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Abstract. Motivated by Feller’s coin-tossing problem, we consider the problem of
conditioning an irreducible Markov chain never to wait too long at 0. Denoting by
τ the first time that the chain, X, waits for at least one unit of time at the origin,
we consider conditioning the chain on the event (τ > T ). We show there is a weak
limit as T → ∞ in the cases where either the statespace is finite or X is transient.
We give sufficient conditions for the existence of a weak limit in other cases and
show that we have vague convergence to a defective limit if the time to hit zero has
a lighter tail than τ and τ is subexponential.
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1. Introduction and notation

1.1. Introduction. Feller (in Section XIII.7 of [4]) showed that if p
(k)
n is the proba-

bility that there is no run of heads of length k or more in n tosses of a fair coin, then,
for a suitable positive constant ck

p(k)
n ∼ cks

n+1
k ,

where sk is the largest real root in (0,1) of the equation

(1.1) xk −
k−1∑
j=0

2−(j+1)xk−1−j = 0.

More generally, if the probability of a head is p = 1 − q, then the same asympotic
formula is valid, with equation (1.1) modified to become

(1.2) xk − q
k−1∑
j=0

pjxk−1−j = 0,

and ck = sk−p
q((k+1)sk−k)

.

The continuous-time analogue of this question is to seek the asymptotic behaviour of
the probability that Y , a Poisson process with rate r, has no inter-jump time exceeding
one unit by time T . It follows, essentially from Theorem 1.2 that, denoting by τY the
first time that Y waits to jump longer than one unit of time,

(1.3) P(τY > t) ∼ cre
−φrt,
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for a suitable constant cr, where φr = 1 if r = 1 and otherwise φr is the root (other
than r itself) of the equation

(1.4) xe−x = re−r.

A natural extension is then to seek the tail behaviour of the distribution of τ ≡ τX , the
first time that a Markov chain, X, waits longer than one unit of time at a distinguished
state, 0. In general, there has also been much interest (see [7], [8], [11], [1], [2], [3],
[6], [12], [9], [15], [10], [14], [13]) in conditioning an evanescent Markov process X on
its survival time being increasingly large and in seeing whether a weak limit exists.

1.2. Notation. We consider a continuous-time Markov chain X on a countable state-
space S, with a distinguished state ∂. We denote S \ {∂} by C. For convenience, and
without loss of generality, we assume henceforth that S = Z+ or S = {0, . . . , n} and
∂ = 0 so that C = N or C = {1, . . . , n}.
We assume that X is irreducible, and non-explosive. We denote the transition semi-
group of X by {P (t); t ≥ 0} and its Q-matrix by Q. We define the process X̃ as
X killed on first hitting 0 and we shall usually assume that X̃ is also irreducible on
C. We denote the substochastic semigroup for X̃ by {P̃ (t); t ≥ 0}. We denote the
successive holding times in state 0 by (Hn)n≥0 and the successive return times to state
0 by (Rn)n≥0, with the convention that H0 = 0 if X0 6= 0 and R0 = 0 if X0 = 0. From
time to time it will be convenient to refer to the current holding time, so we define
Ht = t − H0 + R0 + . . . Hn−1 + Rn−1 if Xt = 0 and H0 + R0 + . . . Hn−1 + Rn−1 ≤
t ≤ H0 +R0 + . . . Hn−1 +Rn−1 +Hn and Ht = ∅ otherwise. We denote the first time
that X waits in 0 for time 1 by τ and denote X killed at time τ by X̂. We denote

the statespace augmented by the current holding time in 0 by Ŝ
def
= C ∪{{0}× [0, 1)}.

By a slight abuse of notation, we denote the (substochastic) Markov chain (X̂t, Ht)

on the statespace Ŝ by X̂ also. The associated semigroup is denoted {P̂ (t); t ≥ 0}.
Throughout the rest of the paper we denote by Pi the probability on Skorokhod
pathspace D(S, [0,∞)), conditional on X̂0 = i, and the corresponding filtration by

(Ft)t≥0. Finally, we denote a typical hitting time of 0 from state i by τ
(i)
0 and its

density by ρi. We denote the density of a typical return time, R1, by ρ.

