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Abstract

Suppose we have three independent copies of a regular diffusion on [0,1] with
absorbing boundaries. Of these diffusions, either at least two are absorbed at the
upper boundary or at least two at the lower boundary. In this way, they determine
a majority decision between 0 and 1. We show that the strategy that always runs
the diffusion whose value is currently between the other two reveals the majority
decision whilst minimising the total time spent running the processes.
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1 Introduction

Let X1, X2 and X3 be three independent copies of a regular diffusion on [0, 1] with ab-
sorbing boundaries. Eventually, either at least two of the diffusions are absorbed at the
upper boundary of the interval or at least two are absorbed at the lower boundary. In
this way, the diffusions determine a majority decision between 0 and 1.

In order to identify this decision we run the three processes –not simultaneously, but
switching from one to another– until we observe at least two of them reaching a common
boundary point. Our aim is to switch between the processes in a way that minimises the
total time required to find the majority decision.

More precisely, we allocate our time between the three processes according to a suit-
ably adapted [0,∞)3-valued increasing process C with

∑3
i=1 Ci(t) = t. Such a process is

called a strategy and Ci(t) represents the amount of time spent observing Xi after t ≥ 0
units of calendar time have elapsed. Accordingly, the process we observe is

XC def
= (X1(C1(t)), X2(C2(t)), X3(C3(t)); t ≥ 0),

and the decision time τC for the strategy C is the first time that two components of XC

are absorbed at the same end point of [0, 1], i.e.

τC
def
= inf{t ≥ 0 : XC

i (t) = XC
j (t) ∈ {0, 1} for distinct i, j}.

1



In this paper we find a strategy C? that minimises this time. Roughly speaking, C?

runs whichever diffusion is currently observed to have “middle value” (see Lemma 1.4 for
a precise description). Our main theorem is that the decision time τC

?
of this strategy is

the stochastic minimum of all possible decision times, i.e.

Theorem 1.1. The decision time τC
?

of the “run the middle” strategy C? given in lemma
1.4 satisfies

P(τC
?

> t) = inf
C

P(τC > t), for every t ≥ 0.

where the infimum is taken over all strategies and τC is the corresponding decision time.

This model fits into the existing literature on optimal dynamic resource allocation
(see 1.1 below for a brief review) but our original motivation for studying it was to gain
an understanding of the problem of evaluating the “recursive majority of three” function
on random input. The latter can be described as follows – take the complete ternary
tree on n levels, place independent Bernoulli(p) (0 < p < 1) random variables on each
of the 3n leaves and recursively define the internal nodes to take the majority value of
their children. We wish to determine the value of the root node, but may only accrue
knowledge about the tree by sequentially observing leaves, paying £1 each time for the
privilege. It remains an open problem to determine the strategy with least expected cost,
rn. However, r is sub-multiplicative (i.e. rn+m ≤ rnrm for any n,m ∈ N) and so, by
Fekete’s lemma

γ
def
= lim

n→∞
r1/n
n

exists with the trivial bounds 2 ≤ γ ≤ 3. The value of γ, despite attracting the atten-
tion of several investigators, is not known (see section 6.2). Our idea was to study it
by considering a continuous approximation to the large n tree. It was this continuous
approximation that inspired the diffusive model introduced in this paper, but the reader
is warned that the results we present here do not shed light on the value of γ.

However, the problem of switching between diffusions is worthwhile in its own right.
It has a similar flavour to the continuous multi-armed bandit problem but does not seem
to have the same mathematical anatomy. Nevertheless there is an interesting structure
to be revealed – in particular we make use of the heuristic equation (2.17) in order to
evaluate the value function for the discounted problem, and the same equation plays a
central role in proving the much stronger stochastic minimality property.

1.1 Dynamic resource allocation

The problem we have described is one of optimal dynamic resource allocation in continu-
ous time. The most widely studied example of this is the continuous multi-armed bandit
problem (see, for example, El Karoui and Karatzas [6], Mandelbaum and Kaspi [12]).
Here, a gambler chooses the rates at which he will pull the arms on different slot ma-
chines. Each slot machine rewards the gambler at rates which follow a stochastic process
independent of the reward processes for the other machines. These general bandit prob-
lems find application in several fields where agents must choose between exploration and
exploitation, typified in economics and clinical trials. An optimal strategy is suprisingly
easy to describe. Associated to each machine is a process known as the Gittins index,
which may be interpreted as the equitable surrender value. It is a celebrated theorem

2



that at each instant, we should play whichever machine currently has the largest Gittins
index. This is in direct analogy to the discrete time result of Gittins and Jones [8].

There is no optimal strategy of index type for our problem. This reflects the fact that
the reward processes associated to running each of the diffusions are not independent –
once two of the diffusions are absorbed, it may be pointless to run the third.

In [16], a different dynamic allocation problem is considered. It has a similar flavour
in that one must choose the rates at which to run two Brownian motions on [0, 1], and
we stop once one of the processes hits an endpoint. The rates are chosen to maximise
a terminal payoff, as specified by a function defined on the boundary of the square (the
generalisation of this problem to several Brownian motions is considered in [21]). An
optimal strategy is determined by a partition of the square into regions of indifference,
preference for the first Brownian motion and preference for the second. However, there
is no notion of a reward (cost) being accrued as in our problem. So, our problem, in
which time is costly and there is a terminal cost of minus infinity for finishing on a part
of ∂S which does not give a majority decision could be seen as lying between continuous
bandits and the Brownian switching in [16].

1.2 Overview of paper

The rest of the paper is laid out as follows. Section 1.3 contains a precise statement of
the problem and our assumptions and a clarification of Theorem 1.1. The proof of this
theorem begins in Section 2, where we show that the Laplace transform of the distribution
of the decision time τC

?
solves certain differential equations. This fact is then used in

Section 3 to show that the tail of τC
?

solves, in a certain sense, the appropriate Hamilton-
Jacobi-Bellman PDE. From here, martingale optimality arguments complete the proof.
Section 4 shows the existence and uniqueness of the strategy C? and in Section 5 we
explain the connection between the controlled process and doubly perturbed diffusions.
In the final section, we make a conjecture about an extension to the model and then, to
close, we ask a few questions relating to the discrete recursive majority of three problem
that motivated us originally.

1.3 Problem statement and solution

We are given a complete probability space (Ω,F ,P) supporting three independent Itô dif-
fusions (Xi(t), t ≥ 0), i ∈ V = {1, 2, 3}, each of which is started in the unit interval [0, 1]
and absorbed at the endpoints. The diffusions all satisfy the same stochastic differential
equation

dXi(t) = σ(Xi(t))dBi(t) + µ(Xi(t))dt, t ≥ 0, (1.1)

where σ : [0, 1] → (0,∞) is continuous, µ : [0, 1] → R is Borel and (Bi(t), t ≥ 0), i ∈ V
are independent Brownian motions.

We denote by S the unit cube [0, 1]3, by R+ the set of non-negative real numbers [0,∞)
and ¹ its usual partial order on R3

+. It is assumed that we have a standard Markovian
setup, i.e. there is a family of probability measures (Px;x ∈ S) under which X(0) = x
almost surely and the filtration Fi = (Fi(t); t ≥ 0) generated by Xi is augmented to
satisfy the usual conditions.
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From here, we adopt the framework for continuous dynamic allocation models pro-
posed by Mandelbaum in [15]. This approach relies on the theory of multiparameter time
changes; the reader may consult Appendix A for a short summary of this.

For η ∈ R3
+ we define the σ-algebra

F(η)
def
= σ(F1(η1),F2(η2),F3(η3)),

which corresponds to the information revealed by running Xi for ηi units of time. The
family (F(η); η ∈ R3

+) is called a multiparameter filtration and satisfies the “usual con-
ditions” of right continuity, completeness and property (F4) of Cairoli and Walsh [2].
It is in terms of this filtration that we define the sense in which our strategies must be
adapted.

A strategy is an R3
+-valued stochastic process

C = (C1(t), C2(t), C3(t); t ≥ 0)

such that

(C1) for i = 1, 2, 3, Ci(0) = 0 and Ci(·) is nondecreasing,

(C2) for every t ≥ 0, C1(t) + C2(t) + C3(t) = t and

(C3) C(t) is a stopping point of the multiparameter filtration (F(η); η ∈ R3
+), i.e.

{C(t) ¹ η} ∈ F(η) for every η ∈ R3
+.

Remark 1.2. In the language of multiparameter processes, C is an optional increasing
path after Walsh [22].

Remark 1.3. Conditions (C1) and (C2) together imply that for any s ≤ t, |Ci(t)−Ci(s)| ≤
t − s. It follows that the measure dCi is absolutely continuous and so it makes sense to
talk about the rate Ċi(t) = dCi(t)/dt, t ≥ 0, at which Xi is to be run.

The interpretation is that Ci(t) models the total amount of time spent running Xi by
calendar time t, and accordingly, the controlled process XC is defined by

XC(t)
def
= (X1(C1(t)), X2(C2(t)), X3(C3(t))), t ≥ 0.

Continuity of C implies that XC is a continuous process in S that is adapted to the
(one parameter) filtration FC defined by

FC(t)
def
=
{
F ∈ F : F ∩ {C(t) ¹ η} ∈ F(η) for every η ∈ R3

+

}
, t ≥ 0.

