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Some problems

I The secretary problem
I Bayesian sequential hypothesis testing
I the multi-armed bandit problem (competing treatments in

clinical trials)
I pricing American options
I best constants in inequalities between stochastic processes
I steering a diffusion to a goal or keeping a diffusion in a band
I finite fuel control problems
I optimal investment problems
I optimal coupling problems
I change point detection
I minimising shuttle time

This talk will focus on the Bellman approach.There are others,
but none so general except the Girsanov change of measure
approach.

Saul Jacka Applications of Optimal Stopping and Stochastic Control



Introduction
Optimal Stopping

Stochastic Control

Some problems
Some technology

(Sub- and super-)martingales and stopping times

X is a martingale if it represents a gambler’s fortune when they
play a fair gambling game. Thus even if their bet sizes will vary
depending on the history of the game,

E [Xt+s |Ft ] = Xt ,

for each s, t ≥ 0.

X is a sub/supermartingale if the game is
advantageous/disadvantageous, so

E [Xt+s |Ft ] ≥ or ≤ Xt .

A stopping time is a random time whose occurrence is
immediately detectable—thus the first time that X exceeds $100
is a stopping time, but the last time it exceeds $100 is NOT.
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The key interaction between these concepts is in the Optional
Sampling Theorem:

• (under suitable integrability conditions) these inequalities remain
valid if t and t + s are replaced by stopping times σ ≤ τ . So, in the
submartingale case

E [Xτ |Fσ] ≥ Xσ. and, in particular E [Xτ ] ≥ X0.

• if we add an increasing process to a martingale we get a
submartingale and if we subtract we get a supermartingale.
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Essential infimum and supremum: for any non-empty set C ,
ess infc∈CYc is defined as any r.v. L such that

• L ≤ Yc a.s. for every c ∈ C ;
• if Z ≤ Yc a.s. for every c ∈ C , then Z ≤ L a.s.

ess sup is defined analagously. These are just the appropriate
almost sure equivalents of sup and inf.

•Not to be confused with ess sup(X )
def
= inf{t : P(X > t) = 0}
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Ito’s lemma and stochastic integrals: suppose

Xt = x +

∫ t

0
HsdBs︸ ︷︷ ︸

martingale under integrability condns.

+

∫ t

0
µsds

where B is a 1-d Brownian motion. Further suppose that f is a
(piecewise) C 2,1,1 function and Y is continuous and increasing.
Then

f (Xt ,Yt , t) = f (X0,Y0, 0) +

∫ t

0
fx(Xs ,Ys , s)

dXs︷ ︸︸ ︷
(HsdBs + µsds)

+

∫ t

0
[
1
2
fxx(Xs ,Ys , s)H2

s + ft(Xs ,Ys , s)]ds

+

∫ t

0
fy (Xs ,Ys , s)dYs

• If fx has some positive jumps then need to add an increasing
process to RHS to correct this representation.
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Optimal Stopping: The generic problem is as follows: given a
stochastic process G ,

• find sup
τ∈T

E [Gτ ],

where T is the set of all stopping times.

Under suitable integrability assumptions we have the following
result:
Theorem: Define

St = ess supτ≥tE [Gτ |Ft ], (∗)

then S is the minimal supermartingale W such that Wt ≥ Gt a.s.
for all t.

S is called the Snell envelope of the (gains) process G
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Proof: Exercise:

• use the optional sampling theorem to show that any
supermartingale dominating G dominates S .
• use increasing constraint on candidate stopping times to

show S a supermartingale.
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Q: How do we identify the Snell envelope in practice?

• guess the optimal stopping times in (∗), calculate
corresponding payoffs and check that they give a
supermartingale.
• In a continuous diffusion setting, we can use Ito’s Lemma to

help. In conjunction, use smooth pasting.
• In discrete and finite time we have following recursive

characterisation:

Sn = max(Gn,E [Sn+1|Fn]).

This is just proved by backwards induction

Saul Jacka Applications of Optimal Stopping and Stochastic Control



Introduction
Optimal Stopping

Stochastic Control

Snell envelope
Identifying the Snell envelope
Change point detection
Good Lambda Inequalities

Problem: change point detection

• (Yn)n≥1 are iid with known density f∞
• (Zn)n≥1 are iid with known density f0
• θ is a non-negative r.v. (the change point)– not generally

observable.
• Xn = Yn1(n≤θ) + Zn1(θ<n).

We seek τ , the best estimate of θ under the following criteria

• the Average Detection Delay, ADD(τ)
def
= E [τ − θ|τ > θ] is

minimised
• subject to the constraint that the Probability of False

Alarm, PFA(τ)
def
= P(τ ≤ θ) ≤ α.
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So we seek

inf
µ≤α, τ : PFA(τ)=µ

E [(τ − θ)+]

1− µ
,

which gives rise to the Lagrangian

inf
τ
E [(τ − θ)+] + λP(τ ≤ θ).

This is not yet an optimal stopping problem.

