}_{t}\right] \text { a.s. }
$$

and since τ is arbitrary we see that

$$
\tilde{V}_{t} \geq V_{t}
$$

Conversely, (7) tells us that

$$
\tilde{V}_{t} \leq V_{t} \text { a.s. }
$$

5.3 Good lambda inequalities

Recall that the problem is to find the best constant, c, appearing in the inequality

$$
P\left(X_{\tau} \geq x, Y_{\tau}<y\right) \leq c P\left(X_{\tau}>z\right) \text { for all stopping times } \tau
$$

where X and Y are increasing processes. We shall assume (for convenience) that X is continuous and $x>z$.

Let us set (for each $t \geq 0$):

$$
\begin{aligned}
S_{t} & =\inf \left\{s \geq 0: X_{s}>t\right\} \\
T_{t} & =\inf \left\{s \geq 0: X_{s} \geq t\right\} \\
W^{\lambda} \equiv W_{t} & =1_{\left(X_{t} \geq x, Y_{t}<y\right)}-\lambda 1_{\left(X_{t}>z\right)} \\
& =1_{\left(t \geq T_{x}, Y_{t}<y\right)}-\lambda 1_{\left(t>S_{z}\right)},
\end{aligned}
$$

and suppose that we wish to optimally stop W_{t}.
This is as simple a non-trivial problem as is possible!
Notice that

$$
W_{t}= \begin{cases}0 & \text { on }\left[0, S_{z}\right] \\ -\lambda & \text { on }] S_{z}, T_{x}[\\ 1_{\left(Y_{t}<y\right)}-\lambda & \text { on }\left[T_{x}, \infty[.\right.\end{cases}
$$

Now Y is increasing, so W is decreasing on $\left[T_{x}, \infty[\right.$ and so we must have $V=W$ on $\left[T_{x}, \infty[\right.$. Conversely, W is increasing on $\left.] S_{z}, T_{x}\right]$, so we must have ${ }^{\prime} V_{t}=E\left[V_{T_{x}} \mid \mathcal{F}_{t}\right]$ on $\left.] S_{z}, T_{x}\right]$ ', i.e.

$$
\left.\left.V_{t}=E\left[W_{T_{x}} \mid \mathcal{F}_{t}\right]=P\left(Y_{T_{x}}<y \mid \mathcal{F}_{t}\right)-\lambda \text { on }\right] S_{z}, T_{x}\right] .
$$

Finally, W is constant on $\left[0, S_{z}\right]$ so we must have

$$
V_{t}=E\left[V_{S_{z}} \mid \mathcal{F}_{t}\right] \text { on }\left[0, S_{z}\right] .
$$

From this it's clear that the only time we have a choice is at time S_{z} when we must choose to stop immediately or continue until time T_{x}. In other words, the optimal stopping time τ must be of the form

$$
\tau=\tau_{A} \equiv S_{z} 1_{A^{c}}+T_{x} 1_{A}
$$

for some event $A \in \mathcal{F}_{S_{z}}$.
Now

$$
E\left[W_{\tau_{A}} \mid \mathcal{F}_{S_{z}}\right]=\left(P\left(Y_{T_{x}}<y \mid \mathcal{F}_{S_{z}}\right)-\lambda\right) 1_{A},
$$

so, denoting by \mathcal{E}_{λ} the $\mathcal{F}_{S_{z}}$-measurable random variable

$$
P\left(Y_{T_{x}}<y \mid \mathcal{F}_{S_{z}}\right)-\lambda
$$

it's clear that an optimal choice of A is $\left(\mathcal{E}_{\lambda}>0\right)$.
Thus, our candidate for V is \tilde{V} given by :

$$
\tilde{V}= \begin{cases}E\left[\mathcal{E}_{\lambda}^{+} \mid \mathcal{F}_{t}\right] & \text { on }\left[0, S_{z}\right] \\ P\left(Y_{T_{x}}<y \mid \mathcal{F}_{t}\right)-\lambda & \text { on }] S_{z}, T_{x}[\\ 1_{\left(Y_{t}<y\right)}-\lambda & \text { on }\left[T_{x}, \infty[\right.\end{cases}
$$

Check: (5) $\tilde{V} \geq W$ is obvious; (6) \tilde{V} is a supermartingale and is bounded; (7) we have explicitly exhibited τ_{t} such that $V_{t}=E\left[W_{\tau_{t}} \mid \mathcal{F}_{t}\right]$, therefore $\tilde{V}=V$.

