
AN INTRODUCTION TO (THE ART OF) STOCHASTIC
CONTROL1

SAUL JACKA

Probability At Warwick workshop

University of Warwick
July 2006

1 c© S D Jacka 2006

1



1 Introduction

We start by giving some examples

1.1 Some examples

1. Drift control Suppose that

dXt = σdBt + µtdt with |µt| ≤ c for all t :

find an upper/lower bound for

(i) E
∫∞

0
e−αtX2

t dt;

(ii) Px(τ0 > t), where τ0 = inf{t ≥ 0 : Xt = 0).

2. Tracking/coupling Suppose that we have a fixed Brownian motion
(BM) B on the filtration (Ft) and two processes, X and Y , satisfying:

dXt = σ1
t dBt

and
dYt = σ2

t dWt.

Choose W from amongst all the BMs on the filtration (Ft):

(i) to minimise E(XT − YT )2;

(ii) to minimise P (τ0(X − Y ) > T ), where τ0(X − Y ) = inf{t ≥ 0 :
Xt − Yt = 0).

3. Investment/consumption Suppose that we have n+1 assets: S0, . . . , Sn;
and

dS0
t = µ0S

0
t dt;

while, for each 1 ≤ i ≤ n,

dSit = Sit(
∑
j

σi,jdBj
t + µidt).

Suppose that we may invest in these assets so that our wealth process
Xπ,c satisfies (after consumption):

dXπ,c
t = Xπ,c(

∑
i

πit
dSit
Sit
− ctdt),
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where π and c are constrained to be adapted and to satisfy
∑

i π
i
t = 1

and c ≥ 0, for all t.

Given p < 1, find

sup
π,c

Ex
[∫ ∞

0

(ctX
π,c
t )pdt

]
.

4. Good Lambda Inequalities Suppose that X and Y are two increas-
ing processes (e.g. Xt = B∗t ≡ sups≤t |Bs| and Yt ≡ t

1
2 ): find the best

constant, c, appearing in the inequality

P (Xτ ≥ x, Yτ < y) ≤ cP (Xτ > z) for all stopping times τ.

5. Stopping Time Inequalities

(i) Find
sup
τ
E(B∗τ − kτ)

where τ runs through all stopping times.

(ii) Find the best constant, c, appearing in the inequality

E(B∗τ )
p ≤ c||Bp

τ ||q for all stopping times τ.
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2 The Bellman principle and HJB equation

2.1 A Typical Problem

Problems in (continuous time) stochastic control usually involve a controlled
Ito process in Rd:

dXu
t = b(ut, X

u
t )dt+ σ(ut, X

u
t )dBt,

where ut may be chosen from a control set A so that u (the control) may be
any adapted process taking values in A.

A typical problem would then be:

find the value function

(2.1) v(x) = sup
u
ExJ(u,Xu),

where the performance functional J is given by

J(u,Xu) =

∫ ∞
0

e−
∫ t
0 α(us,X

u
s )dsf (ut, X

u
t )dt.

Remark 1. Notice that we can be charged for the control as, in general,
f depends on u. Notice also that minimisation problems just correspond to
replacing f by −f . The process φut ≡

∫ t
0
α(us, X

u
s )ds is referred to as the

discount process.

2.2 Bellman’s Principle

Suppose that we follow some control u up to time t and then control optimally
(using the control û) thereafter. Call the resulting control ū; then

J(ū, X ū) =

∫ ∞
0

e−φ
ū
s f(ūs, X

ū
s )ds.

Splitting up the range of integration we get

J(ū, X ū) =

∫ t

0

e−φ
u
s f(us, X

u
s )ds+ e−φ

u
t

∫ ∞
t

e−φ
û
s−tf(ûs, X

û
s )ds.
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It follows that (since û is optimal)

V u
t ≡ E[J(ū, X ū)|Ft] =

∫ t

0

e−φ
u
s f(us, X

u
s )ds+ e−φ

u
t v(Xu

t ).

Now the longer we follow an arbitrary policy u the longer we fail to follow
the optimal policy û and so the worse we expect to perform, whilst if u = û
then we behave optimally throughout. We get from this:

Bellman’s Principle Under every u, V u is a supermartingale while
under the optimal control û, V û is a martingale.

