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Abstract. Assuming that the forward rates fu
t are semimartingales, we give

conditions on their components for the discounted bond prices to be martingales.

To achieve this we give sufficient conditions for the integrated processes f̄u
t =∫ u

0
fv

t dv to be semimartingales and identify their various components. We recover

the no-arbitrage conditions in well-known models in the literature, and finally,

we formulate a new random field model for interest rates and give its EMM

(no-arbitrage) condition.

1. Introduction

We consider a model for bond markets based on the forward rates, in which

forward rates are semimartingales. Heath, Jarrow and Morton (HJM) (1990,1992)

considered diffusion models for the forward rates, Shirakawa (1991) introduced

jumps into the model, and more general jump diffusion models were introduced by

Björk, Kabanov and Runggaldier (BKR) (1997) and Björk, Di Masi, Kabanov and

Runggaldier (BDMKR) (1997). Kennedy (1994) considered a Gaussian Markov

Field model for interest rates. A large part of these papers devoted attention

to finding no-arbitrage conditions in the models introduced. The semimartingale

model is the most general one if pricing is done by the principle of no-arbitrage, and

includes all of the above models as particular cases. The concept of “no-arbitrage”

or “no-free lunch” is appealing from the financial point of view, the models should

not allow for “free lunch”. The “no-arbitrage” concept is easy to define in simple

models of finitely many assets in discrete time, and the result known as the First

Fundamental Theorem of asset pricing asserts that “no-arbitrage” is equivalent to
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the existence of the Equivalent Martingale Measure (the EMM property), the mea-

sure under which the discounted security prices are martingales. It is harder to

define the concept of “no-arbitrage” in more general models, for example in BKR

(1997) and BDMKR (1997), this concept was defined by using measure-valued

portfolios and function-valued processes, to reflect the fact that in bond markets

there are infinitely many (continuum) traded securities (bonds parametrized by

their maturity). In continuous time the EMM is an essential assumption of the

models, see e.g. Harrison and Pliska (1981), Shiryaev (1999). Stricker (1990),

Delbaen and Schachermayer (1994) showed that in the models with finitely many

assets “no-free lunch with bounded risk” is equivalent to the EMM. They also

showed that the EMM property implies no-arbitrage. The semimartingale model

is the most general one with respect to no-arbitrage pricing, since if the security

price process is not a semimartingale then the market model admits arbitrage op-

portunities, Schachermayer (1993); on the other hand, if the security price process

is locally bounded and satisfies the no-free lunch with vanishing risk property for

simple integrands, then it must be a semimartingale, Delbaen and Schachermayer

(1994).

We do not go into definitions of “no-arbitrage” and its relation to the EMM

(the reader can find a list of results in Shiryaev (1999)), but rather assume the

EMM property and find its implications on the coefficients in the model. Often

in practice and in the literature the EMM conditions are called the “no-arbitrage”

conditions, we shall also use these terms interchangeably.

After giving the general result Theorem 2.3, we show how the EMM (no-arbitrage)

conditions in well-known models in the literature (HJM, Kennedy Gaussian field,

BDMKR) are recovered from our condition. Finally, we formulate a new random

field model for interest rates and give its EMM condition.

To obtain the EMM conditions one needs to work with integrated semimartin-

gales of forward rates f̄u
t =

∫ u

0
f v

t dv. To this end we give conditions for these

processes to be semimartingales and identify their various components. This con-

tribution of the paper is of independent interest (in some of the literature the

semimartingale property of the integrated semimartingales was simply assumed).
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2. Semimartingale model for forward rates

We assume the existence of a continuum of bonds P (t, T ), 0 ≤ t ≤ T , where T

is a fixed horizon. We also assume the existence of a jointly measurable collection

of infinitesimal forward rates (implied by the bond at t with delivery at u), f̆u
t =

f̆(t, u), 0 ≤ t ≤ u ≤ T .

Forward rates and bonds are related by the identity

P (t, u) = exp

{
−

∫ u

t

f̆(t, v)dv

}
.(2.1)

The bond market is said to have the EMM property if there exists a measure

Q ∼ P such that for each u ≤ T the discounted bond price process

Su
t = S(t, u) = exp

{
−

∫ t

0

f̆(s, s)ds

}
P (t, u)(2.2)

is a Q-martingale. As usual, we have assumed the existence of a filtered probability

space (Ω,F ,Ft, P ) satisfying the “usual conditions”.

We observe that the EMM condition can be restated as

S(t, u) = EQ

[
exp

(
−

∫ u

0

f̆(v, v)dv

)∣∣∣∣Ft

]
.(2.3)

As Musiela (1993) points out, the “HJM” parametrisation of the forward rate

curve is problematic in the sense that its domain of definition is not rectangular.

Musiela deals with this problem by introducing the time to maturity as an inde-

pendent variable. We suggest extending the definition of f̆ by letting, for all t and

all u,

f(t, u) = f̆(t ∧ u, u).(2.4)

Now (2.2) can be rewritten as

Su
t = exp

{
−

∫ u

0

f(t, v)dv

}
.(2.5)

It is intuitively clear that by applying the logarithmic transformation to Su
t and

then differentiating, we obtain that, under the EMM condition, fu
t , as a process in

t, must be a semimartingale. Before we embrace this model, we show that, under
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the EMM condition, the “discounted forward rate” process is a Q-martingale; as a

consequence, we establish that fu
t , must be a semimartingale. More precisely, let

φu
t = φ(t, u) = fu

t S
u
t .(2.6)

φu
t represents today’s “value” of the infinitesimal forward rate available at t for a

contract straddling u.

Theorem 2.1. Assume that φu
t ≥ 0, for all t and u, then the market has the

EMM property if and only if there exists Q ∼ P such that

(1) for Lebesgue almost all u ∈ [0, T ], φu
t , as a process in t, is a Q-martingale;

(2) for all t, u ∈ [0, T ],

∫ u

0

φ(t, v)dv is Q-integrable.