The decision time τC for a time allocation strategy C is the first time that XC hits
the decision set

D
def
= {(x1, x2, x3) ∈ S : xi = xj ∈ {0, 1} for some 1 ≤ i < j ≤ 3}

The objective is to find a strategy whose associated decision time is a stochastic
minimum. Clearly, it is possible to do very badly by only ever running one of the processes
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as a decision may never be reached (these strategies do not need to be ruled out in our
model). A more sensible thing to do is to pick two of the processes, and run them untill
they are absorbed. Only if they disagree do we run the third. This strategy is much
better than the pathological one (the decision time is almost surely finite!) but we can
do better.

We do not think it is obvious what the best strategy is. In the situation that X1(0)
is close to zero and X3(0) close to one, it is probable that X1 and X3 will be absorbed at
different end points of [0, 1]. So, if X2(0) is close to 0.5 say, it seems likely that X2 will
be pivotal and so we initially run it, even though X1 and X3 might be absorbed much
more quickly. Our guess is to run the diffusion whose value lies between that of the other
two processes. But if all the processes are near one, it is not at all clear this is the best
thing to do. For example, one could be tempted to run the process with largest value in
the hope that it will give a decision very quickly.

It turns out that we must always “run the middle”. That is, if, at any moment t ≥ 0,
we have XC

1 (t) < XC
2 (t) < XC

3 (t), then we should run X2 exclusively until it hits XC
1 (t) or

XC
3 (t). We need not concern ourselves with what happens when the processes are equal.

This is because there is, almost surely, only one strategy that runs the middle of the three
diffusions when they are separated. To state this result, let us say that for a strategy C,
component Ci increases at time t ≥ 0 if Ci(u) > Ci(t) for every u > t.

Lemma 1.4. There exists a unique time allocation strategy C? such that C?
i increases only

at times t ≥ 0 such that XC?

j (t) ≤ XC?

i (t) ≤ XC?

k (t) under some labelling {i, j, k} = V of
the processes.

If C is any other strategy with this property, then C(t) = C?(t) for all t ≥ 0 almost
surely (with respect to any of the measures Px).

This lemma is proved in section 4 and Theorem 1.1 states that C? gives a stochastic
minimum for the decision time.

In the sequel, the drift term µ is assumed to vanish. This is not a restriction, for if a
drift is present we may eliminate it by rewriting the problem in natural scale.

2 The Laplace transform of the distribution of τ C
?

The proof of Theorem 1.1 begins by computing the Laplace transform

v̂r(x)
def
= Ex

(
exp(−rτC?

)
)
,

of the distribution of the decision time. This non-trivial task is carried out using the
“guess and verify” method. Loosely, the guess is inspired by comparing the payoffs
of doing something optimal against doing something nearly optimal. This leads to a
surprisingly tractable heuristic equation from which v̂r can be recovered.

The argument which motivates the heuristic proceeds as follows. From any strategy
C it is possible to construct (but we omit the details) another strategy, Ĉ, that begins
by running X1 for some small time h > 0 (i.e. Ĉ(t) = (t, 0, 0) for 0 ≤ t ≤ h) and then
does not run X1 again until C1 exceeds h, if ever. In the meantime, Ĉ2 and Ĉ3 essentially
follow C2 and C3 with the effect that once C1 exceeds h, C and Ĉ coincide.
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This means that if the amount of time, C1(τ
C), that C spends running X1 is at least

h, then τ Ĉ and τC are identical. On the other hand, if C1(τ
C) < h, then Ĉ runs X1 for

longer than C, with some of the time Ĉ spends running X1 being wasted. In fact, outside
a set with probability o(h) we have

τ Ĉ = τC + (h− T1)
+ , (2.2)

where Ti = Ci(τ
C) is the amount of time that C spends running Xi while determining the

decision.
We compare Ĉ with the strategy that runs X1 for time h and then behaves optimally.

If we suppose that C? itself is optimal and recall that v̂r is the corresponding payoff, this
yields the inequality

Ex

(
exp(−rτ Ĉ)

)
≤ Ex (exp(−rh)v̂r(X1(h), X2(0), X3(0))) . (2.3)

Now, we take C = C? and use (2.2) to see that the left hand side of (2.3) is equal to

Ex

(
exp(−r(τC?

+ (h− T1)
+))
)

+ o(h),

which, in turn, may be written as

v̂r(x) + Ex

((
exp(−r(τC?

+ h)− exp(−rτC?

)
)
1[Ti=0]

)
+ o(h). (2.4)

On the other hand, if we assume v̂r is suitably smooth, the right hand side of (2.3) is

v̂r(x) + h
(
G1 − r

)
v̂r(x) + o(h), x1 ∈ (0, 1). (2.5)

where we have introduced the differential operator Gi defined by

Gif(x)
def
=

1

2
σ2(xi)

∂2

∂x2
i

f(x), xi ∈ (0, 1).

After subsituting these expressions back into (2.3) and noticing that there was nothing
special about choosing X1 to be the process that we moved first, we see that

Ex

(
exp(−r(τC?

+ h)− exp(−rτC?

);Ti = 0
)
≤ h

(
Gi − r

)
v̂r(x) + o(h), (2.6)

for each xi ∈ (0, 1) and i ∈ V .
Dividing both sides by h, and taking the limit h→ 0 yields the inequality(

Gi − r
)
v̂r(x) ≤ −rEx

(
exp(−rτC?

);Ti = 0
)
. (2.7)

Now, in some simpler, but nevertheless related problems, we can show that (2.7) is
true with an equality replacing the inequality. This prompts us to construct a function
satisfying (2.7) with equality. Our effort culminates in

Lemma 2.1. There exists a continuous function hr : S → R such that

• hr(x) = 1 for x ∈ D,
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• the partial derivatives ∂2ĥr

∂xi∂xj
exist and are continuous on {x ∈ S\D : xi, xj ∈ (0, 1)}

(for any i, j ∈ V not necessarily distinct) and

• furthermore, for each i ∈ V and x /∈ D with xi ∈ (0, 1),(
Gi − r

)
hr(x) = −rf̂ i

r(x),

where f̂ i
r(x)

def
= Ex

(
exp(−rτC?

)1[Ti=0]

)
.

Proof. We begin by factorising f̂ i
r(x) into a product of Laplace transforms of diffusion exit

time distributions. This factorisation is useful as it allows us to construct h by solving a
series of ordinary differential equations. Note that in this proof, we will typically suppress
the r dependence for notational convenience.

The diffusions all obey the same stochastic differential equation and so we lose nothing
by assuming that the components of x satisfy 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1. Further, we suppose
that x /∈ D because otherwise Ti = 0 Px-almost-surely.

In this case, T2 > 0 Px-almost surely, because for any t > 0, there exist times t1, t3 <
t/2 at which X1(t1) < x1 ≤ x2 ≤ x3 < X3(t3) and so it is certain our strategy allocates
time to X2. It follows that f̂ 2(x) vanishes.

Now consider f̂ 1. There is a Px-neglible set off which T1 = 0 occurs if, and only if,
both of the independent diffusions X2 and X3 exit the interval (X1(0), 1) at the upper
boundary. Furthermore, τC

?
is just the sum of the exit times. That is, if

m(i)
a

def
= inf{t > 0 : Xi(t) = a}, a ∈ I, i ∈ V, (2.8)

then
f̂ 1(x) = Ex

(
exp(−r(m(2)

1 + m
(3)
1 ))1

[m
(2)
1 <m

(2)
x1

,m
(3)
1 <m

(3)
x1

]

)
.

Using independence of X2 and X3, we have the factorisation

f̂ 1(x) =
3∏

i=2

Ex

(
exp(−rm(i)

1 )1
[m

(i)
1 <m

(i)
x1

]

)
.

Note that our assumption x /∈ D guarantees that x1 < 1.
To write this more cleanly, let us introduce, for 0 ≤ a < b ≤ 1, the functions

h+
a,b(u)

def
= Eu

(
exp(−rm(1)

b ); m
(1)
b < m(1)

a

)
,

where the expectation operator Eu corresponds to the (marginal) law of X1 when it begins
at u ∈ [0, 1].

The diffusions obey the same SDE, and so

f̂ 1(x) = h+
x1,1(x2)h

+
x1,1(x3),

Similarly,
f̂ 3(x) = h−0,x3

(x1)h
−
0,x3

(x2)

where
h−a,b(u)

def
= Eu

(
exp(−rm(i)

a ); m(i)
a < m

(i)
b

)
.
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We take, as building blocks for the construction of h, the functions h±0,1, abbreviated
to h± in the sequel. The regularity of each of our (non-singular) diffusions together with
the Markov property shows that if a < b, u ∈ [a, b] then

h+(u) = h+
a,b(u)h

+(b) + h−a,b(u)h
+(a)

and
h−(u) = h+

a,b(u)h
−(b) + h−a,b(u)h

−(a).