2.3 A Converse

Suppose we are given a function ṽ and for each policy u we define the process
Ṽ u by

Ṽ u
t ≡

∫ t

0

e−φ
u
s f(us, X

u
s )ds+ e−φ

u
t ṽ(Xu

t );

now consider the following four conditions (the first three of which are as-
sumed to hold for all controls u and all initial conditions x):

(1) Ṽ u is a supermartingale;

(2) Ex[e
−φut ṽ(Xu

t )]→ 0 as t→∞;

(3) Ex[
∫ t

0
e−φ

u
s f(us, X

u
s )ds]→ Ex[J(u,Xu)] as t→∞;

and

(4) for all x there exists a û such that Ṽ û is a martingale.

Theorem 2. Suppose that conditions (1) to (3) hold then

ṽ ≥ v.

If, in addition, (4) holds, then
ṽ = v.

Proof: from (1) it follows that

(2.2) ṽ(x) = Ṽ u
0 ≥ ExṼ

u
t = Ex[

∫ t

0

e−φ
u
s f(us, X

u
s )ds] + Ex[e

−φut ṽ(Xu
t )].
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Now, taking limits as t→∞ in equation (2.2), (2) and (3) imply that

ṽ(x) ≥ Ex[J(u,Xu)],

and, since this holds for arbitrary u and x we see that

ṽ ≥ v.

If, in addition (4) holds, then we have equality in (2.2) when u ≡ ũ, so

ṽ(x) = Ex[J(û, X û)]

and thus
ṽ(x) ≤ v(x) = sup

u
Ex[J(u,Xu)].

�

2.4 Extensions

• We may make the problem time-dependent by enlarging the statespace
(so (Xu

t )t≥0 becomes ((Xu
t , t))t≥0).

• We can now consider finite time-horizon problems by setting f(ut, X
u
t , t) =

0 for t ≥ T .

• We may ‘stop’ the problem on first exit from a domain D, setting v to
a prescribed function, g, on ∂D.

• We may also incorporate optional stopping (v is then set to a prescribed
function, g, at a stopping time of our choice).

2.5 The Hamilton-Jacobi-Bellman (HJB) equa-
tion

Suppose that the solution to problem (2.1) is v, and that v is C2. Ito’s
formula tells us that (omitting the argument (ut, X

u
t ) wherever it should

appear, and denoting σσT by a):

dV u
t = e−φ

u
t
(
[
1

2

∑
i,j

ai,j
∂2v

∂xi∂xj
+
∑
i

bi
∂v

∂xi
− αv + f ]dt

+
∑
i,j

σi,j
∂v

∂xi
dBj

t

)
,
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or, defining the differential operator Lu by

Lu : g 7→ Lug,

where

Lug(x) =
1

2

∑
i,j

ai,j(u, x)
∂2g

∂xi∂xj
(x)

+
∑
i

bi
∂g

∂xi
(x) −α(u, x)g(x),

dV u
t = e−φ

u
t
(
[Luv + f ] +

∑
i,j

σi,j
∂v

∂xi
dBj

t

)
.

Now Bellman’s principle tells us that V u is a supermartingale and should be
a martingale under the optimal control: it follows that for each u we want

Luv + f ≤ 0

and for u = û we want
Lûv + f = 0,

or, more succinctly

(2.3) sup
u∈A

[Luv + f ] = 0.

Equation (2.3) is known as the Hamilton-Jacobi-Bellman (HJB) equation.

2.6 A worked example

Problem Find

(2.4) v(x) ≡ inf
u∈A

Ex

∫ ∞
0

e−αtf(Xu
t )dt,

where α is a fixed positive constant, the process Xu satisfies

dXu
t = dBt + utdt,

A = {adapted u : |ut| ≤ 1 for all t}

7



and
f : x 7→ x2.

Solution The HJB equation is

inf
|u|≤1

1

2
v′′(x) + uv′(x)− αv + x2 = 0.