Proof of Theorem 2.1. First we observe that S(t, u) = exp

{
−

∫ u

0

f(t, v)dv

}
, as

a function of u, is Lebesgue almost everywhere differentiable, with

lim
ε→0

S(t, u+ ε)− S(t, u)

ε
= −f(t, u)S(t, u) = −φ(t, u) (Leb a.e.)

which, since S(t, 0) = 1, translates to

S(t, u) = 1−
∫ u

0

φ(t, v)dv.

Assuming (1) and (2), and using the conditional Fubini Theorem, we obtain

EQ [S(t, u)|Fs] = EQ

[
1−

∫ u

0

φ(t, v)dv

∣∣∣∣Fs

]
= 1−

∫ u

0

EQ[φ(t, v)|Fs]dv = 1−
∫ u

0

φ(s, v)dv = S(s, u).

Conversely, if Su is a Q-martingale, then by the conditional Fatou Lemma,

φ(s, u) = − lim
ε→0

S(s, u+ ε)− S(s, u)

ε

= lim
ε→0

1

ε
{EQ [S(t, u)|Fs]− EQ [S(t, u+ ε)|Fs]}

≥ EQ

[
lim
ε→0

S(t, u)− S(t, u+ ε)

ε

∣∣∣∣Fs

]
= EQ[φ(t, u)|Fs],

and φ(t, u) is a Q-supermartingale.
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On the other hand,

S(0, u) = EQ[S(u, u)]

= EQ

[
1−

∫ u

0

φ(u, v)dv

]
= 1−

∫ u

0

EQ[φ(u, v)]dv

≥ 1−
∫ u

0

φ(0, v)dv = S(0, u)(2.7)

so we must have equality in (2.7), from which we conclude that

EQ[φ(u, v)] = φ(0, v), (Leb a.e.)

which, together with the fact that φ(t, u) is a Q-supermartingale, implies that

φ(t, u) is a Q-martingale. �

Remark The positivity requirement in Theorem 2.1 can clearly be relaxed to

the assumption that the forward rates are, locally in t and uniformly in u, bounded

below.

Corollary 2.1. If the market has the EMM property then

φu
t = EQ

[
f(u, u) exp

(
−

∫ u

0

f(v, v)dv

)∣∣∣∣Ft

]
.

Corollary 2.2. If the market has the EMM property then Su
t , as a process in

t, is a semimartingale.

Proof of Corollary 2.2. It follows from Theorem 2.1 that, under the EMM con-

dition, fu
t =

φu
t

Su
t

is a semimartingale (with respect to Q, and therefore with respect

to P ). �

Next we write the canonical representation under Q of the semimartingale fu
t ,

as a process in t, for each u ≤ T ,

fu = fu
0 +Mu +Bu + h(x) ∗ (µu − νu) + (x− h(x)) ∗ µu,(2.8)

where Mu is a continuous local martingale, Bu is a predictable process of finite

variation, h(x) is a bounded function with compact support satisfying h(x) = x in
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a neighbourhood of zero (e.g. h(x) = xI|x|≤1), µ
u is the jump measure of fu, i.e.

µu(dt, dx) =
∑

{s:∆fu
s 6=0}

ε(s,∆fu
s )(dt, dx),

νu is the compensator of µu, and where we have used the notation

(J ∗ µ)t = (J(x) ∗ µ)t =

∫ t

0

∫
R
J(s, x)µ(ds, dx),

(see Liptser and Shiryaev p. 189, Jacod and Shiryaev p. 84).

As suggested by (2.1) and (2.2), the semimartingales fu will be integrated with

respect to u. For this to occur we shall first assume that all processes arising in

(2.8) are integrable in u. We shall not list the required assumptions here since in

order to carry out the calculations needed in this paper, more stringent conditions

will be imposed on these processes. These conditions will be stated in the results

below.

Thus assuming that they exist, we introduce the following integrated processes:

f̄u
t =

∫ u

0

f v
t dv, B̄

u
t =

∫ u

0

Bv
t dv, M̄

u
t =

∫ u

0

M v
t dv, µ̄

u(dt, dx) =

∫ u

0

µv(dt, dx)dv

(i.e. µ̄u([0, t] × A) =

∫ u

0

µv([0, t] × A)dv), ν̄u(dt, dx) =

∫ u

0

νv(dt, dx)dv. As a

general rule, a “bar” will signify an integration in u.

Also let mu(dt, dx) be the jump measure of f̄u
t , and nu(dt, dx) its compensator.

The following theorem gives sufficient conditions under which f̄u is a semimartin-

gale, as well as identifies its various components.

Theorem 2.2. Assume that

(M)

∫ T

0

〈Mu,Mu〉T du < +∞,

(FV)

∫ T

0

Au
Tdu < +∞, where Au denotes the total variation process of Bu,

(J1)

∫ T

0

(∫ t

0

∫
R
h(x)2νu(ds, dx)

)
du is locally integrable,

(J2)

∫ T

0

(∫ T

0

∫
R
|x− h(x)|µu(dt, dx)

)
du < +∞.

Then

f̄u = f̄u
0 + M̄u + B̄u +

∫ u

0

h ∗ (µv − νv)dv + (x− h(x)) ∗ µ̄u,(2.9)
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where M̄u is a continuous locally square integrable martingale with sharp bracket〈
M̄u, M̄u

〉
t
=

∫ u

0

∫ u

0

〈M v,Mw〉t dvdw,

B̄u is predictable and of finite variation, and

∫ u

0

h ∗ (µv − νv)dv is a purely dis-

continuous local martingale. Furthermore, M̄u is the continuous martingale part

of the semimartingale f̄u the jumps of which are given by

∆f̄u
t =

∫ u

0

∆f v
t dv.

Proof of Theorem 2.2. Propositions 4.2 and 4.6 of the Appendix deal with the first

part of the theorem. Here we show the decomposition of f̄u. SinceXv = h∗(µv−νv)

is a purely discontinuous local martingale, its square bracket is

[Xv, Xv]t =
∑
s≤t

[
h (∆f v

s )−
∫

R
h(x)νv({s} × dx)

]2

≤ 2
∑
s≤t

[
h (∆f v

s )2 +

(∫
R
h(x)νv({s} × dx)

)2
]

≤ 2
∑
s≤t

[
h (∆f v

s )2 +

∫
R
h(x)2νv({s} × dx)

]

≤ 2

{∫ t

0

∫
R
h(x)2µv(ds, dx) +

∫ t

0

∫
R
h(x)2νv(ds, dx)

}
,

where we have used the fact that νv({s} × R) ≤ 1.