Solving these equations gives

h+
a,b(u) =

h−(a)h+(u)− h−(u)h+(a)

h−(a)h+(b)− h−(b)h+(a)
(2.9)

and

h−a,b(u) =
h−(u)h+(b)− h−(b)h+(u)

h−(a)h+(b)− h−(b)h+(a)
. (2.10)

The functions h+ and h− are C2 on (0, 1) and continuous on [0, 1]. Furthermore, they

solve Gf = rf where Gf def
= 1

2
σ2(·)f ′′. In light of this, and remembering our assumption

that the components of x are ordered, we will look for functions λ+ and λ− of x1 and x3

such that
h(x) = λ−(x1, x3)h

−(x2) + λ+(x1, x3)h
+(x2) (2.11)

has the desired properties. For other values of x /∈ D we will define h by symmetry.
To get started, use (2.9) and (2.10) so see that f̂ i(x) has a linear dependence on

h+(x2) and h−(x2), that is, there are functions ψi
± such that

f̂ i(x) = ψi
−(x1, x3)h

−(x2) + ψi
+(x1, x3)h

+(x2).

For example,

ψ1
+(x1, x3) =

h−(x1)h
+(x3)− h−(x3)h

+(x1)

h−(x1)

ψ1
−(x1, x3) = −h

+(x1)

h−(x1)
ψ1

+(x1, x3)

Linearity of the operator (Gi − r) and linear independence of h− and h+ then show
the requirement that (Gi − r)h = −rf̂ i boils down to requiring(

Gi − r
)
λ± = −rψi

±.

Of course, the corresponding homogenous (eigenfunction) problems are solved with
linear combinations of h+ and h− – what remains is the essentially computational task
of finding particular integrals and some constants. This endeavour begins with repeated
application of Lagrange’s variation of parameters method, determining constants using
the boundary conditions h(x) = 1 for x ∈ D where possible. Eventually we are left
wanting only for real constants, an unknown function of x1 and a function of x3. At this
point we appeal to the “smooth pasting” conditions(

∂

∂xi

− ∂

∂xj

)
h

∣∣∣∣
xi=xj

= 0, i, j ∈ V. (2.12)
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After some manipulation, we are furnished with differential equations for our unknown
functions and equations for the constants. These we solve with little difficulty and, in
doing so, determine that

λ−(x1, x3) = h−(x1)− h+(x1)h
+(x3)

∫ 1

x3

∂
∂u
h−(u)

h+(u)2
du

+h−(x1)h
+(x3)

∫ x1

0

∂
∂u
h+(u)

h−(u)2
du

+
2rh−(x3)

φ

∫ x1

0

(
h+(u)

σ(u)h−(u)

)2 (
h−(x1)h

+(u)− h−(u)h+(x1)
)
du,

and

λ+(x1, x3) = h+(x3) + h−(x1)h
−(x3)

∫ x1

0

∂
∂u
h+(u)

h−(u)2
du

−h−(x1)h
+(x3)

∫ 1

x3

∂
∂u
h−(u)

h+(u)2
du

+
2rh+(x1)

φ

∫ 1

x3

(
h−(u)

σ(u)h+(u)

)2 (
h−(u)h+(x3)− h−(x3)h

+(u)
)
du,

where φ denotes the constant value of h−(u) ∂
∂u
h+(u)− h+(u) ∂

∂u
h−(u).

These expressions for λ± are valid for any x not lying in D with weakly ordered
components; so h is defined outside of D via (2.11). Naturally, we define h to be equal
to one on D.

Having defined h, we now show that it is continuous and has the required partial
derivatives. Continuity is inherited from h+ and h− on the whole of S apart from at
the exceptional points (0, 0, 0) and (1, 1, 1) in D. For these two points, a few lines of
justification is needed. We shall demonstrate continuity at the origin, continuity at the
upper right hand corner (1, 1, 1) follows by the same argument. Let xn be a sequence of
points in S that converge to (0, 0, 0); we must show h(xn) → h(0, 0, 0) = 1. Without loss
of generality assume that the components of xn are ordered xn

1 ≤ xn
2 ≤ xn

3 and that xn

is not in D (if xn ∈ D, then h(xn) = 1 and it may be discarded from the sequence). By
examining the expressions for λ±, we see that it is sufficient to check that

(i) λ−(xn
1 , x

n
3 ) → 1 and (ii) h+(xn

2 )λ+(xn
1 , x

n
3 ) → 0.

For (i), the only doubt is that the term involving the first integral in the expression
for λ− does not vanish in the limit. The fact that it does can be proved by the Dominated
Convergence Theorem. The term is

h+(xn
1 )h+(xn

3 )

∫ 1

xn
3

∂
∂u
h−(u)

h+(u)2
du =

∫ 1

0

1[u>xn
3 ]
h+(xn

1 )h+(xn
3 )

h+(u)2

∂

∂u
h−(u)du.

The ratio
h+(xn

1 )h+(xn
3 )

h+(u)2
is bounded above by one when u > xn

3 ≥ xn
1 since h+ is increasing.

Further, the derivative of h− is integrable and so the integrand is dominated by an
integrable function, and converges to zero.
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For the second limit (ii), there are two terms to check. Firstly, that

h+(xn
2 )h−(xn

1 )h+(xn
3 )

∫ 1

xn
3

∂
∂u

(u)

h+(u)2
du→ 0

follows from essentially the same argument as before. The second term of concern is

h+(xn
1 )

∫ 1

xn
3

(
h−(u)

σ(u)h+(u)

)2 (
h−(u)h+(xn

3 )− h−(xn
3 )h+(u)

)
du.

Again, one may write this as the integral of a dominated function (recalling that σ is
bounded away from zero) that converges to zero. Thus, the integral above converges to
zero as required.

Now that we have established continuity of h, we can begin tackling the partial deriva-
tives. When the components of x are distinct, differentiability comes from that of our
building blocks h+ and h−. It is at the switching boundaries, when two or more com-
ponents are equal, where we have to be careful. The key here is to remember that we
constructed h to satisfy the smooth pasting property (2.12) – this allows us to show
that the one-sided partial derivatives are equal in (0, 1). For example, provided the limit
exists,

∂

∂x1

h(x1, x2, x3)

∣∣∣∣
x1=x2=x3

= lim
h→0

1

h
(h(x1 + h, x1, x1)− h(x1 − h, x1, x1)) .

Using (2.11) and the differentiability of λ, the limit from above is

∂

∂x3

(
λ−(x1, x3)h

−(x2) + λ+(x1, x3)h
+(x2)

)∣∣∣∣
x1=x2=x3

.

This is equal to the limit from below,

∂

∂x1

(
λ−(x1, x3)h

−(x2) + λ+(x1, x3)h
+(x2)

)∣∣∣∣
x1=x2=x3

,

by the smooth pasting property.The other first order partial derivatives exist by similar
arguments. Note that we do not include in our hypothesis the requirement that these
first order partial derivatives exist at the boundary points of I.

The second order derivatives are only slightly more laborious to check. As before it is
at switching boundaries where we must take care in checking that the limits from above
and below agree. For the partial derivatives ∂2

∂x2
i
h at a point x not in D with xi ∈ (0, 1),

it is continuity of f̂ i at x that allows us to equate the limits and show that the result is
continuous, rather than smooth pasting. For the mixed partial derivatives, a priori, we
don’t have this helping hand. Instead, when two components are equal, we can always
assume that one is the “middle” component that enters through the the terms h+ and
h− in (2.11) while the other is an “upper” or “lower” term that enters through λ+ and
λ−. This makes it easy to check that the partial derivations of h commute at x. Now we
can use the smooth pasting condition (2.12) to show that, for example,

∂2

∂x3∂x2

h(x1, x2, x3)

∣∣∣∣
x1=x2=x3

=
∂2

∂x1∂x2

h(x1, x2, x3)

∣∣∣∣
x1=x2=x3

.
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Thus, h satisfies all the properties we required.

From here, we need a verification lemma to check that the function we constructed
really is equal to v̂r. The following result does just that, and, as a corollary, shows that
v̂r is maximal among Laplace transforms of decision time distributions (note that this is
weaker than the stochastic minimality claimed in Theorem 1.1). The result is essentially
that Bellman’s principle of optimality holds (specialists in optimal control will notice that
the function we constructed in Lemma 2.1 satisfies the Hamilton-Jacobi-Bellman PDE).

Lemma 2.2. Suppose that hr : S → R satisfies

• hr is continuous on S

• for i, j ∈ V , ∂2hr

∂xi∂xj
exists and is continuous on {x ∈ S\D : xi, xj ∈ (0, 1)}.

• hr(x) = 1 for x ∈ D.

• (Gi − r)hr(x) ≤ 0

Then,
hr(x) ≥ sup

C
Ex

(
exp(−rτC)

)
.

Furthermore, if (Gi − r)hr(x) vanishes whenever xj ≤ xi ≤ xk (under some labelling)
then,

hr(x) = v̂r(x) = Ex

(
exp(−rτC?

)
)
.

Proof. Let C be an arbitrary strategy and define the function g : S × [0,∞) → R by

g(x, t)
def
= exp(−rt)hr(x). Then, by hypothesis, g is C2,1 on (0, 1)3 × [0,∞). Thus, if dist

denotes Euclidean distance and ρn
def
= inf{t ≥ 0 : dist(XC(t), ∂S) < n−1}, Ito’s formula

shows that,

g(XC(ρn), ρn)− g(XC(0), 0) =
∑

i

∫ ρn

0

∂

∂xi

g(XC(s), s)dXC
i (s)

+

∫ ρn

0

∂

∂t
g(XC(s), s)ds

+
1

2

∑
i,j

∫ ρn

0

∂2

∂xi∂xj

g(XC(s), s)d[XC
i , X

C
j ]s.