Guess, by symmetry, that v is symmetric and increasing for x ≥ 0. It follows
that the infimum is attained (for x > 0) at u = −1. It follows that we want
to solve

(2.5)
1

2
w′′(x)− w′(x)− αw + x2 = 0.

The general solution is

w = Ae(γ+ 1
2

)x +Be(−γ+ 1
2

)x +
1

α
x2 − 2

α2
x+

1

α2
− 2

α3
,

where

γ =

√
1 + 2α

2
.

We want a C2 symmetric solution, so we want w′(0) = 0. We can also
conclude that A = 0 (by comparison with the Brownian motion case where
u ≡ 0 and by positivity). This results in the guess:

v = w ≡ − 2

α2(γ − 1
2
)
e(−γ+ 1

2
)|x| +

1

α
x2 − 2

α2
|x|+ 1

α2
− 2

α3
.

It’s easy to check that w is increasing on R+, since we’ve set w′(0) to zero
and w” is clearly positive. It follows that w satisfies the HJB equation. It
is now relatively easy to check that w satisfies the conditions of Theorem 2,
since properties (2) and (3) follow from the fact that |Xu

t | ≤ |Bt|+ t, whilst
(1) and (4) follow from the fact that w satisfies the HJB equation. �

Exercise 1: solve the problem when f : x 7→ x4.
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3 Optimal Portfolio Allocation/Consumption

Recall the setup of example 3.

3.1 Case 1

Suppose that there is no risk-free asset (S0) and n = d = 1 (so there is no
allocation problem — π ≡ 1).

We get

(3.1) Lcg(x) =
1

2
σ2x2 d

2g

dx2
+ (µ− c)xdg

dx
,

with α = 0 and f(c, x) = (cx)p.
A quick check shows that everything scales in x, so we must have v(x) =

kxp for a suitable k.
The HJB equation is

(3.2) sup
c

[−1

2
σ2p(1− p)k + (µ− c)pk + cp]xp = 0,

or, setting δ = 1
2
σ2p(1− p)− µp and since x > 0

(3.3) sup
c

[cp − cpk − δk] = 0.

The supremum in (3.3) is attained at ĉ = k−
1

1−p and so, substituting back in
(3.3), we get

k = (
1− p
δ

)
1−p
p ,

provided

(3.4) µ <
1

2
σ2(1− p).

Exercise 2: by considering consumption policies of the form ct ≡ c0 for
suitable values of c0, show that if (3.4) fails then v ≡ ∞.

Now, assuming that (3.4) holds, we can check conditions (1)-(4).
(3) holds by positivity and monotone convergence— notice this is always

OK if f ≥ 0. (2) follows from (3.4) and the fact that Xc
t ≤ X0

t , (1) and (4)
follow from the HJB equation.
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3.2 Case 2

Now assume that n ≥ d and there is a risk-free asset present.
We get

(3.5) Lπ,cg(x) =
1

2
π̃Taπ̃x2 d

2g

dx2
+ (µ̃T π̃ + µ0π0 − c)x

dg

dx
,

where a = σσT , µT = (µ0, µ̃) and π = (π0, π̃).
The HJB equation is

sup
π,c

[Lπ,cv + (cx)p] = 0.

Scaling again forces a solution of the form v(x) = kxp, and so we get

sup
π,c

[−1

2
π̃Taπ̃p(1− p)k + (µ̃T π̃ + µ0π0 − c)pk + cp] = 0

Notice that the maximization in c is independent of π. It follows that it’s
essentially the same problem as Case 1, unless a is not of full rank. If not
then supπ =∞ unless

(3.6) Ker(a) ≡ Ker(σ) ⊥ (µ̃− µ01).

In financial terms, there is an arbitrage unless (3.6) holds. Assuming that
(3.6) does hold, we may assume wlog that a is of full rank). Now we need

µ0 +
1

2

(µ̃− µ01)Ta−1(µ̃− µ01)

1− p
< 0.

3.3 Case 3

We revert to a single asset but now we wish to find

sup
c
Ex[

∫ T

0

(csXs)
pds+ λ(Xc

T )p]

Note that this is (a shift of) the Lagrangian for the constrained problem

sup
c
Ex[

∫ T

0

(csXs)
pds] subject to Ex[(X

c
T )p] = b.
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Once more by scaling, we can see that the solution must be of the form

v(x, T ) = kλ(T )xp.