Furthermore the local integrability of

∫ u

0

(∫ t

0

∫
R
h(x)2µv(dt, dx)

)
dv is equiva-

lent to that of

∫ u

0

(∫ t

0

∫
R
h(x)2νv(dt, dx)

)
dv and (J1) implies that of the process

in t

∫ u

0

[Xv, Xv]t dv. Proposition 4.7 now concludes that

∫ u

0

Xv
t dv is a purely

discontinuous local martingale with jumps given by

∫ u

0

∆Xv
t dv.

Finally since ∆Bv
t =

∫
R
h(x)νv({t} × dx), ∆f̄u

t =

∫ u

0

∫
R
h(x)νv({t} × dx)dv +∫ u

0

(
h(∆f v

t )−
∫

R
h(x)νv({t} × dx)

)
dv+

∫ u

0

(∆f v
t − h(∆f v

t )) dv =

∫ u

0

∆f v
t dv. �

Corollary 2.3. One may replace in the previous theorem (J1) by either
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(J1′)

∫ T

0

(∫ T

0

∫
R
h(x)2νu(dt, dx)

)
du < +∞, or

(J1′′)

∫ T

0

(∫ T

0

∫
R
|h(x)|νu(dt, dx)

)
du is locally integrable.

Proof of Corollary 2.3. Define the sequence of stopping times

Tn = inf{t,
∫ T

0

(∫ t

0

∫
R
h(x)2νu(dt, dx)

)
du > n}.

Then by monotone convergence,∫ T

0

(∫ Tn

0

∫
R
h(x)2νu(dt, dx)

)
du

= lim
ε↓0

∫ T

0

(∫ Tn−ε

0

∫
R
h(x)2νu(dt, dx)

)
du+

∫ T

0

∫
R
h(x)2νu({Tn} × dx)du

≤ n+ T sup
x
h(x)2

and (J1) follows. (J1′′) clearly implies (J1) since h(x)2 ≤ const× |h(x)|. �

Theorem 2.3. Assume (M), (FV), (J1), (J2) and

(D) (e−x + x− 1) ∗ nT is locally integrable.

Then the discounted bond price process Su
t given in (2.2) is a Q-martingale (i.e.

the bond market has the EMM property) if and only if

1

2

∫ u

0

∫ u

0

〈M v,Mw〉t dvdw

=

∫ u

0

Bv
t dv +

∫ u

0

((x− h(x)) ∗ νv)t dv −
(
(e−x + x− 1) ∗ nu

)
t
.(2.10)

Before we prove the above theorem, we make the following remarks.

Remarks

(1) Condition (J1′′) gives a meaning to the, otherwise undefined, processes h∗µu

and h ∗ νu. As a consequence, representation (2.8) simplifies to

fu = fu
0 +Mu + V u + x ∗ µu,(2.11)

where Mu is a continuous local martingale, V u is a continuous process of

finite variation, and µu is the jump measure of fu. The two representations
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then are related by

V u
t = Bu

t − (h ∗ νu)t,(2.12)

and condition (2.10) becomes

1

2

∫ u

0

∫ u

0

〈M v,Mw〉t dvdw

=

∫ u

0

V v
t dv +

∫ u

0

(x ∗ νv)t dv −
(
(e−x + x− 1) ∗ nu

)
t

(2.13)

Furthermore x ∗ µ̄u = x ∗ m̄u and x ∗ ν̄u = x ∗ n̄u which leads to the

following simplification of (2.13):

1

2

∫ u

0

∫ u

0

〈M v,Mw〉t dvdw =

∫ u

0

V v
t dv −

(
(e−x − 1) ∗ nu

)
t
.(2.14)

(2) If f̄u is continuous (nu = 0), then differentiating (2.10) in u gives∫ u

0

〈Mu,M v〉t dv = Bu
t + ((x− h(x)) ∗ νu)t .(2.15)

(3) If the fu are continuous, then V u
t is simply Bu

t , and condition (2.10) becomes

(by differentiating)

Bu
t = V u

t =

∫ u

0

〈Mu,M v〉t dv.(2.16)

(4) It is worth commenting on how and why the proposed model is different from

those of HJM or BDMKR. In fact to take full advantage of our model, the

filtration used has to be large enough to contain infinitely many Brownian

motions. Indeed, if the filtration in use reduces to being generated by

only finitely many Brownian motions, then our model would be, thanks to

the predictable representation property, no different to HJM or BDMKR.

For example, our model allows for processes driven by a Brownian sheet

rather than an n-dimensional Brownian motion. Likewise, the underlying

jump process allowed by our model could be as rich (information-wise) as

a Poisson sheet (or infinitely many independent Poisson processes).

(5) As Cont (1998) points out, the HJM model can be criticized for being

an infinite-dimensional diffusion driven by a finite number of independent

noises. The same criticism applies to the BDMKR model in that it is

an infinite-dimensional jump-diffusion process driven by a finite number of
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independent noises. Cont then suggests modelling the forward curves by an

infinite-dimensional diffusion driven by an infinite-dimensional Brownian

motion. The latter is defined by a family Wt of random linear functionals

on a Hilbert space H (say L2([0,+∞[)) satisfying

(a) ∀ψ ∈ H,
1

|ψ|
Wt(ψ) is a one-dimensional Brownian motion;

(b) ∀ψ, ψ′ ∈ H, if ψ⊥ψ′, then the Brownian motions Wt(ψ) and Wt(ψ
′)

are independent.

We emphasize here that the Brownian sheet W introduced in Example 3.4

encompasses such an infinite-dimensional noise. One has only to set

Wt(ψ) =

∫ +∞

0

ψ(u)W (t, du).

Proof of Theorem 2.3. f̄u
t can be written as

f̄u = f̄u
0 + M̄u + B̄u + h ∗ (µ̄u − ν̄u) + (x− h(x)) ∗ µ̄u,(2.17)

where M̄u is a continuous locally square integrable martingale, B̄u is predictable

and locally integrable, h ∗ (µ̄u − ν̄u) is a purely discontinuous local martingale,

and ν̄u compensates µ̄u. Note that M̄u is the continuous martingale part of the

semimartingale f̄u.