Theorem A.1 implies [XC
i ]s = [Xi]Ci(s) and thatXC

i andXC
j are orthogonal martingales.

Hence, using absolute continuity of C and Proposition 1.5, Chapter V of [19],

g(XC(ρn), ρn)− g(XC(0), 0) =
∑

i

∫ ρn

0

∂

∂xi

g(XC(s), s)dXC
i (s)

+
∑

i

∫ ρn

0

exp(−rs)
(
Gi − r

)
h(XC(s))Ċi(s)ds.

11



The integrand of the stochastic integral against the square integrable martingale XC
i

is continuous and hence bounded on each compact subset of (0, 1)3. Thus, the integral’s
expectation vanishes, i.e.

Ex

(∫ ρn

0

∂

∂xi

g(XC(s), s)dXC
i (s)

)
= 0

Next, the fact that (Gi − r)h is non-positive gives

Ex

(∫ ρn

0

exp(−rs)
(
Gi − r

)
h(XC(s))Ċi(s)ds

)
≤ 0,

and so

Ex

(
exp(−rρn)h(XC(ρn))

)
− h(x) ≤ 0. (2.13)

Now, the times ρn taken for XC to come within distance n−1 of the boundary of S
converge to ρ

def
= inf{t ≥ 0 : XC(t) ∈ ∂S} as n → ∞. So, the continuity of h and the

Dominated Convergence Theorem together imply

Ex

(
exp(−rρ)h(XC(ρ))

)
≤ h(x). (2.14)

In summary, inequality (2.14) arises by applying the three dimensional Ito formula to
g composed with the controlled process stopped inside (0, 1)3 and then using continuity
of h. But, from time ρ onwards, our controlled process runs on a face or an edge of the
cube and Ito’s formula in three dimensions does not apply. This is not a problem though
– a similar argument with Ito’s formula in one (or two) dimensions does the trick. That
is, if ρ′ denotes the first time that XC hits an edge of S (so 0 ≤ ρ ≤ ρ′ ≤ τC), then both

Ex

(
exp(−rρ′)h(XC(ρ′))− exp(−rρ)h(XC(ρ))

)
≤ 0, (2.15)

and

Ex

(
exp(−rτC)h(XC(τC))− exp(−rρ′)h(XC(ρ′))

)
≤ 0. (2.16)

Summing these differences and using the boundary condition h(x) = 1 for x ∈ D
yields

Ex

(
exp(−rτC)

)
= Ex

(
exp(−rτC)h(XC(τC))

)
≤ h(x).

Thus h is an upper bound for the Laplace transform of the distribution of the deci-
sion time arising from any strategy. It remains to prove that h is equal to the Laplace
transform v̂r.

Suppose that C is the strategy C? from Lemma 1.4, then for almost every s ≥
0, Ċi(s) is positive only when XC

j (s) ≤ XC
i (s) ≤ XC

k (s) under some labelling. So,

(Gi − r)h(XC(s))Ċi(s) vanishes for almost every s ≥ 0 and (2.13) is an equality. Taking
limits shows that (2.14) – (2.16) are also equalities.

So, v̂r is twice differentiable in each component and satisfies the heuristic equation(
Gi − r

)
v̂r(x) = −rf̂ i

r(x), x /∈ D, xi ∈ (0, 1). (2.17)

In the next section we will show that Px(τ
C?

> t) is the probabilistic solution to
certain parabolic partial differential equations. To do this, we need to rewrite v̂r in a
more convenient form.
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It is convenient to introduce the notation X(1)(t) = (X1(t), X2(0), X3(0)), X(2)(t) =
(X1(0), X2(2), X3(0)) and X(3)(t) = (X1(0), X2(0), X3(t)) for each t ≥ 0. We define ρ(i)

to be the absorption time of Xi, i.e.

ρ(i) def
= inf{t ≥ 0 : Xi(t) /∈ (0, 1)}.

Lemma 2.3. For any x /∈ D, v̂r can be written as

v̂r(x) = Ex

(
exp(−rρ(i))v̂r(X

(i)(ρ(i))) + r

∫ ρ(i)

0

f̂ i
r(X

(i)(s)) exp(−rs)ds

)
.

Proof. Fix x /∈ D, then the function xi 7→ v̂r(x) is C2 on (0, 1) and C0 on [0, 1]. Introduce

the a.s. finite Fi stopping time ρ
(i)
n

def
= inf{t ≥ 0 : Xi(t) /∈ (n−1, 1−n−1)}, so Ito’s formula

(in one dimension) gives

exp(−rρ(i)
n )v̂r(X

(i)(ρ(i)
n ))− v̂r(X(0)) =

∫ ρ
(i)
n

0

exp(−rs) ∂

∂xi

v̂r(X
(i)(s))dXi(s)

+

∫ ρ
(i)
n

0

exp(−rs)
(
Gi − r

)
v̂r(X

(i)(s))ds.

The function ∂
∂xi
v̂r is continuous on (0, 1) and hence bounded on the compact subsets

[n−1, 1 − n−1]. It follows that the expectation of the stochastic integral against dXi

vanishes. So, using equation (2.17),

v̂r(x) = Ex

(
exp(−rρ(i)

n )v̂r(X
(i)(ρ(i)

n ))
)

+rEx

(∫ ρ
(i)
n

0

exp(−rs)f̂ i
r(X

(i)(s))ds

)
.

The stopping times ρ
(i)
n converge to ρ(i) as n→∞ and so by continuity of Xi, v̂r, the

exponential function and the integral,

exp(−rρ(i)
n )v̂r(X

(i)(ρ(i)
n )) → exp(−rρ(i))v̂r(X

(i)(ρ(i))) and∫ ρ
(i)
n

0

exp(−rs)f̂ i
r(X

(i)(s))ds→
∫ ρ(i)

0

exp(−rs)f̂ i
r(X

(i)(s))ds.

To finish the proof, use the Dominated Convergence Theorem to exchange the limit
and expectation.

Remark 2.4. We can generalise our heuristic to value functions of the form

J(x, t)
def
= Ex(g(τ

C?

+ t)), x ∈ S, t ≥ 0,

for differentiable g. It reads(
Gi +

∂

∂t

)
J(x, t) = Ex(g

′(τC
?

+ t);Ti = 0). (2.18)
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Equation (2.17) is the specialisation g(t) = exp(−rt). Such a choice of g is helpful
because it effectively removes the time dependence in (2.18), making it easier to solve.
The benefit is the same if g is linear and it is not difficult to construct and verify (compare

Lemmas 2.1 and 2.2) an explicit expression for J(x)
def
= Ex(τ

C?
). In terms of the integrals

Ik(x1)
def
=

∫ x3

0

G(u)

(1− u)k
du and Jk(x3)

def
=

∫ 1

x3

G(u)

uk
du, k ∈ N,

the expression for J reads,

J(x) = G(x2) + (1− x1)
−2G(x1) ((1− x2)((1− x1)− (1− x3)) + (1− x1)(1− x3))

−2I3(x1) ((1− x2)((1− x1) + (1− x3)) + (1− x1)(1− x3))) +

6I4(x1)(1− x2)(1− x1)(1− x3) + x−2
3 G(x3) (x2(x3 − x1) + x1x3)

−2J3(x3) (x2(x3 + x1) + x1x3) + 6J4(x3)x1x2x3.

3 A representation for Px
(
τ C

?
> T

)
The aim of this section is to connect the tail probability v : S × [0,∞) → [0, 1] defined
by

v(x, t)
def
= Px

(
τC

?

> t
)
,

to the formula for v̂r from Lemma 2.3. Before continuing, let us explain the key idea.
Just for a moment, suppose that v is smooth and consider the Laplace transform of(
Gi − ∂

∂t

)
v(x, ·). It is straightforward to show that the Laplace transform of v satisfies

(see (3.22)), ∫ ∞

0

v(t, x) exp(−rt)dt = r−1 (1− v̂r(x)) .

Bringing Gi through the integral and integrating by parts in t,∫ ∞

0

exp(−rt)
(
Gi − ∂

∂t

)
v(x, t)dt = −r−1

(
Gi − r

)
v̂r(x).

Combining this with the heuristic equation (2.17) gives∫ ∞

0

exp(−rt)
(
Gi − ∂

∂t

)
v(x, t)dt = f̂ i

r(x). (3.19)

This shows that
(
Gi − ∂

∂t

)
v is non-negative, (i.e. v satisfies the associated Hamilton-

Jacobi-Bellman equation). From here, one could use Ito’s formula (c.f. the proof of
Lemma 2.2) to see that

(
v(XC(t), T − t), 0 ≤ t ≤ T

)
is a sub-martingale for any strategy

C. In particular,

Px(τ
C > T ) = Ex

(
v(XC(T ), 0)

)
≥ v(x, T ).

So, ideally, to prove Theorem 1.1, we would establish that v is smooth enough to
apply Ito’s formula. We are given some hope, by noticing that if we can show that f̂ i

r is
the Laplace transform of a function fi say, then (3.19) implies v solves∫ ∞

0

exp(−rt)
(
Gi − ∂

∂t

)
v = fi. (3.20)
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We can show such a density fi exists (Lemma 3.1 below) but (surpisingly) not that it is
Hölder continuous. Unfortunately, without the latter we cannot show that (3.20) has a
classical solution. Nevertheless, we can deduce the sub-martingale inequality by showing
merely that v solves (3.20) in a weaker sense (Lemma 3.2).