The HJB equation is

sup
c

1

2
σ2x2 ∂

2v

∂x2
+ (µ− c)x∂v

∂x
− ∂v

∂t
+ (cx)p = 0,

(WHY?), with the boundary condition

v(x, 0) = λxp.

Substituting the ‘solution’ v(x, t) = kλ(t)x
p, we get

sup
c

[(1− p)rkλ − pckλ − k′λ] = 0,

with (1− p)r = µp− 1
2
σ2p(1− p).

As before ĉ = k−
1

1−p . Amazingly, if we set ξ = k
1

1−p
λ we get linear (affine)

differential equation for ξ:
ξ′ = 1 + rξ.

Finally, we can solve and substitute to obtain v and Ex[(X
c
T )p]. Finally, by

varying λ we can solve the constrained problem (for a range of b.
QUESTION: If we use the corresponding optimal control policy, what will
the value of XT be?

4 Tracking Problems

Exercise 3: Let A be the set of d× d symmetric real matrices a, satisfying
the inequalities:

µ|x|2 ≤ xTax ≤ ν|x|2,
where 0 < µ < ν. This is the collection of real symmetric matrices with
each eigenvalue in the interval [µ, ν]. Let A = { adapted σ : σtσ

T
t ∈

A for each t}.
Suppose that 0 < ε < R, the domain D is given by D = {x ∈ Rd : ε <

|x| < R} and τD is the first exit time of D.
Find

sup
σ∈A

Exg(|Xσ
τD
|),
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where
dXσ

t = σtdBt

and
g(ε) = 1− g(R) = 1.
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4.1 Tracking Problem 1

Recall Problem 2(i) from the introduction:
suppose that we have a fixed Brownian motion (BM) B on the filtration

(Ft) and two processes, X and Y , satisfying:

dXt = σ1(Xt)dBt, X0 = x

and
dY W

t = σ2(Yt)dWt, Y0 = y.

Choose W from V , the set of all the BMs on the filtration (Ft), to minimise
E(XT − YT )2.

Before we continue, let us add the assumption that

σ2 is Lipschitz, and σ1 is Hölder continuous with Hölder parameter
α > 0.

Under this assumption,

(i) For any W , Y is a strong solution and is adapted to the filtration of
W ;

(ii) X is unique in law but need not be adapted to the filtration of B.

Remark 3. for any W ∈ V, there is a predictable H and a B̃ ∈ V such that

• W· =
∫ ·

0
cosHsdBs +

∫ ·
0
sinHsdB̃s

• X is unique in law but need not be a strong solution and hence may not
be adapted to the filtration of B.

Let’s generalise the problem (without making it any harder): fix T > 0 and
suppose that Φ is C2, convex and of polynomial growth:

(4.1) find ψ(x, y, T ) ≡ inf
W∈V

Ex,yΦ(XT − Y W
T ).

Theorem 4. The infimum in (4.1) is attained by setting W = B.

Corollary 5. If σ1 is such that no strong solution for X exists then

η
def
= inf

y∈R, W∈V, σ2Lipschitz
Ex,y[XT − Y W,σ2 ]2 > 0,

and so we cannot approximate X by a sequence of adapted strong solutions
in L2 with Lipschitz coefficients.
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Sketch proof: suppose we could, i.e we have a sequence (yn,W
n, σn) s.t.

E[XT − Y n
T ]2 → 0,

then by Theorem 4, Zn given by Zn
t = yn +

∫ t
0
σn(Zn

s )dBs will do at least as
well and so E[Zn

T −XT ]2 → 0, which implies, by Doob’s maximal inequality,
that

E sup
0≤t≤T

(Zn
t −Xt)

2 → 0.

But each Zn is adapted so X is adapted, which is a contradiction. �
Sketch proof of Theorem 4: the candidate optimal policy is Ŵ ≡ B,

so define

(4.2) w(x, y, t) = Ex,yΦ(Xt − Y B
t ).