1.3. Convergence/decay parameters for evanescent chains. We recall (see for
example [9]) that, if X∗ is a Markov chain on C, with substochastic transition semi-
group P ∗ and Q- matrix Q∗, then X∗ is said to be evanescent if it is irreducible and
dies with probability one. In that case, we define

αX∗ = α = inf{λ ≥ 0 :

∫ ∞
0

P ∗ij(t)e
λtdt =∞}

for any i, j ∈ C, and (see, for example, Seneta and Vere-Jones [17]) X∗ is classified
as α-recurrent or α-transient depending on whether

∫∞
0
P ∗ij(t)e

αtdt = ∞ or is finite.

Moreover, X∗ is α-recurrent if and only if
∫∞

0
f ∗ii(t)e

αtdt = 1, where f ∗ii is the defective
density of the first return time to i (starting in i).

In the α-recurrent case, X∗ is α-positive recurrent if∫ ∞
0

tf ∗ii(t)e
αtdt <∞,
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otherwise X∗ is α-null recurrent It is easy to see that α < q∗i for all i ∈ N and hence

0 ≤ α ≤ inf
i
q∗i .

Thus α measures the rate of decay of transition probabilities (in C). There is a second
decay parameter—µ∗, which measures the rate of dying.

We define τ ∗ as the death time of X∗ and we define s∗i (t) =
∑

j P
∗
ij(t) = P(τ ∗ > t)

and set

µ∗ = inf{λ :

∫ ∞
0

s∗i (t)e
λtdt =∞}.

Notice that µ∗ is independent of i by the usual irreducibility argument, moreover,
since 1 ≥ s∗i (t) ≥ P ∗ii(t) it follows that

0 ≤ µ∗ ≤ α∗.

Note that in our current setting, we shall take X∗ = X̃ and write τ ∗ = τ0, the first
hitting time of 0. We shall denote the rate of hitting 0, which is the death rate
for X∗, by µC and α∗ by αC and the survival probabilities for X̃ as sC , so that
sCi (t) = Pi(τ0 > t).

1.4. Doob h-transforms. Recall (see, for example, III.49 of Williams [19]) that we
may form the h-transform of a substochastic Markovian semigroup on S, (P (t))0≤t,
if h : S → R+ is P -superharmonic (i.e. [P (t)h](x) ≤ h(x) for all x ∈ S and for all
t ≥ 0). The h-transform of P , P h, is specified by its transition kernel which is given
by

P h(x, dy; t)
def
=
h(y)

h(x)
P (x, dy; t),

so that if we consider the corresponding substochastic measures on path- space, Px
and Phx (conditional on X0 = x) then

dPhx
dPx

∣∣
Ft

= h(Xt)

and P h forms another substochastic Markovian semigroup. If h is actually space-time
P -superharmonic then appropriate changes need to be made to these definitions. In
particular, if h(x, t) = eφthx then

dPhx
dPx

∣∣
Ft

= eφthXt .

As shown in [9], in general, when a weak limit or a vague limit exists for the problem
of interest, it must be a Doob-h- transform of the original process, with the state
augmented by the current waiting time in state 0 in the case we study here.

1.5. Main results. We define

si(t)
def
= Pi(τ > t) = P̂ (i, Ŝ; t).

Our first result is
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Theorem 1.1. Suppose that X is transient. Denote Pi(X never hits 0) by βi and

define ∆ =
∑

j∈C
q0,jβj
q0

. Set

(1.5) p(0,0)
def
= p0 =

(1− e−q0)∆
e−q0 + (1− e−q0)∆

,

(1.6) p(0,u) =
1− e−q0(1−u)

1− e−q0
p0,

and

(1.7) pi = βi + (1− βi)p0 for i ∈ C.
Then

(1.8) si(t)
t→∞−→ pi for all i ∈ Ŝ.