To commence, let us first verify the claim that f̂ i
r is the Laplace transform of a function.

Lemma 3.1. For each x /∈ D and i ∈ V , the Borel measure B 7→ Px(τ
C? ∈ B, Ti = 0)

has a (defective) density fi : S × [0,∞) → [0,∞), i.e.

Px(τ
C? ∈ dt, Ti = 0) = fi(x, t)dt, t ≥ 0.

Proof. This is essentially a corollary of the decomposition of τC
?

on {Ti = 0} that was
discussed in the proof of Lemma 2.1.

Recall that if m
(i)
a is the first hitting time of level a by Xi (defined in (2.8)), then for

x1 ≤ x2 ≤ x3,

Px

(
τC

? ∈ B, T1 = 0
)

= Px

(
m

(2)
1 + m

(3)
1 ∈ B,m(2)

1 < m(2)
x1
,m

(3)
1 < m(3)

x1

)
.

This is the convolution of the sub-probability measures

Px

(
m

(i)
1 ∈ ·,m(i)

1 < m(i)
x1

)
, i = 1, 2.

If x1 = x2, then T1 > 0 almost surely under Px, and when x /∈ D, x2 < 1. So, we
may assume that x2 is in the interval (x1, 1). In this case, {m(2)

1 < m
(2)
x1 } is not null and

X2 can be conditioned, via a Doob h-transform, to exit (x1, 1) at the upper boundary.
The conditioned process is again a diffusion and so the arguments of §4.11 of [10] show

that Px

(
m

(2)
1 ∈ ·,m(2)

1 < m
(2)
x1

)
is absolutely continuous. Hence, Px

(
τC

? ∈ ·, T1 = 0
)

is the

convolution of two measures, at least one of which has a density.
The other cases are treated with essentially identical arguments.

The next step is to show that v solves (3.20) in a probabilistic sense.

Lemma 3.2. Fix i ∈ V and define the function u : S × [0,∞) → R by

u(x, t)
def
= Ex

(
v(X(i)(t ∧ ρ(i)), (t− ρ(i))+)−

∫ t∧ρ(i)

0

fi(X
(i)(s), t− s)ds

)
, (3.21)

where ρ(i) = inf{t ≥ 0 : Xi(t) /∈ (0, 1)} and fi is the density from Lemma 3.1. Then,

(a) for each x /∈ D, u(x, ·) has the same Laplace transform as v(x, ·),

(b) both u(x, ·) and v(x, ·) are right continuous, and as a result

(c) the tail probability v is equal to u and so has the representation given in (3.21).
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Proof. (a) The Laplace transform of the tail probability is, for x /∈ D,∫ ∞

0

v(t, x) exp(−rt)dt = Ex

∫ ∞

0

1[τC?>t] exp(−rt)dt

= Ex

∫ τC
?

0

exp(−rt)dt

= r−1 (1− v̂r(x)) ,

by Fubini’s Theorem since the integrand is non-negative. Furthermore, for x ∈ D, both
v(t, x) and 1− v̂r(x) vanish and so in fact, for any x ∈ S we have∫ ∞

0

v(t, x) exp(−rt)dt = r−1 (1− v̂r(x)) . (3.22)

Now, we consider the Laplace transform of u. By linearity of the expectation operator,

u(x, t) = Ex

(
v(X(i)(t ∧ ρ(i)), (t− ρ(i))+)

)
− Ex

(∫ t∧ρ(i)

0

fi(X
(i)(s), t− s)ds

)
.

First consider the Laplace transform of the first member of the right hand side,∫ ∞

0
Ex

(
v(X(i)(t ∧ ρ(i)), (t− ρ(i))+)

)
exp(−rt)dt.

Applying Fubini’s theorem, the preceeding expression becomes

Ex

(∫ ∞

0

v(X(i)(t ∧ ρ(i)), (t− ρ(i))+) exp(−rt)dt
)
,

which can be decomposed into the sum

Ex

(∫ ρ(i)

0

v(X(i)(t), 0) exp(−rt)dt

)
+ Ex

(∫ ∞

ρ(i)

v(X(i)(ρ(i)), t− ρ(i)) exp(−rt)dt
)
.

The first term is

Ex

∫ ρ(i)

0

v(X(i)(t), 0) exp(−rt)dt = r−1 Ex

(
1− exp(−rρ(i))

)
, (3.23)

because when x /∈ D, Px-almost surely we have X(i)(t) /∈ D for t < ρ(i). The second term,

Ex

∫ ∞

ρ(i)

v(X(i)(ρ(i)), t− ρ(i)) exp(−rt)dt.

If we shift the variable of integration to u = t−ρ(i) and then use (3.22), the last expression
becomes

r−1 Ex

(
exp(−rρ(i))(1− v̂r(X

(i)(ρ(i))))
)
. (3.24)
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The treatment of∫ ∞

0
Ex

(∫ t∧ρ(i)

0

fi(X
(i)(s), t− s)ds

)
exp(−rt)dt (3.25)

proceeds in a similar fashion – exchange the expectation and outer integral and then
decompose the integrals into t < ρ(i) and t ≥ ρ(i). The integral over t < ρ(i) is

Ex

∫ ρ(i)

0

∫ t

0

fi(X
(i)(s), t− s)ds exp(−rt)dt.

Exchanging the integrals in t and s gives

Ex

∫ ρ(i)

0

∫ ρ(i)

s

fi(X
(i)(s), t− s) exp(−rt)dtds.

For the integral over t ≥ ρ(i), we again exchange the integrals in t and s to give

Ex

∫ ρ(i)

0

∫ ∞

ρ(i)

fi(X
(i)(s), t− s) exp(−rt)dtds.

Summing these final two expressions and substituting u = t−s shows that (3.25) is equal
to

Ex

∫ ρ(i)

0

∫ ∞

0

fi(X
(i)(s), u) exp(−rt)du exp(−rs)ds.

The Laplace transform is a linear operator, and so we may sum (3.23), (3.24) and
(3.25) to show that the Laplace transform of u is equal to

r−1 Ex

(
1− exp(−rρ(i))v̂r(X

(i)(ρ(i)))
)

+ Ex

(∫ ρ(i)

0

f̂ i
r(X

(i)(s)) exp(−rs)ds

)
, (3.26)

where we have used ∫ ∞

0

fi(x, u) exp(−rt)du = f̂ i
r(x)

for x /∈ D.
But, (3.26) is exactly what we get by subsituting the representation for v̂r from Lemma

(2.3) into (3.22), and so we’re done.
(b) Right-continuity of v in t follows from the Monotone Convergence Theorem. A

little more work is required to see that u is right-continuous. We begin by observing
that if ρ(i) > t then Xi has not been absorbed by time t and so, if x /∈ D, there is a

Px-negligible set outside of which X(i)(t) /∈ D.
It follows that {X(i)(t) ∈ D, ρ(i) > t} = {ρ(i) > t} almost surely. Combining this with

the fact that v(·, 0) = 1[·/∈D] shows

Ex

(
v(X(i)(t ∧ ρ(i)), (t− ρ(i))+); ρ(i) > t

)
= Px

(
ρ(i) > t

)
for x /∈ D.

The latter is right-continuous in t by the Monotone Convergence Theorem. The comple-
mentary expectation

Ex

(
v(X(i)(t ∧ ρ(i)), (t− ρ(i))+); ρ(i) ≤ t

)
17



is equal to

Ex

(
v(X(i)(ρ(i)), t− ρ(i)); ρ(i) ≤ t

)
,

the right continuity of which follows from that of v and the indicator 1[ρ(i)≤t], together
with the Dominated Convergence Theorem.

We now consider the expectation of the integral,

Ex

(∫ t∧ρ(i)

0

fi(X
(i)(s), t− s)ds

)
.

Using Fubini’s theorem we may exchange the integral and expectation to get∫ t

0
Ex

(
fi(X

(i)(s), t− s); ρ(i) > s
)
ds. (3.27)

This suggests the introduction of (p†s; s ≥ 0), the transition kernel of Xi killed (and
sent to a cemetery state) on leaving (0, 1). Such a density exists by the arguments of
§4.11 of [10].

For notational ease, let us assume i = 1, then (3.27) can be written∫ t

0

∫ 1

0

p†s(x1, y)f1((y, x2, x3), t− s)dyds.

Finally, changing the variable of integration from s to s′ = t− s gives∫ t

0

∫ 1

0

p†t−s′(x1, y)f1((y, x2, x3), s
′)dyds′,

and so regularity of (3.27) in t is inherited from p†. This is sufficient because p†t is
continuous in t > 0 (again see [10]).

(c) It follows from (a) that for each x /∈ D, u(x, t) and v(x, t) are equal for almost
every t ≥ 0. Hence, right continuity is enough to show v(x, t) = u(x, t) for every t ≥ 0.