Now look at the HJB equation (with

W· =

∫ ·
0

CsdBs +

∫ ·
0

SsdB̃s

with C and S adapted and C2 + S2 = 1).
Assuming that v is C2,1:

(4.3) dv(Xt, Y
W
t , T − t) = (

1

2
σ2

1vxx + Ctσ1σ2vxy +
1

2
σ2

2vyy − vt)dt+ dMC
t ,

where MC is a martingale; then it follows that the HJB equation is:

inf
c∈[−1,1]

(
1

2
σ2

1vxx + cσ1σ2vxy +
1

2
σ2

2vyy − vt) = 0.

If we apply this to w we see that we want optimal c ≡ 1 (corresponding
to W = B), so it’s (nearly) necessary and sufficient that wxy ≤ 0. Again,
assuming that w is C2,1, we need only show that

IR ≡
∫ ∫

R

wxydxdy ≤ 0

for any rectangle R = [x, x′]× [y, y′].
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Now

IR = w(x′, y′, t)− w(x, y′, t)− w(x′, y, t) + w(x, y, t)

= E[Φ(Xt(x
′)− Y B

t (y′))− Φ(Xt(x
′)− Y B

t (y))

− Φ(Xt(x)− Y B
t (y′)) + Φ(Xt(x)− Y B

t (y))]

= −E[

∫ ∫
R′

Φ′′(u− v)dudv],

where R′ = [Xt(x), Xt(x
′)] × [Y B

t (y), Y B
t (y′)]. So, since Φ′′ ≥ 0 we are done

provided that Y B
t (y) ≤ Y B

t (y′) and Xt(x) ≤ Xt(x
′) whenever x < x′ and

y < y′. This follows for Y from the skip-free property for one-dimensional
strong solutions. For X we need to take the two solutions and paste them
when they collide to get the required property. �

One small problem: IS w a C2,1 function?
Trick: fix a finite square domain, freeze (X, Y ) on exit from this domain,

restrict controls to the interval

[−1 + ε, 1− ε]

then (PDEs result) the corresponding w is C2,1 so is the value function for
the revised problem. Now let ε→ 0 and the domain ↑ R2.

4.2 Tracking Problem 2: coupling

Now we seek (with the same X and Y as above) to find

(4.4) v(x, y, t) = inf
W∈V

Px,y(τ0(X − Y W ) > t).

Note that we have the boundary condition v(x, y, 0) = 1x 6=y and we stop the
problem on the diagonal x = y so that

v(x, x, t) = 0.

As in the previous problem, the HJB equation is

inf
c∈[−1,1]

(
1

2
σ2

1vxx + cσ1σ2vxy +
1

2
σ2

2vyy − vt) = 0.

Now coupling ideas suggest that mirror coupling might be best: i.e. to choose
W = −B (at least assuming that σ1 and σ2 have the same sign). Choosing
W = −B corresponds to c ≡ −1 in the HJB equation. So, set

ψ(x, y, t) = Px,y(τ0(X − Y −B) > t).
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Then, we want to show that the inf in the HJB equation is attained at -1
which means we want ψxy ≥ 0.

Example Suppose that σ1 ≡ 1, σ2 ≡ σ > 0.
Now

Xt − Y −Bt = (x− y) + (1 + σ)Bt.

So τ0 is the first hitting time by −B of the point x−y
1+σ

. It follows that (as-
suming w.l.o.g. that x > y)

ψ(x, y, t) = P (|Bt| <
x− y
1 + σ

) =
2√
2π

∫ x−y
(1+σ)

√
t

0

e−
u2

2 du.

Now

ψxy = k(x− y) exp
(
− (x− y)2

2(1 + σ)2t

)
,

for some constant k > 0 (and ψ is C2,1). This establishes (1) and (4) and
the optimality of mirror coupling.