Combining (2.2) with (2.1) and (2.4), leads to

Su
t = Su

0 exp

(
−

∫ u

0

f(t, v)dv

)
= Su

0 exp
(
− f̄u

t

)
.(2.18)

By Itô’s formula

dSu
t = −Su

t−

(
df̄u

t −
1

2
d

〈
M̄u, M̄u

〉
t
−

[
e−∆f̄u

t + ∆f̄u
t − 1

] )
.

Hence Su is the stochastic exponential of the process

dXu
t = −df̄u

t +
1

2
d

〈
M̄u, M̄u

〉
t
+ d

(
(e−x + x− 1) ∗mu

)
t
,

and as such is a local martingale if and only if Xu itself is a local martingale.

Using (2.17), we can see that this happens if and only if

dB̄u
t −

1

2
d

〈
M̄u, M̄u

〉
t
+ d

(
(x− h(x)) ∗ µ̄u

)
t
− d

(
(e−x + x− 1) ∗mu

)
t

(2.19)

is a local martingale.
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Making use of (J2) and (D), we see that, for Su to be a local martingale, it is

necessary and sufficient that the process

dB̄u
t −

1

2
d

〈
M̄u, M̄u

〉
t
+ d

(
(x− h(x)) ∗ ν̄u

)
t
− d

(
(e−x + x− 1) ∗ nu

)
t

(2.20)

is a local martingale. But this process is predictable and of finite variation, therefore

it must be zero, and we obtain condition (2.10). �

3. Applications

This section deals with existent models (Examples 4.1 to 3.3) by recovering the

results concerned from our general approach. It also presents a new family of

models (Example 3.6) which we call “Gaussian and Poisson random fields model”.

For clarity of the exposition, we shall introduce this model step by step. First,

we study a basic Gaussian random field model (Example 3.4). Next, we look at

the basic Poisson random field model (Example 3.5). Then combine the two for a

study of the general model.

Example 3.1. (HJM model) In the HJM model it is assumed that the forward

rates satisfy a diffusion-type stochastic differential equation in t for any t ≤ u ≤ T ,

df(t, u) = α(t, u)dt+ σ(t, u)dW (t),(3.1)

where W (t) is the standard Brownian motion. Using convention (2.4), we extend

this model to all t, u ∈ [0, T ] by setting α(t, u) = σ(t, u) = 0, for t > u.

It is clear that (3.1) is a particular case of (2.8) with the martingale and finite-

variation parts as given below and nil jump part;

Mu
t =

∫ t

0

σ(s, u)dW (s) Bu
t =

∫ t

0

α(s, u)ds.(3.2)

Now

〈Mu,M v〉t =

∫ t

0

σ(s, u)σ(s, v)ds,

and our condition (M) becomes∫ T

0

∫ u

0

σ(t, u)2dtdu =

∫ T

0

〈Mu,Mu〉T du < +∞.

While this is more restrictive than condition C1 of HJM (p. 80) which only requires

finiteness (not integrability) of
∫ u

0
σ(t, u)2dt, it makes HJM’s unpleasant condition
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C3 (p. 82) redundant. Theorem 2.10 now states that a necessary and sufficient

condition for the existence of an equivalent martingale measure is, for all t ≤ u,∫ t

0

α(s, u)ds =

∫ u

0

∫ t

0

σ(s, u)σ(s, v)dsdv.

Differentiating in t, we recover the no-arbitrage condition for this model derived

by Heath, Jarrow and Morton (1992):

α(t, u) = σ(t, u)

∫ u

t

σ(t, v)dv.(3.3)

Example 3.2. (Gaussian random field model, Kennedy 1994.) Consider the

Gaussian random field model for forward rates

f(t, u) = f(0, u) + V u
t +Mu

t .(3.4)

HereMu
t = M([0, t]×[0, u]) whereM is a Gaussian random measure with covariance

function C(s, t, u, v). Also, for each u, the V u
t ’s are deterministic, continuous and

of finite variation. Note that the Mu
t ’s are continuous Gaussian martingales such

that E(Mu
s M

v
t ) = Cov(Mu

s ,M
v
t ) = C(s, t, u, v) which is a function of (s∧ t, u∧ v).

In this case the f(t, u) form a family of continuous semi-martingales.

Now

〈Mu,M v〉t = E(Mu
t M

v
t ) = C(t, t, u, v).

Recall that fu
t = fu

t∧u, and we recover from our condition (2.15) Kennedy’s (1994)

no-arbitrage condition,

V u
t =

∫ u

0

C(t ∧ v, t ∧ v, u, v)dv.(3.5)

Example 3.3. (Jump-diffusion BKR, BDMKR model) In this model it is as-

sumed that the forward rates satisfy a jump-diffusion stochastic differential equa-

tion (see BDMKR assumption 5.1) in t for any u ≤ T , (t ≤ u)

df(t, u) = α(t, u)dt+ σ(t, u)dW (t) +

∫
IR

δ(t, x, u)(λ(dt, dx)− l(dt, dx)),(3.6)

where W (t) is the standard Brownian motion, λ(dt, dx) is a jump measure of a

semimartingale, l(dt, dx) is its continuous compensator, and the coefficients α(t, u),
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σ(t, u) and δ(t, x, u) are continuous in u and predictable in t, satisfying the following

conditions for all t ≤ u ≤ T :

∫ u

0

(∫ u

t

|α(s, v)|dv
)
ds <∞∫ u

0

(∫ u

t

|σ(s, v)|2dv
)
ds <∞(3.7) ∫ u

0

∫
IR

(∫ u

t

|δ(s, x, v)|2dv
)
l(ds, dx) <∞.