From the probabilistic representation for v, we need to deduce some sub-martingale
type inequalities for v(XC(t), T − t), 0 ≤ t ≤ T . As we will see later, it is enough to
consider strategies that, for some ε > 0, run only process during the interval (kε, (k+1)ε),
for integers k ≥ 0. In other words, the rates for each process are either zero or one and
are constant over (kε, (k + 1)ε). More specifically,

Definition 3.3 (ε-strategy). For ε > 0 we let Πε denote the set of strategies Cε such that
for any integer k ≥ 0,

Cε(t) = Cε(kε) + (t− kε)ξk, kε ≤ t ≤ (k + 1)ε,

where ξk takes values in the set of standard basis elements {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Lemma 3.4. Suppose x ∈ S and 0 ≤ t ≤ T , then the following sub-martingale inequali-
ties hold.
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(a) For i ∈ V ,

Ex

(
v(X(i)(t), T − t)

)
≥ v(x, T ).

(b) If Cε ∈ Πε then

Ex

(
v(XCε

(t), T − t)
)
≥ v(x, T ).

Proof. Consider first the quantity

Ex

(
EX(i)(t)

(
v(X(i)((T − t) ∧ ρ(i)), (T − t− ρ(i))+)

))
. (3.28)

Our Markovian setup comes with a shift operator θ = θ(i) for X(i) defined by X(i) ◦
θs(ω, t) = X(i)(θsω, t) = X(i)(ω, s + t) for each ω ∈ Ω. In terms of this operator, (3.28)
becomes

Ex

(
Ex

(
v(X(i)((T − t) ∧ ρ(i)), (T − t− ρ(i))+) ◦ θt|Fi(t)

))
.

From here, use the Tower Property and the fact that ρ(i) ◦ θt = (ρ(i) − t) ∨ 0 to find that
(3.28) equals

Ex

(
v(X(i)(T ∧ ρ(i)), (T − ρ(i))+)

)
. (3.29)

We can give a similar treatment for

Ex

(
EX(i)(t)

(∫ (T−t)∧ρ(i)

0

fi(X
(i)(s), T − t− s)ds

))
. (3.30)

Using the Markov property of X(i), (3.30) becomes

Ex

(
Ex

(∫ (T−t)∧ρ(i)

0

fi(X
(i)(s), T − t− s)ds ◦ θt|Fi(t)

))
.

Substituting in for X(i) ◦ θt and ρ(i) ◦ θt and using the Tower Property, the latter
expectation is seen to be

Ex

(∫ (T−t)∧(ρ(i)−t)∨0

0

fi(X
(i)(s+ t), T − t− s)ds

)
.

Now make the substitution u = s + t in the integral and use the fact that fi is
non-negative to show that (3.30) is less than or equal to

Ex

(∫ T∧ρ(i)

0

fi(X
(i)(u), T − u)du

)
. (3.31)

The final step is to note that, by Lemma 3.2,

v(x, T − t) = Ex

(
v(X(i)(T − t ∧ ρ(i)), (T − t− ρ(i))+)

)
−Ex

(∫ (T−t)∧ρ(i)

0

f(X(i)(s), T − t− s)ds

)
,

19



and so Ex(v(X
(i)(t), T − t)) is equal to (3.28) minus (3.30), which by the argument

above is greater than or equal to

Ex

(
v(X(i)(T ∧ ρ(i)), (T − ρ(i))+)

)
− Ex

(∫ T∧ρ(i)

0

fi(X
(i)(u), T − u)du

)
.

Again appealing to Lemma 3.2 shows that the latter is exactly v(x, T ).
(b) It is sufficient to prove that for kε ≤ t ≤ (k + 1)ε we have

Ex

(
v(XCε

(t), T − t)|FCε

(kε)
)
≥ v(XCε

(kε), T − kε). (3.32)

The desired result then follows by applying the Tower Property of conditional expectation
and iterating this inequality.

Let us take ν
def
= Cε(kε) and H def

= FCε
(kε). Then ν takes values in the grid Z def

=
{0, ε, 2ε, . . .}3 and Λ ∈ H implies that Λ

⋂
{ν = z} is an element of the σ-field F(z) =

σ(F1(z1), . . . ,F3(z3)) for z ∈ Z. It follows from the definition of conditional expectation
that Px almost surely we have

Ex (·|H) = Ex (·|F(z)) on {ν = z}. (3.33)

Now, by continuity of Cε
i and right-continuity of FCε

, ξk must be H-measurable. So,

if A
def
= A1 × A2 × A3 with Ai Borel measurable for each i ∈ V , (3.33) gives the equality

Ex

(
1[ν=z, XCε (t)∈A, ξk=ei] |H

)
= 1[ν=z, ξk=ei] Ex

(
1[X(z+(t−kε)ei)∈A] |F(z)

)
,

where, as before, X(z) = (X1(z1), X2(z2), X3(z3)).
Next we use the facts that 1[Xj(zj)∈Aj ] is F(z) measurable for each j and that the

filtration Fi of Xi is independent of Fj for j 6= i, to show that the preceeding expression
is equal to

1[ν=z, ξk=ei,Xj(zj)∈Aj ,j 6=i] Ex

(
1[Xi(zi+(t−kε))∈Ai] |Fi(zi)

)
.

Finally, the Markov property of Xi allows us to write this as

1[ν=z,ξk=ei] EX(z)

(
1[X(i)(t−kε)∈A]

)
.

As Ex(v(X
(i)(t), s)) is Borel measurable for any s, t ≥ 0, this is enough to conclude

that in our original notation, on {ξk = ei},

Ex

(
v(XCε

(t), T − t)|FCε

(kε)
)

= EXCε (kε)

(
v(X(i)(t− kε), T − t)

)
. (3.34)

But part (a) shows that

Ex

(
v(X(i)(t− kε), (T − kε)− (t− kε))

)
≥ v(x, T − kε),

and so the right hand side of (3.34) is greater than or equal to v(XCε
(kε), T − kε).
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It is now relatively painless to combine the ingredients above. We take an arbitrary
strategy C, use Lemma A.2 to approximate it by the family Cε, ε > 0 and then use Lemma
3.4 part (b) with t = T ≥ 0 to show that

Px(τ
Cε

> T ) = Ex v(X
Cε

(T ), 0) ≥ v(x, T )

for any x /∈ D (equality holds trivially for x ∈ D).
The approximations are such that C(t) ¹ Cε(t+Mε) for some constant M > 0. Thus,

τC ≤ t implies that τC
ε ≤ t+Mε. More usefully, the contrapositive is that τC

ε
> t+Mε

implies τC > t and so monotonicity of the probability measure Px then ensures

Px(τ
C > t) ≥ Px(τ

Cε

> t+Mε) ≥ v(x, t+Mε).

Taking the limit ε→ 0 and using right continuity of v(x, t) in t completes the proof.

4 Existence and almost sure uniqueness of C?

In this section we give a proof for Lemma 1.4. Recall that we wish to study strategies C
that satisfy the property

(RTM) Ci increases at time t ≥ 0 (i.e. for every s > t, Ci(s) > Ci(t)) only if, under
some labelling of the processes,

XC
j (t) ≤ XC

i (t) ≤ XC
k (t).

Our idea is to reduce the existence and uniqueness of our strategy to a one-sided
problem. Then, we can use the following result, taken from Proposition 5 and Corollary
13 in [15] (alternatively §5.1 of [11]).

Lemma 4.1. Suppose that (Yi(t); t ≥ 0), i = 1, 2 are independent and identically dis-
tributed regular Ito diffusions on R, beginning at the origin and with complete, right
continuous filtrations (Hi(t); t ≥ 0). Then

(a) there exists a strategy γ = (γ1(t), γ2(t); t ≥ 0) (with respect to the multiparameter
filtration H = (σ(H1(z1),H2(z2)); z ∈ R2

+) such that γi increases only at times t ≥ 0
with

Y γ
i (t) = Y γ

1 (t) ∧ Y γ
2 (t),

i.e. “γ follows the minimum of Y1 and Y2”.

(b) If γ′ is another strategy with this property, then, almost surely, γ′(t) = γ(t) for
every t ≥ 0. That is, γ is a.s. unique.

(c) the maximum Y γ
1 (t) ∨ Y γ

2 (t) increases with t.

We first consider the question of uniqueness, it will then be obvious how C? must be
defined. Suppose that C is a strategy satisfying (RTM).

If X1(0) < X2(0) = X3(0), then C cannot run X1 (i.e. C1 does not increase) before
the first time ν that either XC

2 or XC
3 hit X1(0). Until then (or until a decision is made,

whichever comes first), C2 may increase only at times t ≥ 0 when XC
2 (t) ≤ XC

3 (t) and C3
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only when XC
3 (t) ≤ XC

2 (t). Hence, on τC ∧ ν ≥ t, the value of C(t) is determined by the
strategy in lemma 4.1. Now, XC

2 ∨ XC
3 increases during this time, and so if ν < τC, we

have
X1(0) = XC

1 (ν) = XC
2 (ν) ∧XC

3 (ν) < XC
2 (ν) ∨XC

3 (ν).

So again, we are in a position to apply the argument above, and can do so repeatedly until
a decision is made. In fact, it takes only a finite number of iterations of the argument
to determine C(t) for each t ≥ 0 (on τC ≥ t) because each diffusion Xi is continuous,
the minimum XC

1 ∧XC
2 ∧XC

3 is decreasing and the maximum XC
1 ∨XC

2 ∨XC
3 increasing.