Trick: E [(τ − θ)+] = E [
∑τ

m=1 P(θ < m|Fm)]
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Proof: E [(τ − θ)+] = E [
∞∑

m=1

1θ<m≤τ ]

= E [
∞∑

m=1

P(θ < m ≤ τ |Fm)]

= E [
∞∑

m=1

P(θ < m|Fm)1m≤τ ]

= E [
τ∑

m=1

P(θ < m|Fm)]

�
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It follows that we seek to solve the optimal stopping problem with
gains process

Gt =
t∑

m=1

P(θ < m|Fm)− λP(θ < t|Ft).

• The general solution is unknown.
• The case where θ is geometric and independent of the Y s and

Z s was solved by Shiryaev (see [6]). The optimum policy is to
stop the first time P(θ < n|Fn) ≥ k , for a suitable k .
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Good Lambda Inequalities: Here’s a simpler problem with the
same sort of structure for the gains process:

Gt = 1(Xt≥x∩Yt≤y) − λ1(Xt>z),

where X and Y are non-negative, continuous processes strictly
increasing to ∞, 0 < z < x and y is positive.

• problem might as well be discrete: setting
Tw

def
= inf{s : Xs ≥ w}, the only times at which we might

wish to stop are Tz and Tx (since G is 0 on [0,Tz ] and is
constant on (Tz ,Tx ] and decreasing after Tx).
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Thus

St =


Gt for t ≥ Tx ,

E [GTx |Ft ] = P(YTx ≤ y |Ft)− λ for Tz < t ≤ Tx ,

E [max(0,P(YTx ≤ y |FTz )− λ)|Ft ] for t ≤ Tz .

In particular, S0 = E [(P(YTx ≤ y |FTz )− λ)+] and so the best
constant λ appearing in the inequality

P(Xτ ≥ x ∩ Yτ ≤ y) ≤ λP(Xτ ≤ z)

is ess sup
(
P(YTx ≤ y |FTz )

)
. See ([2]) for details and applications.
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Stochastic Control.

Example:

• Xµ
t = x + Bt +

∫ t
0 µsds, where B is a standard Brownian

Motion
• we may choose the process µ under the constraint that
|µt | ≤ 1 for all t.
• seek to minimise

E [

∫ ∞
0

e−αt(Xµ
t )2dt].

.
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We generalise as follows:

• Dynamics: For each c ∈ C , a collection of control processes, X c

is a process taking values in some path space S .

• Problem: Our problem is to minimise E [J(X c , c)] for a given cost
function J : S × C → R.
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The Bellman principle
We’ll need the following definitions:

Definition: For each t ≥ 0 and each c ∈ C , define

C c
t = {d ∈ C : ds = cs for all s ≤ t}.

Definition For each t ≥ 0 and each c ∈ C , define

V c
t = ess infd∈Cc

t
E [J(X d , d)|Ft ].
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Now suppose that we have a functional L(·, ·, ·) acting on the
triples ((X c

s )0≤s≤t , (cs)0≤s≤t , t) with the following properties:

I

constant over Cc
t︷︸︸︷

Lc
t

def
= L((X c

s )0≤s≤t , (cs)0≤s≤t , t)
L1
→ Lc

∞ ≤ J(X c , c)
and

I Lc
· is a submartingale

then
Lc

t ≤ V c
t .

Moreover, if, in addition, there exists ĉ with ĉ ∈ C c
t such that

I (Lĉ
t+s)s≥0 is a martingale with Lĉ

∞ = J(X ĉ , ĉ),

then
Lc

t = V c
t .
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Problem: Bayesian Sequential Hypothesis Testing: (see [4] for
discrete case)

• (Xn)n≥1 are iid r.v.s with common density f .
• Know that f = f0 with prior probability p and f = f1 with

probability 1− p.
• At each time point t we may stop and declare that the

density is f0 or f1 or we may pay c to sample one more of
the X s.
• If we declare density f0 incorrectly, we lose L0 and if we

declare density f1 incorrectly, we lose L1.
• problem is to minimise our expected cost.

Saul Jacka Applications of Optimal Stopping and Stochastic Control



Introduction
Optimal Stopping

Stochastic Control

An example
Bellman principle
Bayesian Sequential Hypothesis Testing
Shuttling in minimal time

Dynamics A quick check shows that pt
def
= P(f = f0|X1, . . . ,Xt)

satisfies
pt =

p
p + (1− p)Λt

,

where

Λt =
t∏
1

f1(Xs)

f0(Xs)

is the Likelihood Ratio for the first t observations.

The performance functional J satisfies

J(X , τ,D) = cτ + pτL11(D=1) + (1− pτ )L01(D=0).

where τ is the stopping time and D is the decision.
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A randomisation argument shows that V0 is a concave function of
p which implies that the optimal strategy must be of the form

• stop and opt for f1 (D = 1) if p· has fallen below p∗,
• stop and opt for f0 (D = 0) if p· has risen above p∗,
• otherwise continue sampling.

Determination of p∗ and p∗ is, in general, an open problem.