Although this model may seem similar to equation (2.8), there are fundamental

differences which we underline next. First note that δ(t, x, u)λ(dt, dx) is not the

jump measure of fu
t ; it may not even be integer-valued and therefore not a jump

measure. This model (3.6) generalizes the HJM model by adding a jump compo-

nent, but in both cases the processes fu
t are driven by the same Brownian motion

W (t) and the dependence on u is modelled by taking the diffusion coefficient σ(t, u)

to be a function of u. Similarly, in BKR and in BDMKR the jumps of all processes

fu
t are modelled by the same underlying jump process with jump measure λ(dt, dx)

and the dependence on u is modelled by taking the jump coefficient δ(t, x, u) to be

a function of u as well. Our model, on the other hand, allows the driving processes

(the continuous part as well as the jump part) to depend on u.

Using convention (2.4), we can extend this model to all t, u ∈ [0, T ] by setting

α(t, u) = σ(t, u) = δ(t, x, u) = 0, for t > u.

First we identify the various parameters appearing in our model in terms of those

appearing in this model. Let ξt be the underlying jump process with jump measure

λ(dt, dx), then ∆fu
t = 1(∆ξt 6=0)δ(t,∆ξt, u), and

µu([0, t]× A) =
∑
s≤t

1A(∆fu
s )1(∆fu

s 6=0)

=
∑
s≤t

1A(δ(s,∆ξs, u))1(∆ξs 6=0) =

∫ t

0

∫
IR

1A(δ(s, x, u))λ(ds, dx).(3.8)

Also
∑
s≤t

|∆fu
s | =

∫ t

0

∫
IR

|δ(s, x, u)|λ(ds, dx), so that the integrability of δ(s, x, u)

with respect to λ(ds, dx), assumed by (3.6), implies that the jumps of fu are
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summable and therefore that the simplified model of (2.11) applies. Now the semi-

martingale fu
t −

∑
s≤t

∆fu
s is continuous and therefore special. Identifying the con-

tinuous martingale parts and the continuous finite-variation parts, we find that

Mu
t =

∫ t

0

σ(s, u)dW (s) and V u
t =

∫ t

0

α(s, u)ds−
∫ t

0

∫
IR

δ(s, x, u)l(ds, dx).

The final step in our identification procedure is the specification of the compen-

sator νu. For any predictable J(t, x) ≥ 0,

E

[∫ t

0

∫
IR

J(s, x)νu(ds, dx)

]
= E

[∫ t

0

∫
IR

J(s, x)µu(ds, dx)

]
= E

[∫ t

0

∫
IR

J(s, δ(s, x, u))λ(ds, dx)

]
= E

[∫ t

0

∫
IR

J(s, δ(s, x, u))l(ds, dx)

]
,

so that

νu([0, t]× A) =

∫ t

0

∫
IR

1A(δ(s, x, u))l(ds, dx).(3.9)

We will also need the jump measure of the integrated process. The fact that the

processes fu are driven by the same Brownian motion (i.e. W (t)), for the martin-

gale part, the same jump process (i.e. ξt), for the jump part, and the same process

of finite variation (i.e. t and l(dt, dx)), and taking into account the integrability

conditions given in (3.7), we can write with the convention that a “bar” signifies

an integration of that quantity with respect to u, that

df̄(t, u) = ᾱ(t, u)dt+ σ̄(t, u)dW (t) +

∫
IR

δ̄(t, x, u)(λ(dt, dx)− l(dt, dx)).(3.10)

This automatically provides us with the jumps of f̄u,

∆f̄u
t = 1(∆ξt 6=0)δ̄(t,∆ξt, u),

and ultimately with the jump measure mu,

mu([0, t]× A) =

∫ t

0

∫
IR

1A(δ̄(s, x, u))λ(ds, dx),

and its compensator nu,

nu([0, t]× A) =

∫ t

0

∫
IR

1A(δ̄(s, x, u))l(ds, dx).
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Before we are able to apply Theorem 2.3 we need to check that conditions (M),

(FV), (J1) and (J2) are satisfied. Conditions (FV) and (M) are nothing but re-

spectively the first and second parts of 3.7. Using (3.9), we rewrite the third part

of (3.7) as

∫ u

t

(∫ u

0

∫
IR

x2νv(ds, dx)

)
dv < +∞. (J1′) immediately follows.

Thus condition (2.10) becomes

1

2

∫ t

0

σ̄2(s, u)ds =

∫ t

0

ᾱ(s, u)ds−
∫ t

0

∫
IR

(
e−δ̄(s,x,u) + δ̄(s, x, u)− 1

)
l(ds, dx),

which is the condition obtained by BDMKR (see BDMKR equation (5.15) and note

that D corresponds to −δ̄, and a to
1

2
σ̄2 − ᾱ). Furthermore, in the particular case

where l(dt, dx) = kt(dx)dt, then differentiation yields the condition

1

2
σ̄2(t, u) = ᾱ(t, u)−

∫
IR

(
e−δ̄(t,x,u) + δ̄(t, x, u)− 1

)
kt(dx),

which is condition (5.16) in BMDKR. Further, differentiating with respect to u we

obtain condition ( see also (24) of BKR)

α(t, u) = σ(t, u)σ̄(t, u) +

∫
IR

δ(t, x, u)
(
1− e−δ̄(t,x,u)

)
kt(dx).

Example 3.4. (Basic Gaussian Random field model.)

Assume that

fu
t = fu

0 + V u
t +

∫ t

0

∫ u

0

σ(s, v)W (ds, dv),(3.11)

where σ(t, u) is deterministic, W (t, u) is a Brownian sheet, and for any fixed u, V u
t

is finite-variation and continuous.

W is a Gaussian random measure on R2
+ and thus, for any pair (A,B) of disjoint

Borel sets in R2
+, W (A) and W (B) are independent zero-mean Gaussian random

variables with variances Leb(A) and Leb(B).

We shall impose the following assumption on σ(t, u):∫ T

0

∫ T

0

∫ u

0

σ(s, v)2dvdsdu < +∞.

As we will see later, this is nothing but condition (M). We shall also assume that

condition (FV) is satisfied. That is, if Au is the total-variation process of V u, then∫ T

0

Au
Tdu < +∞.
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σ being deterministic, M v
t =

∫ t

0

∫ v

0

σ(s, w)W (ds, dw) is a Gaussian martingale

with variance

∫ t

0

∫ v

0

σ(s, w)2dsdw. Furthermore, for v < v′, M v′
t can be written as

the sum of the two independent random variablesM v
t and

∫ t

0

∫ v′

v

σ(s, w)W (ds, dw).