If X1(0) < X2(0) < X3(0) then C must run X2 exclusively until it hits either X1(0) or
X3(0). From then on, the arguments of the previous case apply.

The remaining possibility is that X1(0) = X2(0) = X3(0) = a ∈ (0, 1). We shall define
random times νε, 0 < ε < (1− a) ∧ a such that

• C(νε) is determined by the property (RTM),

• under some labelling,

a− ε < XC
1 (νε) < a < XC

2 (νε) = XC
3 (νε) = a+ ε,

and

• νε → 0 as ε→ 0.

Again, we may then use the one-sided argument to see that, almost surely, on νε ≤ t ≤ τC,
C(t) is determined by (RTM). This is sufficient because νε → 0 as ε→ 0.

To construct νε, suppose, without loss of generality, that X1 and X2 both exit (a −
ε, a+ ε) at the upper boundary. We denote by αi the finite time taken for this to happen,
i.e.

αi
def
= inf{t > 0 : Xi(t) /∈ (a− ε, a+ ε)}.

Define
li

def
= inf

0≤s≤αi

Xi(s)

to be the lowest value attained by Xi before it exits (a − ε, a + ε). By Proposition 5 of
[15], it is almost sure that the li are not equal and so, we may assume that l3 < l2 < l1
(by relabelling if necessary).

Intuitively, (RTM) means that XC
1 and XC

2 should hit a + ε together while XC
3 gets

left down at l2. We already know it takes time αi for Xi to hit a + ε (i = 1, 2) and X3

takes time
β3

def
= inf{t > 0 : X3(t) = l2}.

to reach l2. So, we set νε = α1 + α2 + β3, and claim that

C(νε) = (α1, α2, β3).

The proof proceeds by examining the various cases. Firstly, if C1(νε) > α1 and C1(νε) ≥ α1,
then necessarily C3(νε) < β3 and X3(z3) > l2 for any z3 ≤ C3(νε). But, then there exist
times α′i < Ci(νε) (i = 1, 2) with

l2 = X2(α
′
2) < X3(z3) < X1(α

′
1) = a+ ε
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for any z3 ≤ C3(νε), contradicting (RTM).
The second case is that C1(νε) < α1 and C2(νε) ≤ α2. Necessarily we then have

C3(νε) > β3. Now, Xi(zi) ≥ l2 for zi ≤ αi, i = 1, 2 and so (RTM) implies that X3(z3) ≥ l2
as well for z3 ≤ C3(νε). In addition, (RTM) and C3(νε) > β3 imply that

C2(νε) ≥ inf{t > 0 : X2(t) = l2}

(otherwise X3(β3) < Xi(zi) for zi ≤ Ci(νε), i = 1, 2). So, both X2 and X3 have attained l2
and then stayed above it for a positive amount of time But, by Proposition 5 in [15], this
event that “the lower envelopes of X2 and X3 are simultaneously flat” has probability
zero.

The final case C1(νε) > α1 and C2(νε) ≥ α2 has two subcases, C3(νε) ≤ β3 and C3(νε) >
β3 – both can be eliminated by the methods above. The only remaining possibility is
that Ci(νε) = αi for i = 1, 2 and C3(νε) = β3.

The discussion above tells us how to define C? – if X1(0) < X2(0) ≤ X3(0) under some
labelling, then we just alternate the one-sided construction from lemma 4.1 repeatedly
to give a strategy satisfying (C1) – (C3). If X1(0) = X2(0) = X3(0) = a ∈ (0, 1), take
0 < ε < a ∧ (1 − a) and define C?(νu), 0 < u ≤ ε via the construction above. Now, νu

is only left continuous, so we have yet to define C? on the stochastic intervals (νu, νu+],
u ≤ ε. But, this is easily done because XC?

(νu) has exactly two components equal and
so we can again use the one-sided construction. We define C? on (νε, τ

C?
] similarly. The

properties (C1) and (C2) are readily verified. To confirm (C3), we first observe that C?

satisfies (RTM). But (RTM) gives us almost sure uniqueness of the paths of C?. It follows
that our definition of C? does not depend on ε. The second observation is that νu → 0 as
u→ 0. As a consequence, for η ∈ R3

+ and δ > 0,

{C?(t) ¹ η} = {C?(t) ¹ η, νu < δ some u < ε}
=

⋃
q

{C?(t) ¹ η, νq < δ},

where the union is over rational numbers 0 < q < ε. Using the fact that F is complete,

{C?(t) ¹ η, νq < δ} ∈ F(η1 + δ, η2 + δ, η3 + δ).

From this we conclude that {C?(t) ¹ η} ∈ F(η) because F is right continuous. This
confirms (C3).

5 XC?
as a doubly perturbed diffusion

We now turn our attention to the optimally controlled process XC?
. For convenience, we

will work with the minimum

It
def
= XC?

1 (t) ∧XC?

2 (t) ∧XC?

3 (t),

maximum
St

def
= XC?

1 (t) ∨XC?

2 (t) ∨XC?

3 (t),
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and middle value

Mt
def
= (XC?

1 (t) ∨XC?

2 (t)) ∧ (XC?

1 (t) ∨XC?

3 (t)) ∧ (XC?

2 (t) ∨XC?

3 (t)), t ≥ 0

of the components of XC?
(so, if XC?

1 (t) ≤ XC?

2 (t) ≤ XC?

3 (t), then It = XC?

1 (t),Mt =
XC?

2 (t), St = XC?

3 (t)). There is no ambiguity when the values of the components are
equal since we are not formally identifying It, Mt and St with a particular component of
XC?

Clearly, M behaves as an Ito diffusion solving (1.1) away from the extrema I and
S, while at the extrema it experiences a perturbation. This behaviour is reminiscent of
doubly perturbed Brownian motion, which is defined as the (pathwise unique) solution
(X ′

t; t ≥ 0) of the equation

X ′
t = B′

t + α sup
s≤t

X ′
s + β inf

s≤t
X ′

s,

where α, β < 1 and (B′
t; t ≥ 0) is a Brownian motion starting from the origin. This

process was introduced by Le Gall and Yor in [13]; the reader may consult the survey
[18] and introduction of [4] for further details. In §2 of [4], this definition is generalised
to accommodate non-zero initial values for the maximum and minimum processes in the
obvious way – if i0, s0 ≥ 0, we take

X ′
t = B′

t + α

(
sup
s≤t

X ′
s − s0

)+

− β

(
inf
s≤t

X ′
s + i0

)−
,

i.e. X ′ hits −i0 or s0 before the perturbations begin. As usual a+ = max(a, 0) and
a− = max(−a, 0).

Our suspicion that M should solve this equation if the underlying processes are Brow-
nian motions is confirmed in the following

Lemma 5.1. Suppose that 0 ≤ i0 ≤ m0 ≤ s0 ≤ 1 and σ = 1. Then, under P(i0,m0,s0),
there is a standard Brownian motion (B′

t; t ≥ 0) (adapted to FC?
) for which the process

M ′ = Mt −m0, t ≥ 0 satisfies

M ′
t = B′

t −
(

sup
s≤t

M ′
s − s′0

)+

+

(
inf
s≤t

M ′
s + i′0

)−
,

where i′0 = m0− i0 and s′0 = s0−m0. In other words, M is a doubly perturbed Brownian
motion with parameters α = β = −1.

Proof. The multiparameter martingale (X1(z1) + X2(z2) + X3(z3); z ∈ R3
+) is bounded

and right continuous. Hence, Theorem A.1 implies that

ξt
def
= XC?

1 (t) +XC?

2 (t) +XC?

3 (t), t ≥ 0

is a continuous (single parameter) martingale with respect to the filtration FC?
. But,

the Xi are independent Brownian motions and so the same argument applies to the
multiparameter martingale(

(X1(z1) +X2(z2) +X3(z3))
2 − (z1 + z2 + z3); z ∈ R3

+

)
,
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i.e. ξ2
t − t is a martingale. It follows that (ξt; t ≥ 0) is a Brownian motion with ξ0 =

i0 +m0 + s0 and we can take B′ = ξ − (i0 +m0 + s0).
Now, C? always “runs M” away from the extrema I and S of XC?

and so it is no
surprise that

It = inf
s≤t

Ms ∧ i0, St = sup
s≤t

Ms ∨ s0,

relationships which can be proved using the arguments of section 4. It follows that

M ′
t = Mt −m0 = ξt −m0 − St − It = B′

t − sup
s≤t

Ms ∨ s0 + s0 − inf
s≤t

Ms ∧ i0 + i0

The result now follows by noting that for real a and b we have a ∧ b− b = −(a− b)−

and a ∨ b− b = (a− b)+.

Lemma 5.1 is relevant because τC
?

is precisely the time taken for the doubly perturbed
Brownian motion M to exit the interval (0, 1). In particular, the expression we find for
the Laplace transform v̂r(x) can be recovered from Theorems 4 and 5 in Chaumont and
Doney [3].

We have so far assumed that σ = 1 and are yet to say anything about more general
“perturbed diffusion processes”. There are several papers that consider this problem.
Doney and Zhang [5] consider the existence and uniqueness of diffusions perturbed at
their maximum. More recently, Luo [14] has shown that solutions to

X ′
t =

∫ t

0

µ(s,X ′
s)ds+

∫ t

0

σ(s,X ′
s)dB

′
s + α sup

s≤t
X ′

s + β inf
s≤t

X ′
s, (5.35)

exist and are unique, but only in the case that |α| + |β| < 1. A more general perturbed
process is considered in [9] but similar restrictions on α and β apply.