16



4.3 Tracking Problem 3: ‘staying small’

We have the drift control setup of initial problem 1:

dXu
t = σdBt + utdt

with u ∈ [−a, a]. We seek to find

v(x, t) = inf
u
Exf(Xu

t ),

where f is C2, symmetric, increasing and bounded.
We still guess that the optimal control is that v is an increasing function

of |x| and hence to set ût = −a.sign(Xt).
The HJB equation is

inf
−a≤u≤a

1

2
σ2vxx + uvx − vt = 0,

with boundary condition v(x, 0) = f(x). Following our guess, let

w(x, t) = Exf(X û
t )

Standard arguments show that w is C2,1 except on {0}×R+, where wx = 0.
It follows that

(4.5)
1

2
σ2wxx − awx − wt = 0,

on x > 0 and so, from Tanaka’s generalisation of Ito’s formula, that w satisfies
the HJB equation (and is optimal) provided that w is increasing on R+.

How do we prove this?
Well, look at wx. It’s (fairly) clear, by differentiating (4.5), that wx

satisfies
1

2
σ2(wx)xx − a(wx)x− (wx)t = 0,

on R+ ×R+, with the boundary conditions wx = 0 on {0} ×R+, wx = f ′(x)
on R+ × {0} and wx → 0 as x ↑ ∞ (this follows from the fact that f is
bounded and continuous).

It follows from the strong minimum principle for parabolic operators that
wx has no negative minima on D ≡ (R+ × R+)o. But wx is non-negative on
the ‘boundary’ of D so it follows that wx is non-negative on R+ × R+.

Now we can approximate arbitrary increasing f by C2 bounded, increas-
ing f and so it follows that û achieves the stochastic minimum of the Xu

t .
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5 Optimal Stopping

5.1 The HJB equation

The Problem: we seek optional τ (i.e. τ is a stopping time) to achieve

sup
τ
Ex[

∫ τ

0

f(Xt)dt+ g(Xτ )],

where
dXt = σ(Xt)dBt + b(Xt)dt.

To see what we should do, Krylov’s trick is to allow randomised stopping
at a rate rt with 0 ≤ rt ≤ n. Thus

v(n)(x) = sup
predictable r

Ex[

∫ ∞
0

e−φ
r
t
(
f(Xt) + rtg(Xt)

)
dt],

where φt =
∫ t

0
rsds.

Then the HJB equation is

sup
r∈[0,n]

[Lv(n) + f − rv(n)] + rg = 0,

where L = 1
2

∑
i,j

ai,j
∂2

∂xi∂xj
+
∑
i

bi
∂v
∂xi
.

Clearly the supremum in the HJB equation is attained at r = 0 if v(n) > g
and at n if v(n) ≤ g, so the HJB equation is

Lv(n) + f + n(g − v(n))+ = 0.

Thus we ‘want to stop ’when v(n) ≤ g and continue otherwise, when Lv(n) +
f = 0.

Formally, if we let n→∞ then we see that we get

Lv + f ≤ 0

v ≥ g

and
Lv(n) + f = 0

whenever v > g.
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5.2 The Snell envelope

Given a process X satisfying weak integrability conditions, define

Vt = ess sup
optional τ≥t

E[Xτ |Ft].

Notice that by setting τ = t we see that Vt ≥ Xt a.s.
V is called the Snell envelope for X. Under weak conditions V is the

minimal supermartingale dominating X.

Theorem 6. Suppose that

Vt = ess sup
bounded optional τ≥t

E[Xτ |Ft]

(for example, if X is bounded below) and suppose that Ṽ is a process satisfying
the following three conditions:

(5) Ṽ ≥ X;

(6) Ṽ is a supermartingale;

(7) for every t, there is an optional τ ≥ t such that

E[Xτ |Ft] = Ṽt,

then
Ṽ = V.

Proof: take a bounded optional τ ≥ t, then (5), (6) and the optional
sampling theorem tell us that

Ṽt ≥ E[Ṽτ |Ft] ≥ E[Xτ |Ft] a.s.,

and since τ is arbitrary we see that

Ṽt ≥ Vt.

Conversely, (7) tells us that
Ṽt ≤ Vt a.s.

�
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5.3 Good lambda inequalities

Recall that the problem is to find the best constant, c, appearing in the
inequality

P (Xτ ≥ x, Yτ < y) ≤ cP (Xτ > z) for all stopping times τ,

where X and Y are increasing processes. We shall assume (for convenience)
that X is continuous and x > z.