It follows that〈
M v,M v′

〉
t
=

〈
M v∧v′ ,M v∧v′

〉
t
=

∫ t

0

∫ v∧v′

0

σ(s, w)2dwds,

and the EMM condition for this model is given by

1

2

∫ u

0

∫ u

0

∫ t

0

∫ v∧v′

0

σ(s, w)2dwdsdvdv′ =

∫ u

0

V v
t dv.

Differentiating with respect to u, we obtain the following EMM condition:∫ u

0

∫ t

0

∫ v

0

σ(s, w)2dwdsdv = V u
t .(3.12)

Note that Kennedy’s condition (see Example 4.2) can be recovered from the

above by noting that the covariance function C(s, t, u, v) =

∫ s∧t

0

∫ u∧v

0

σ(s′, v′)2ds′dv′.

The no-arbitrage condition in the SPDE model (Hamza and Klebaner (1995))

can also be easily recovered from (3.12).

Example 3.5. (Basic Poisson Random field model.)

Assume that

fu
t = fu

0 + V u
t +

∫ t

0

∫ u

0

λ(s, v)N(ds, dv),(3.13)

where N(t, u) is a Poisson sheet, λ(s, v) is deterministic, and for any fixed u, V u
t is

of finite variation, continuous and satisfies condition (FV).

As for the Brownian sheet, N is a Poisson random measure on R2
+ such that,

for any pair (A,B) of disjoint Borel sets in R2
+, N(A) and N(B) are independent

Poisson random variables with means Leb(A) and Leb(B).

We shall impose the following assumption on λ(s, v):∫ T

0

∫ T

0

∫ u

0

|λ(s, v)|dvdsdu < +∞.

As we will see later, this is nothing but conditions (J1′′) and (J2) combined.
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In the sequel, u is fixed. Let (T1, U1), (T2, U2), . . . be the random points defining

the restriction of the Poisson sheet N to [0, u] × [0, u]. The numbering of this

sequence will be such that Tn < Tn+1. Let, for v ≤ u,

N v
t = N([0, t]× [0, v]), Zv

t =

∫ t

0

∫ v

0

λ(s, w)N(ds, dw) =
∑

n

λ(Tn, Un)1Tn≤t1Un≤u.

Then, with

U(t) = Un, for Tn ≤ t < Tn+1,

we can write that

∆f v
t = ∆Zv

t = λ(t, U(t))∆N v
t = λ(t, U(t))1U(t)≤v∆N

u
t .

Note that if ∆N v
t = 1 then ∆Nu

t = 1 for each u ≥ v. Since Zv
t (as a process in t)

has independent increments, the compensator of its jump measure is deterministic.

This statement is obtained by a monotone-class argument identical to that of Jacod

and Shiryaev p. 71. In the computation below, we use the fact that N v
s , as a process

in v, is Poisson, and therefore that the conditional law of U(s) given the entire path

of Nu
θ (as a process in θ), is uniform on the interval [0, u].

νv([0, t]× A) = E[µv([0, t]× A)] =
∑
s≤t

P[∆Zv
s ∈ A∗] (A∗ = A \ {0})

=
∑
s≤t

P[λ(s, U(s))1U(s)≤v ∈ A∗,∆Nu
s 6= 0]

=
∑
s≤t

E
[
P[λ(s, U(s))1U(s)≤v ∈ A∗|Nu

θ , θ ≥ 0]1∆Nu
s 6=0]

]
=

∑
s≤t

E

[
1

u

∫ u

0

1w≤v1A∗(λ(s, w))dw1∆Nu
s 6=0

]

=
1

u

∫ v

0

E

[∑
s≤t

1A∗(λ(s, w))∆Nu
s

]
dw

=
1

u

∫ v

0

E

[∫ t

0

1A∗(λ(s, w))dNu
s

]
dw

=
1

u

∫ v

0

∫ t

0

1A∗(λ(s, w))udsdw

=

∫ t

0

∫ v

0

1A∗(λ(s, w))dwds.
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It follows that for any φ,

(φ ∗ νv)t =

∫ t

0

∫ v

0

φ∗(s, λ(s, w))dwds,(3.14)

where φ∗(s, x) = φ(s, x)1x 6=0. Note that φ∗(s, x) = φ(s, x) if φ(s, 0) = 0.

We now turn to the jump measure of the integrated process and notice that, V̄ u

being continuous, the jumps of f̄u are those of Z̄u, which we now evaluate.

Z̄u
t =

∫ u

0

(∫ t

0

∫ v

0

λ(s, w)N(ds, dw)

)
dv =

∫ t

0

∫ u

0

(u− w)λ(s, w)N(ds, dw).

Its jump measure can thus be obtained by simply replacing λ(s, w) by (u−w)λ(s, w)

in (3.14). We find that for any deterministic φ,

(φ ∗ nu)t =

∫ t

0

∫ u

0

φ∗(s, (u− w)λ(s, w))dwds.(3.15)

Applying (2.13), we find the following EMM condition:∫ u

0

V v
t dv +

∫ u

0

(x ∗ νv)tdv =
(
(e−x + x− 1) ∗ nu

)
t

=

∫ t

0

∫ u

0

(
e−(u−w)λ(s,w) + (u− w)λ(s, w)− 1

)
dwds

=

∫ t

0

∫ u

0

e−(u−w)λ(s,w)dwds+

∫ u

0

(x ∗ νv)tdv − tu,

that is ∫ u

0

V v
t dv =

∫ t

0

∫ u

0

e−(u−w)λ(s,w)dwds− tu.

Differentiating with respect to u gives

V v
t = −

∫ t

0

∫ u

0

λ(s, v)e−(u−v)λ(s,v)dvds.(3.16)

Example 3.6. (Gaussian and Poisson Random field model.)