Hence, if we condition X on τ =∞ we obtain a new Markov process, X∞, on Ŝ with
honest semigroup P∞ given by

(1.9) P∞i,j (t) =
pj
pi
P̂i,j(t) for j ∈ C

and

(1.10) P∞i ((0, du); t) =
p(0,u)

pi
P̂i((0, du); t),

so that X∞ looks like a Markov chain with Q-matrix given by q∞i,j =
pj
pi
qi,j on C, whilst

X∞ has a holding time in 0 with density d gven by

d(t) =
e−q0t∫ 1

0
e−q0sds

and a jump probability out of state 0 to state j of
q0,jpj
q0p0

(independent of the holding

time).

In the case where X is recurrent, it is clear that si(t)
t→∞−→ 0 for each i ∈ Ŝ.

Now let W
def
= H1 + R1 (so that W is the first return time of X to 0 from 0) and

let g be the (defective) density of W1(H1<1) on (0,∞). Our first result under these
conditions is as follows. It is a generalisation to our more complex setting of Seneta
and Vere-Jones’ result in the α-positive case.

Theorem 1.2. Let

I(λ)
def
=

∫ ∞
0

eλtg(t)dt = EeλW1(H1<1),

then if

(1.11) there exists a φ such that I(φ) = 1, and I ′(φ−) <∞,

then for each i ∈ Ŝ,

eφtsi(t)
t→∞−→ pi > 0,

for a suitable function p. The function p is now given by

(1.12) p(0,0) =
eφ−q0

φI ′(φ−)
def
= κ,
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(1.13) p(0,u) =

∫ 1−u
0

e(φ−q0)sds∫ 1

0
e(φ−q0)sds

κ,

and

(1.14) pi = Fi,0(φ)κ,

where

Fi,0(λ)
def
= Eeλτ

(i)
0 =

∫ ∞
0

eλtρi(t)dt.

The following simple condition ensures that condition (1.11) holds.

Lemma 1.3. Suppose that X̃ is α-recurrent, and both N0
def
= {i : qi,0 > 0} and

N∗0
def
= {i : q0,i > 0} are finite, then (1.11) holds.

Corollary 1.4. Let XT denote the chain on Ŝ obtained by conditioning X̂ on the
event (τ > T ), then, if condition (1.11) holds, for each s > 0, the restriction of the
law of XT to Fs converges weakly to that of X∞ restricted to Fs, where the transition
semigroup of X∞ is given by equations (1.9) and (1.10).

In the case where I(φ) < 1 or I ′(φ−) = ∞, Theorems 3.6, 3.7 and 3.9 (may) apply,
giving some sufficient conditions for weak or vague convergence to take place. In
Theorem 3.10 and Corollary 3.11, we give an application to the case of a recurrent
birth and death process conditioned not to wait too long in state 0.

2. Proof of the transient and α-positive cases

To prove Theorem 1.1 is straightforward.

Proof of Theorem 1.1 It is trivial to establish the equations

(2.1) pi = βi + (1− βi)p0

and

(2.2) p0 = (1− e−q0)
∑
j∈C

q0,j
q0
pi.

Equations (1.5)-(1.7) follow immediately. Then the conditioning result follows straight-
forwardly �

Example 2.1. We take a transient nearest-neighbour random walk with reflection at
0 and with up-jump rate of b and down-jump rate of d. Note that 1−β is the minimal
positive solution to P (t)h = h with h(0) = 1, and that 1− βi = (d

b
)i.

The main tool in the proof of Theorem 1.2 is the Renewal Theorem.

Proof of Theorem 1.2 First note that s(0,0) satisfies the renewal equation

(2.3) s(0,0)(t) =
(
1−

∫ ∞
0

g(u)du
)
1(t<1) +

∫ ∞
t

g(u)du+

∫ t

0

g(u)s(0,0)(t− u)du.

If we define

f(t) = eφts(0,0)(t),
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it follows immediately from (2.3) that

(2.4) f(t) = eφt
(
(1−

∫ ∞
0

g(u)du)1(t<1) +

∫ ∞
t

g(u)du
)

+

∫ t

0

g̃(u)f(t− u)du,

where g̃(t)
def
= eφtg(t). Now, it is easy to check that the conditions of Feller’s alterna-

tive formulation of the Renewal Theorem (see XI.1 of [5], p.363) are satisfied, so we
conclude that

(2.5) f(t)
t→∞−→ µ−1

∫ ∞
0

eφt((1−
∫ ∞

0

g(u)du)1(t<1)) +

∫ ∞
t

g(u)du)dt,

where

µ =

∫ ∞
0

tg̃(t)dt = I ′(φ−).