Let us set (for each t ≥ 0):

St = inf{s ≥ 0 : Xs > t}
Tt = inf{s ≥ 0 : Xs ≥ t}

W λ ≡ Wt = 1(Xt≥x, Yt<y) − λ1(Xt>z)

= 1(t≥Tx, Yt<y) − λ1(t>Sz),

and suppose that we wish to optimally stop Wt.
This is as simple a non-trivial problem as is possible!
Notice that

Wt =


0 on [0, Sz]

−λ on ]Sz, Tx[

1(Yt<y) − λ on [Tx,∞[.

Now Y is increasing, so W is decreasing on [Tx,∞[ and so we must have
V = W on [Tx,∞[. Conversely, W is increasing on ]Sz, Tx], so we must have
‘Vt = E[VTx|Ft] on ]Sz, Tx]’, i.e.

Vt = E[WTx|Ft] = P (YTx < y|Ft)− λ on ]Sz, Tx].

Finally, W is constant on [0, Sz] so we must have

Vt = E[VSz |Ft] on [0, Sz].

From this it’s clear that the only time we have a choice is at time Sz
when we must choose to stop immediately or continue until time Tx. In
other words, the optimal stopping time τ must be of the form

τ = τA ≡ Sz1Ac + Tx1A
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for some event A ∈ FSz .
Now

E[WτA|FSz ] = (P (YTx < y|FSz)− λ)1A,

so, denoting by Eλ the FSz -measurable random variable

P (YTx < y|FSz)− λ,

it’s clear that an optimal choice of A is (Eλ > 0).
Thus, our candidate for V is Ṽ given by :

Ṽ =


E[E+

λ |Ft] on [0, Sz] ,

P (YTx < y|Ft)− λ on ]Sz, Tx[ ,

1(Yt<y) − λ on [Tx,∞[ .

Check: (5) Ṽ ≥ W is obvious; (6) Ṽ is a supermartingale and is bounded;
(7) we have explicitly exhibited τt such that Vt = E[Wτt|Ft], therefore Ṽ = V .

Application:

inf{c : P (XT ≥ x, YT < y) ≤ cP (XT > z) for all optional T}

= inf{λ : V λ
0 ≤ 0}.

But V λ
0 = E[E+

λ ], so
V λ

0 ≤ 0⇔ P (Eλ > 0) = 0

⇔
λ ≥ ess supP (YTx < y|FSz).

Thus the best constant is

c(x, y, z) = ess supP (YTx < y|FSz).

Theorem 7. Suppose that

c∗(β, δ)
def
= sup

λ>0
c(βλ, δλ, λ)

satisfies

kp
def
= inf

β>1,δ>0
βpc∗(β, δ) < 1,

then there exists a Cp (= inf
β>1,δ

βp

δp(1−βpc∗(β,δ))) such that

E[Xp
T ] ≤ CpE[Y p

T ] for all optional T.
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Corollary 8. For every p > 0 there is a Cp (which is O(p
1
2 )) such that for

all optional T :
E[(B∗T )p] ≤ CpE[T

p
2 ] ≤ C2

pE[(B∗T )p].

Proof: first take X = B∗ and Yt = t
1
2 , then

c(x, y, z) = ess supP (YTx < y|FSz) = ess supP (Tx < y2|FSz)
≤ ess supP (B∗y2 ≥ x|FSz) ≤ P (B∗y2 ≥ x− z),

the last inequality following from the fact that B∗ is a continuous sub-additive
functional of B. So

c(x, y, z) ≤ 4P (B1 ≥
x− z
y

) =
4√
2π

∫ ∞
x−z
y

e−u
2/2du

≤ k
y

x− z
exp(−(x− z)2

2y2
),

for a suitable choice of k. Thus

c∗(β, δ) ≤ k
δ

β − 1
exp(−(β − 1)2

2δ2
),

and it’s easy to check that

inf
β>1,δ

βp

δp(1− βpc∗(β, δ))
= O(p

1
2 ).

A similar argument works if we reverse the roles of B∗ and T
1
2 . �
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