Assume that

fu
t = fu

0 + V u
t +

∫ t

0

Hu
s

∫ u

0

σ(s, v)W (ds, dv) +

∫ t

0

Ks

∫ u

0

λ(s, v)N(ds, dv),(3.17)

where σ(s, v) and λ(s, v) are deterministic, W (t, u) is a Brownian sheet, N(t, u) is

a Poisson sheet, and for any fixed u, V u
t is finite variation and continuous, and Hu

t

and Kt are predictable.
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Theorem 3.1. The EMM condition for this model is given by

∫ u

0

∫ t

0

Hu
sH

v
s

∫ v

0

σ(s, w)2dwdsdv = V u
t +

∫ t

0

Ks

∫ u

0

λ(s, v)e−(u−v)Ksλ(s,v)dvds.

(3.18)

When there is no continuous martingale part (σ = 0 or H = 0), (3.18) simplifies

to

V u
t = −

∫ t

0

Ks

∫ u

0

λ(s, v)e−(u−v)Ksλ(s,v)dvds.

In the absence of jumps (λ = 0), (3.18) simplifies to∫ u

0

∫ t

0

Hu
sH

v
s

∫ v

0

σ(s, w)2dwdsdv = V u
t .

Proof of Theorem 3.1. Let Lu
t =

∫ t

0

∫ u

0

σ(s, v)W (ds, dv), so that

Mu
t =

∫ t

0

Hu
s dL

u
s .

The properties of the Gaussian martingale Lu
t were discussed in Example 3.4. They

imply that 〈
Mu,Mu′

〉
t
=

∫ t

0

Hu
sH

u′

s

∫ u∧u′

0

σ(s, v)2dvds.(3.19)

The jump part of f v
t can be expressed in terms of the process

Zv
t =

∫ t

0

∫ v

0

λ(s, w)N(ds, dw)

introduced in Example 3.5 as

Y v
t =

∫ t

0

KsdZ
v
s .

It immediately follows, that with the notations of Example 3.5, the jumps of f v
t

are given by

∆f v
t = ∆Y v

t = Kt∆Z
v
t = Ktλ(t, U(t))1U(t)≤v∆N

u
t .

The compensators νu and nu are then found to be

νu([0, t]× A) =

∫ t

0

∫ u

0

1A∗ (Ksλ(s, v)) dvds,

nu([0, t]× A) =

∫ t

0

∫ u

0

1A∗ ((u− v)Ksλ(s, v)) dvds.
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Now the result is obtained by differentiating (2.14). �

4. Appendix

In the sequel, we assume given a stochastic basis (Ω, (Ft)t≥0,P) on which M v
t

and Bv
t are families, indexed by v ≤ u, of local martingales and processes of finite

variation respectively. Let Av
t be the total variation process of Bv

t and suppose

that for almost every v ≤ u, Bv
0 = 0. We also assume given a family of random

measures µv with compensators νv. Results on a finite horizon [0, T ] immediately

follow by stopping at T .

Proposition 4.1. Suppose that Bv
t is a family of increasing processes for which∫ u

0

Bv
t dv < +∞. Then B̄u

t =

∫ u

0

Bv
t dv is an increasing process and ∆B̄u

t =∫ u

0

∆Bv
t dv.

Proof of Proposition 4.1. By monotone convergence we see that B̄u
t− =

∫ u

0

Bv
t−dv.

The result immediately follows. �

Proposition 4.2. Suppose that

∫ u

0

Av
t dv < +∞. Then B̄u

t =

∫ u

0

Bv
t dv is a

process of finite variation and ∆B̄u
t =

∫ u

0

∆Bv
t dv. If for almost every v ≤ u, Bv

is predictable then so is B̄u.

Furthermore, if

∫ u

0

Av
t dv is locally integrable and Cv

t denotes the compensator (or

dual predictable projection) of Bv
t , then the compensator of B̄u

t is C̄u
t =

∫ u

0

Cv
t dv.

Proof of Proposition 4.2. Bv
t = (Av

t + Bv
t ) − Av

t is a measurable decomposition

of Bv
t as a difference of two increasing processes. Since |Bv

t | ≤ Av
t , the integrability

condition on V v
t implies that B̄u

t =

∫ u

0

Bv
t dv =

∫ u

0

(Av
t + Bv

t )dv −
∫ u

0

Av
t dv is a

process of finite variation as a difference of two increasing processes. The jumps of

B̄u
t are obtained by applying proposition 4.1 to Av

t +Bv
t and Av

t .

Since the Cv
t ’s are predictable, then the same goes for the approximating sums

of C̄u
t . Consequently C̄u

t , as a limit of predictable processes, is predictable itself.

Because the total variation of Cv is smaller than the compensator of Av, the

local integrability of

∫ u

0

Av
t dv and the above imply that C̄u

t is of finite variation.

The rest follows by Fubini’s theorem. �
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Proposition 4.3. ν̄u(dt, dx) =
∫ u

0
νv(dt, dx)dv is the compensator of µ̄u(dt, dx).

Proof of Proposition 4.3 Since a point-wise limit of predictable processes is pre-

dictable, ν̄u(dt, dx) =
∫ u

0
νv(dt, dx)dv is predictable. Let H(t, x) ≥ 0 be pre-

dictable. Then, by Fubini’s theorem and the definition of compensators,

E
( ∫ ∞

0

∫
IR

H(t, x)µ̄u(dt, dx)
)

= E
( ∫ u

0

( ∫ ∞

0

∫
IR

H(t, x)µv(dt, dx)
)
dv

)
=

∫ u

0

E
( ∫ ∞

0

∫
IR

H(t, x)µv(dt, dx)
)
dv

=

∫ u

0

E
( ∫ ∞

0

∫
IR

H(t, x)νv(dt, dx)
)
dv

= E
( ∫ u

0

( ∫ ∞

0

∫
IR

H(t, x)νv(dt, dx)
)
dv

)
= E

( ∫ ∞

0

∫
IR

H(t, x)ν̄u(dt, dx)
)
,

and the result is proved. �

Proposition 4.4. Suppose that for almost every v ≤ u, M v
t is a martingale and

that for all t, E
[∫ u

0

|M v
t |dv

]
< +∞. Then M̄u

t =

∫ u

0

M v
t dv is a martingale and

∆M̄u
t =

∫ u

0

∆M v
t dv.