It is trivial to establish, by changing the order of integration, that∫ ∞
0

eφt
∫ ∞
t

g(u)dudt =

∫ ∞
0

g(u)

∫ u

0

eφtdtdu =
I(φ)−

∫∞
0
g(u)du

φ
=

1−
∫ 1

0
q0e
−q0udu

φ
=
e−q0

φ
,

and hence (1.12) follows.

To establish (1.14), notice that (by conditioning on the time of the first hit of 0),

si(t) =

∫ ∞
t

ρi(u)du+

∫ t

0

ρi(u)s(0,0)(t− u)du,

and so, denoting eφtsi(t) by fi(t), we obtain

fi(t) = eφt
∫ ∞
t

ρi(u)du+

∫ t

0

ρ̃i(u)f(t− u)du,

where ρ̃i(t)
def
= eφtρi(t). Now f is continuous and converges to κ so, by the Dominated

Convergence Theorem,∫ t

0

ρ̃i(u)f(t− u)du
t→∞−→

∫ ∞
0

κρ̃i(u)du = κFi,0(φ).

Moreover, since Fi,0(φ) =
∫∞

0
ρ̃i(u)du <∞, it follows that eφt

∫∞
t
ρi(u)du ≤

∫∞
t
ρ̃i(u)du

t→∞−→
0, and hence

fi(t)
t→∞−→ κFi,0(φ)

as required.

To establish (1.13), observe that

s(0,u)(t) = e−q0t1(t<1−u) +

∫ t

0

∫ (1−u)∧v

0

q0e
−q0vρ(w − v)s(0,0)(t− w)dvdw

and hence

f(0,u)(t)
def
= eφts(0,u)(t) = e(φ−q0)t1(t<1−u)+

∫ t

w=0

∫ (1−u)∧w

v=0

q0e
(φ−q0)vρ̃(w−v)f(t−w)dvdw,

and hence, by the Dominated Convergence Theorem,

f(0,u)(t)
t→∞−→ κ

∫∞
0

∫ w∧(1−u)
0

q0e
(φ−q0)vρ̃(w − v)dv

= κ
∫∞

0
ρ̃(t)dt

∫ 1−u
0

q0e
(φ−q0)vdv = κ

∫ 1−u
0 e(φ−q0)sds∫ 1

0 e
(φ−q0)sds

,

as required �
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Remark 2.2. Note that the case mentioned in the introduction, where Y is a Poisson(r)
process and we let τY be the first time that an interjump time is one or larger, can be
addressed using the proof of Theorem 1.2. In this case, if we consider that the chain
”returns directly to 0” at each jump time Y then

I(λ) =

∫ 1

0

re(λ−r)tdt,

and so φ satisfies r e
φ−r−1
φ−r = 1 which establishes (1.4), and

eφtP(τ > t)
t→∞−→ eφ−r

φI ′(φ−)
=

φ− r
r(φ− 1)

,

for r 6= 1. The case r = 1 gives φ = 1 and c1 = 2.

Now we give the

Proof of Lemma 1.3 It follows from Theorem 3.3.2 of [10] that if N0 is finite then
αC = µC . Now since X̃ is α-recurrent it follows that∫ ∞

0

eλtP̃ii(t)dt <∞ iff λ < αC ,

and so one easily deduces (since sCi (t) ≥ P̃ii(t)) that∫ ∞
0

eλtsCi (t)dt <∞ iff λ < αC .