That is, there are no existence and uniqueness results for doubly perturbed diffu-
sions which cover our choice of α and β, and less still for the Laplace transform of the
distribution of the time taken to exit an interval.

This is where our results seem to contribute something new. Lemma 5.1 easily gen-
eralises to continuous σ > 0, and this combined with the other results in this paper, lets
us see that if µ is bounded and Borel measurable and σ > 0 is continuous, then there is
a solution to

M ′
t =

∫ t

0

µ(M ′
s)dB

′
s +

∫ t

0

σ(M ′
s)dB

′
s − sup

s≤t
Ms − inf

s≤t
Ms.

Furthermore, we can compute the Laplace transform of the distribution of the time taken
for any solution of this equation to exit any interval (−a, b) when µ is zero.

6 Concluding remarks and future work

6.1 Majority decisions of 2k + 1 diffusions and veto voting

The problem that we have solved has natural generalisations in which there are m diffu-
sions instead of the three that we have considered.
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In particular, one might ask for the majority decision of an odd number of ‘diffusive
voters’ (Xi(t); t ≥ 0), i = 1, . . . ,m. Again, we believe that the optimal strategy is to
“run the middle”. In other words, if m = 2k + 1, and

XC?

1 (t) ≤ . . . ≤ XC?

k (t) < XC?

k+1(t) < XC?

k+2(t) ≤ . . . XC?

m (t)

then C?
k should increase at unit rate until XC?

k+1 hits either XC?

k (t) or XC?

k+2(t). This
prescribes that until then, all other components of XC?

are constant.
A special case of majority voting is ‘veto voting’, where we have an arbitrary number

m′ > 0 of diffusions, and declare a negative decision if at least k ≤ m′ of them get
absorbed at the lower boundary (otherwise no veto occurs and a positive decision is
made). To see that this is a majority voting problem, suppose that there is no veto if the
majority of voters return positive decisions (i.e. 2k < m′). This is equivalent to asking
for a majority of m = 2(m′ − k) + 1 diffusive voters, with m+ 1− 2k of them beginning
in a state of absorption at the origin. The case 2k ≥ m′ admits a similar majority voting
description and in particular, our conjecture for veto voting is that if

XC?

1 (t) ≤ . . . ≤ XC?

k−1(t) < XC?

k (t) < XC?

k+1(t) ≤ . . . XC?

m′(t)

then C?
k should increase at unit rate until XC?

k hits either XC?

k−1(t) or XC?

k+1(t). In other
words, we “run the component with kth order statistic”. The extreme of this is true veto
voting in which a single diffusion being absorbed at zero will veto the others. This is
the case k = 1, and the conjecture is that we should always “run the minimum” of the
diffusions.

One might also consider diffusions which obey different stochastic differential equa-
tions. We have found an implicit equation for the switching boundaries in the optimal
strategy for m′ = 2, k = 1 ‘veto voting’ problem by solving a free boundary problem.
However, we have no conjecture for the general solution.

6.2 Recursive majority revisited

To close, we return to the discrete recursive majority model that motivated us originally
(see discussion in the introduction). Recall that rn denotes the expected cost of the

optimal strategy for the n layer tree. The best lower bound for the limit γ = limn→∞ r
1/n
n

in the literature1 is 9
4
, which one arrives at by computing the Fourier coefficients of the

recursive majority function and applying either an equality due to O’Donnell and Servedio
(see §3 of [17]) or Theorem 1.8 of [20]. But, numerics suggest γ ≈ 2.45, leaving big a gap.
The best upper bound known to us is γ ≤ 2.472.

In the intrduction, we hinted at a continuous approximation to the discrete tree. What
we had in mind was to replace each of the Bernoulli random variables on the leaves with a
Brownian motion starting from p. These Brownian motions are absorbed at the endpoints
of (0, 1) and scaled so that the expected absorption time is one. As with the diffusion
model treated in this paper, the observer is billed for the time they spend running each
Brownian motion. Let Rn denote the least expect (time) cost for the Brownian tree. In

1It has been communicated to us that Oded Schramm and Mark Braverman improved this bound to
2.28 but did not publish details.
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this paper (see Remark 2.4), we have shown

R1(p) = − 6

p(1− p)

(
p(1− p) + p2 ln(p) + (1− p)2 ln(1− p)

)
,

so R1 ≤ r1 = 2(1 + p(1− p)).
Now, any strategy for the discrete model can also be used in this Brownian case and

so Rn is not greater than rn. It follows that

γ ≥ lim sup
n→∞

R1/n
n ,

from which we conclude that studying the Brownian tree may help give a lower bound
for γ.

Often, the Brownian version of a difficult discrete problem is easier to solve because
we have the heavy machinery of stochastic calculus at our disposal. But, we concede
that there is no particular reason to think that the n layer Brownian model may be more
tractable than the discrete counterpart. Indeed, while we have treated the n = 1 case in
this paper, we are unable even to give a conjecture on the n = 2 optimal strategy.

Still, we might ask, even if it is not possible to determine the optimal strategy, can
we say anything about the asymptotics of the expected cost Rn, and in doing so sharpen
the bound on γ? We have not, for example, been able to prove that R

1/n
n is eventually

monotone in n. Nor do we have the sub-multiplicative structure to guarantee that Γ =
limn→∞R

1/n
n even exists.

If the limit Γ does exist, is it equal to γ? One is tempted to guess affirmatively but
it is possible that the optimal strategy runs an exponentially growing number of leaf
Brownian motions for very short time, leading to Γ < γ. To us at least, this seems a
tough question to answer.

A A result from the theory of multiparameter pro-

cesses

The proofs of Lemmas 2.2 and 5.1 appealed to the fact that a multiparameter martingales
composed with a strategy is again a martingale. Moreover, it was asserted that we can
approximate an arbitrary strategy with a discrete one. This appendix contains a precise
statement of these results, together with basic definitions (adopted from §4 of [7]).

Let (Ω,F ,P) be a complete probability space, R+ denote the set of non-negative reals
[0,∞) and d ≥ 2. A family

(
F(η); η ∈ Rd

)
of σ-algebras contained in F is called a

multiparameter filtration if, for every η, ν ∈ Rd
+ with η ¹ ν,

F(η) ⊆ F(ν).

It is assumed that the following “usual conditions” hold;

• F(η) =
⋂

η¹ν F(ν) for every η ∈ Rd
+ (right continuity)

• F(0) contains all null sets (completeness)
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• for any η, ν ∈ Rd
+, the σ-algebras F(η) and F(ν) are conditionally independent

given F(η ∧ ν).

The final condition (usually referred to as “assumption (F4)” after [2]) is trivially
satisfied in our case since F is generated from independent filtrations.

A real valued process (Z(η); η ∈ Rd
+) is called a multiparameter super-martingale with

respect to (F(η); η ∈ Rd) if for every η,

• E |Z(η)| <∞, i.e. Z is integrable,

• Z(η) is F(η) measurable and

• E(Z(η)|F(ν)) ≤ Z(ν) for every η ¹ ν.

Recall that a strategy C is a Rd
+ valued process such that Ci increases from the origin,∑

i Ci(t) = t and {C(t) ¹ η} ∈ F(η) for every t ≥ 0 and η ∈ Rd
+ (conditions (C1)–(C3)

from section 1.3). Then, the filtration (FC(t); t ≥ 0) defined by

FC(t)
def
= {F ∈ F : F ∩ {C(t) ¹ η} ∈ F(η) ∀η ∈ Rd

+}, t ≥ 0

satisfies the usual conditions. The process

ZC
def
= (Z1(C1(t)), . . . , Zd(Cd(t)); t ≥ 0)

is adapted to this filtration.
The idea is that ZC should be a super-martingale with respect to FC. Indeed, Propo-

sition 4.3 in [7] reads

Theorem A.1. Suppose that Z is a right continuous multi-parameter super-martingale
and that C is a strategy. Then ZC is a (local) FC-super-martingale.

This theorem appears in various guises throughout the literature (a good reference for
the discrete case is chapter 1 of [1]), we do not give the proof. Merely, we will mention
one of its stepping stones – approximation of an arbitary strategy with a discrete one.

Recall from definition 3.3 that for any ε > 0, Πε denotes the set of strategies which
only increase in one component over each interval [kε, (k + 1)ε), k = 0, 1, . . ., i.e. Cε is in
Πε if Ċi a.e. takes only values 0 or 1 and is constant on each interval (kε, (k + 1)ε). The
promised approximation result is

Lemma A.2. For any strategy C, there exist a family of strategies Cε ∈ Πε, ε > 0 that
converge to C in the sense that

lim
ε→0

sup
t≥0

|C(t)− Cε| = 0,

where | · | is any norm on Rd.
Moreover, there is a positive constant M > 0 for which C(t) ¹ Cε(t + Mε) for every

t ≥ 0.

The existence and uniform convergence part of this lemma is exactly Theorem 7 of
Mandelbaum [15] and the second part is a corollary to the author’s constructive proof.
The details are omitted.
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