• look at the continuous analogue, where Xt is a Brownian motion
with, under f0, no drift, and, under f1, constant drift µ.
Exercise: The process pt satisfies

dpt = −µpt(1− pt)dWt ,

where W is the (conditional) BM Xt − µ
∫ t
0 (1− ps)ds.
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Theorem:

V τ,D
t = Wt

def
=

{
ψ(pt) + ct t < τ,

pτL11(D=1) + (1− pτ )L01(D=0) + cτ τ ≤ t

where

ψ(p) =


pL1 for p ≤ a,

f (p)
def
= K (2p − 1) ln(1−p

p ) + C − Dp for a < p < b,

(1− p)L0 for b ≤ p,

and a, b, C and D are chosen so that

f (a) = aL1, f ′(a) = L1, f (b) = (1− b)L0, f ′(b) = −L0.

and K = 2c
µ2 . These values of a and b give p∗ and p∗.
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Proof: •Easy to check that f ′′ = − K
p2(1−p)2

, so is strictly concave
with f ′(0+) =∞ and f ′(1−) = −∞.
• so find unique values of C and D so that lines
y = L1p − C + Dp and y = L0(1− p)− C + Dp are tangential to
graph of K (2p − 1) ln(1−p

p ).
• tangency and concavity imply f (p) ≤ min(L0(1− p), (1− p)L1).
•Now, ψ is C 1 and piecewise C 2 and by Ito’s Lemma,

dWt = 1t<τ (ψ′(pt)dpt +
1
2
ψ′′(pt)µ2p2

t (1− pt)2dt + cdt)

+1t=τ (1D=0((1− pτ )L0 − ψ(pτ )) + 1D=1(pτL1 − ψ(pτ ))

= 1t<τ (ψ′(pt)dpt + c1p 6∈(a,b)dt)

+1t=τ (1D=0((1− pτ )L0 − ψ(pτ )) + 1D=1(pτL1 − ψ(pτ ))

which implies that W is a submartingale and is a martingale
when the control is as above.
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Problem: Shuttling in minimal time:

• problem is to control the drift of a Brownian motion (which
reflects at 0 and 1) so as to minimise the time it takes to
travel from 0 to 1 and back again. Can only choose drift
once at each level. The problem models one arising in
MCMC-with the level corresponding to temperature in a
“heat bath”.
• suppose that Xµ

t = x + Bt +
∫ t
0 µ(Xµ

s )ds, for each µ.
• we seek a function µ to minimise E0[τ1] + E1[τ0], where τz

denotes the first hitting time of x and the subscript on the
expectations denotes the starting point of X .
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• There’s no solution to the (dynamic) problem in the “classical”
sense but there is an obvious guess for the problem as stated:
µ ≡ 0!
• To formulate problem, we allow ourselves to choose µ

dynamically — but only once for each level. I.e., letting X ∗

denote the running supremum of the controlled process, we let

Xµ
t = x + Bt +

∫ t

0
µτX∗u

du.

Reparameterize using the scale function s, so for each control
µ, we define
• s ′µ(x) = exp(−2

∫ x
0 µτzdz),

• and define sµ(x) =
∫ x
0 s ′µ(u)du and Iµ(x) =

∫ x
0

du
s′µ(u) .
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Theorem: The optimal payoff process is given by

V µ
t = φ(Xt ,X ∗t , t),

where

φ(x , y , t) = t + 2
(√

s(y)I (y) + (1− y)
)2− 2

∫ x

v=0

∫ v

u=0

s ′(v)

s ′(u)
dudv .
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Proof:

• observation: if a, b > 0, then

inf
x>0

ax +
b
x

= 2
√
ab attained at x =

√
b
a
.

• Using Ito’s lemma, see that

dφ(Xt ,X ∗t , t) =
1
2
φxxdt + φxdXt + φydX ∗t + φtdt.

Now

φx = −2s ′(x)I (x)

andφxx = −2s ′′(x)I (x)− 2 =
s ′′(x)

s ′(x)
φx − 2

= −2µ(x)φx − 2,
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while
φt = 1.

So

1
2
φxxdt + φxdXt + φtdt

= −(µ(·)φx + 1)dt + µ(·)φxdt + µ(·)φxdBt + dt
= µ(·)φxdBt .

Now, recalling that I ′(x) = 1
s′(x) ,

φy = 2
(√

s(y)I (y) + (1− y)
)
×
(s ′(y)I (y) + 1

s′(y)s(y)

2
√

s(y)I (y)
− 1
)
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Using the observation, we see that φy ≥ 0 and

φy = 0 if s ′(y) =

√
s(y)

I (y)
.

The result follows, from Bellman’s principle. �

• in general, the corresponding control has a jump in s ′ so the
optimal control will have a singular drift.
• However, if we control optimally from time 0 then we can

calculate that s ′ is constant which corresponds to µ = 0.
• same general form works for discounted time to shuttle
• minimising probability shuttle time exceeds T is open problem
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