Application:

$$
\begin{gathered}
\inf \left\{c: P\left(X_{T} \geq x, Y_{T}<y\right) \leq c P\left(X_{T}>z\right) \text { for all optional } T\right\} \\
=\inf \left\{\lambda: V_{0}^{\lambda} \leq 0\right\}
\end{gathered}
$$

But $V_{0}^{\lambda}=E\left[\mathcal{E}_{\lambda}^{+}\right]$, so

$$
\begin{gathered}
V_{0}^{\lambda} \leq 0 \Leftrightarrow P\left(\mathcal{E}_{\lambda}>0\right)=0 \\
\Leftrightarrow \\
\lambda \geq \mathrm{ess} \sup P\left(Y_{T_{x}}<y \mid \mathcal{F}_{S_{z}}\right) .
\end{gathered}
$$

Thus the best constant is

$$
c(x, y, z)=\mathrm{ess} \sup P\left(Y_{T_{x}}<y \mid \mathcal{F}_{S_{z}}\right)
$$

Theorem 7. Suppose that

$$
c^{*}(\beta, \delta) \stackrel{\text { def }}{=} \sup _{\lambda>0} c(\beta \lambda, \delta \lambda, \lambda)
$$

satisfies

$$
k_{p} \stackrel{\text { def }}{=} \inf _{\beta>1, \delta>0} \beta^{p} c^{*}(\beta, \delta)<1,
$$

then there exists a $C_{p}\left(=\inf _{\beta>1, \delta} \frac{\beta^{p}}{\delta^{p}\left(1-\beta^{p} c^{*}(\beta, \delta)\right)}\right)$ such that

$$
E\left[X_{T}^{p}\right] \leq C_{p} E\left[Y_{T}^{p}\right] \text { for all optional } T
$$

Corollary 8. For every $p>0$ there is a C_{p} (which is $O\left(p^{\frac{1}{2}}\right)$) such that for all optional T :

$$
E\left[\left(B_{T}^{*}\right)^{p}\right] \leq C_{p} E\left[T^{\frac{p}{2}}\right] \leq C_{p}^{2} E\left[\left(B_{T}^{*}\right)^{p}\right]
$$

Proof: first take $X=B^{*}$ and $Y_{t}=t^{\frac{1}{2}}$, then

$$
\begin{aligned}
c(x, y, z)= & \mathrm{ess} \sup P\left(Y_{T_{x}}<y \mid \mathcal{F}_{S_{z}}\right)=\mathrm{ess} \sup P\left(T_{x}<y^{2} \mid \mathcal{F}_{S_{z}}\right) \\
& \leq \mathrm{ess} \sup P\left(B_{y^{2}}^{*} \geq x \mid \mathcal{F}_{S_{z}}\right) \leq P\left(B_{y^{2}}^{*} \geq x-z\right),
\end{aligned}
$$

the last inequality following from the fact that B^{*} is a continuous sub-additive functional of B. So

$$
\begin{gathered}
c(x, y, z) \leq 4 P\left(B_{1} \geq \frac{x-z}{y}\right)=\frac{4}{\sqrt{2 \pi}} \int_{\frac{x-z}{y}}^{\infty} e^{-u^{2} / 2} d u \\
\leq k \frac{y}{x-z} \exp \left(-\frac{(x-z)^{2}}{2 y^{2}}\right)
\end{gathered}
$$

for a suitable choice of k. Thus

$$
c^{*}(\beta, \delta) \leq k \frac{\delta}{\beta-1} \exp \left(-\frac{(\beta-1)^{2}}{2 \delta^{2}}\right),
$$

and it's easy to check that

$$
\inf _{\beta>1, \delta} \frac{\beta^{p}}{\delta^{p}\left(1-\beta^{p} c^{*}(\beta, \delta)\right)}=O\left(p^{\frac{1}{2}}\right)
$$

A similar argument works if we reverse the roles of B^{*} and $T^{\frac{1}{2}}$.

References

[1] N V Krylov: Controlled Diffusion Processes. Springer, 1980.
[2] B Øksendal: Stochastic Differential Equations. 6th Edn. Springer, 2003.
[3] W H Fleming and H M Soner: Controlled Markov Processes and Viscosity Solutions. Springer, 1993.
[4] A Friedman: Partial Differential Equations of Parabolic Type. PrenticeHall, 1964.

[^0]: ${ }^{1}$ © S D Jacka 2006