Proof of Proposition 4.4. A simple use of Fubini’s theorem shows that for s < t,

E[M̄u
t |Fs] = E

[∫ u

0

M v
t dv|Fs

]
=

∫ u

0

E[M v
t |Fs]dv =

∫ u

0

M v
s dv = M̄u

s . In other

words, M̄u
t is a martingale.

Now recall that for any martingaleMt,Mt− = E[Mt|Ft−]. Thus M̄u
t− = E[M̄u

t |Ft−] =

E
[∫ u

0

M v
t dv|Ft−

]
=

∫ u

0

E[M v
t |Ft−]dv =

∫ u

0

M v
t−dv and the result follows. �

The next proposition requires the following lemma. It is known to hold for

continuous local martingales (see Revuz and Yor, p. 120).

Lemma 4.1. Let M and N be two local martingales, denote by ≺ M,N � the

total variation process of [M,N ]. Then

≺M,N �t≤ 2
√

[M,M ]t [N,N ]t.
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Proof of Lemma 4.1. It follows from [M,N ]t = 〈M c, N c〉t +
∑
s≤t

∆Ms∆Ns, that

≺M,N �t ≤ ≺M c, N c �t +
∑
s≤t

|∆Ms||∆Ns|

≤
√
〈M c,M c〉t 〈N c, N c〉t +

√∑
s≤t

(∆Ms)2
∑
s≤t

(∆Ns)2

≤ 2
√

[M,M ]t [N,N ]t.

�

Proposition 4.5. Suppose that for almost every v ≤ u, M v
t is a (square inte-

grable) martingale such that E
[∫ u

0

〈M v,M v〉∞ dv

]
< +∞. Then M̄u

t =

∫ u

0

M v
t dv

is a square integrable martingale and

〈
M̄u, M̄u

〉
t
=

∫ u

0

∫ u

0

〈M v,Mw〉t dvdw.(4.1)

Proof of Proposition 4.5. First note that for any t, both E
[
(M̄u

t )2
]
and E

[∫ u

0

|M v
t |dv

]2

are less than or equal to

E

[(∫ u

0

|M v
t |dv

)2
]

= E
[∫ u

0

∫ u

0

|M v
t M

w
t |dvdw

]
=

∫ u

0

∫ u

0

E[|M v
t M

w
t |]dvdw

≤
∫ u

0

∫ u

0

E
[
(M v

t )2
]1/2 E

[
(Mw

t )2
]1/2

dvdw =

(∫ u

0

E
[
(M v

t )2
]1/2

dv

)2

≤ u

∫ u

0

E
[
(M v

t )2
]
dv = u

∫ u

0

E [〈M v,M v〉t] dv

≤ uE
[∫ u

0

〈M v,M v〉∞ dv

]
,

which is finite. This and Proposition 4.4 establish that M̄u
t is a square-integrable

martingale. Its sharp bracket is obtained as follows. First, Lemma 4.1 shows that

the total variation of the process [M v,Mw]t is less than or equal to 2
√

[M v,M v]t [Mw,Mw]t.

Since

E
[∫ u

0

[M v,M v]∞ dv

]
= E

[∫ u

0

〈M v,M v〉∞ dv

]
< +∞
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and ∫ u

0

∫ u

0

√
[M v,M v]t [Mw,Mw]tdvdw =

(∫ u

0

√
[M v,M v]tdv

)2

≤ u

∫ u

0

[M v,M v]t dv,

it follows from Proposition 4.2 that

∫ u

0

∫ u

0

[M v,Mw]t dvdw is an integrable process

of finite variation, the compensator of which is

∫ u

0

∫ u

0

〈M v,Mw〉. Finally, let τ be

a finite stopping time. Then

E
[
(M̄u

τ )2
]

= E
[∫ u

0

∫ u

0

M v
τM

w
τ dvdw

]
=

∫ u

0

∫ u

0

E[M v
τM

w
τ ]dvdw

=

∫ u

0

∫ u

0

E [[M v,Mw]τ ] dvdw

= E
[∫ u

0

∫ u

0

[M v,Mw]τ dvdw

]
= E

[∫ u

0

∫ u

0

〈M v,Mw〉τ dvdw
]
,

which shows (4.1) and completes the proof. �

Proposition 4.6. Suppose that for almost every v ≤ u, M v
t is continuous and

that for all t,

∫ u

0

〈M v,M v〉t dv < +∞. Then M̄u
t =

∫ u

0

M v
t dv is a locally square-

integrable martingale and (4.1) holds.

Proof of Proposition 4.6. Let Tn = inf{t :
∫ u

0
〈M v,M v〉t dv > n}. Then, by

monotone convergence∫ u

0

〈M v,M v〉Tn
dv = lim

ε↓0

∫ u

0

〈M v,M v〉Tn−ε dv ≤ n,

and the local martingales M v stopped at Tn are square-integrable martingales

(E
[
〈M v,M v〉Tn

]
< +∞ (a.e.)) which satisfy the integrability condition of Propo-

sition 4.5. The result immediately follows from the application of proposition 4.5.

�

Proposition 4.7. Suppose that for almost every v ≤ u, M v
t is a purely discon-

tinuous local martingale such that the increasing process

∫ u

0

[M v,M v]t dv is locally
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integrable. Then M̄u
t =

∫ u

0

M v
t dv is a locally square-integrable purely discontinuous

martingale such that ∆M̄u
t =

∫ u

0

∆M v
t dv, and (4.1) holds.

Proof of Proposition 4.6. Let Tn be such that E
[∫ u

0

[M v,M v]Tn
dv

]
< +∞.

Then (for almost every v ≤ u) M v is a locally square-integrable martingale and

E
〈∫ u

0

[M v,M v〉Tn
dv

]
< +∞. Therefore we can apply Proposition 4.5 and Propo-

sition 4.4 to the local martingales M v stopped at Tn. We now establish the

purely discontinuous feature of M̄u. Let Lt be a continuous square-integrable (or

even bounded) martingale and τ be a finite stopping time. Then E
[
M̄u

τ Lτ

]
=

E
[∫ u

0

M v
τ dvLτ

]
=

∫ u

0

E [M v
τ Lτ ] dv = 0 since M v is purely discontinuous and L is

continuous. �
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