Now

I(λ) =

∫ ∞
0

eλtg(t)dt =

∫ 1

0

e(λ−q0)tdt
(∑
i∈N∗0

q0,iFi,0(λ)
)

=

∫ 1

0

e(λ−q0)tdt
(∑
i∈N∗0

q0,i(
Fi,0(λ)− 1

λ
)
)
,

and so I(λ) < ∞ iff λ < αC . It now follows trivially that φ < αC and that (1.9) is
satisfied �

Now we give the

Proof of Corollary 1.4 This follows immediately from Theorem 1.2 and Theorem 4.1.1
of [9] provided that we can show that h, given by h : (i, t) 7→ eφtpi, is P̂ -harmonic. This
is easy to check by considering the chain at the epochs when it leaves and returns to
0, i.e. we show that, defining σ as the first exit time from 0, E(0,u)h(X̂tminσ, t ∧ σ) =

h((0, u), 0) and Eih(X̂t∧τ0 , t ∧ τ0) = h(i, 0) for i ∈ C. This is sufficient since X̂ is
non-explosive �

3. The α-transient case

We seek now to consider the α-transient case. In particular, we shall focus on the
case where φ = 0. This is not so specific as one might think since one can (at the cost
of a slight extra difficulty) reduce the general case to that where φ = 0.
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3.1. Reducing to the case where φ = 0. We discuss briefly how to transform the
problem to this case.

The essential technique is to note that if, for any λ ≤ φ, we h-transform P̂ using the
space-time P̂ -superharmonic function hλ given by

hλ(i, t) = Fi,0(λ)eλt for i ∈ C

and

hλ((0, u), t) = (1− I(λ)
Jλ(u)

Jλ(1)
)e−(λ−q0)ueλt for u ∈ [0, 1),

where

Jλ(x)
def
=

∫ x

0

e(λ−q0)vdv,

then we obtain a new chain X on Ŝ, with φX = φ− λ and satisfying gX(t) = eλtg(t),
which dies only from state (0, 1−).

Proof. It is a standard result that hλ is space-time harmonic for P̂ off {0} × [0, 1),
while, since I(λ) < 1, it is easy to see that hλ is superharmonic on {0} × [0, 1), by
conditioning on the time of first exit from 0. Now it is easy to check that X dies
only from state (0, 1−) and dies on a visit to 0 with probability 1− I(λ) so the result
follows immediately. �

Remark 3.1. Note that, in the α-null-recurrent case, where I(φ) = 1 but I ′(φ−) =
∞, the transform above produces a null-recurrent h- transform when λ = φ, whereas
the transform is still evanescent in the α-transient case.

It will follow from L’Hôpital’s Theorem in the α-transient cases that if ψi denotes the

density (on (1,∞)) of τ when starting from state i, then, if ψi(t−v)
ψj(t)

has a limit as t→∞

then it is the common limit of si(t−v)
sj(t)

=
∫∞
t−v ψi(u)du∫∞
t ψj(u)du

and
hφi
hφj

sh
φ

i (t−v)
sh
φ
j (t)

=
∫∞
t−v e

φuψi(u)du∫∞
t eφuψj(u)du

.

In the α-null recurrent case, we see that this is not of much help. It is not hard to
generalise Lemma 3.3.3 of [15] to prove that in this case (i, t) 7→ eφthφi is the unique

P̂ -superharmonic function of the form eλtki and so gives the only possible weak or
vague limit.

3.2. Heavy and subexponential tails. All the results quoted in this subsection,
apart from the last, are taken from Sigman [18].

Recall first that a random variable (normally taking values in R+) Z, with distribution
function FZ , is said to be heavy-tailed, or to have a heavy tail, if

FZ(t+ s)

FZ(t)

t→∞−→ 1 for all s ≥ 0,

where FZ
def
= 1− FZ , is the complementary distribution function.

Denoting the n-fold convolution of FZ by F n
Z , Z is said to have a subexponential tail,

or just to be subexponential, if

(3.1)
F n
Z (t)

FZ(t)

t→∞−→ n for all n,
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and (3.1) holds iff

(3.2) lim sup
t→∞

F n
Z (t)

FZ(t)
≤ n for some n ≥ 2.

A subexponential random variable always has a heavy tail.

Two random variables, X and Y , are said to have comparable tails, or to be tail
equivalent, if

FY (t) ∼ cFX(t)

for some c > 0.

Y is said to have a lighter tail than X if

FY (t)

FX(t)

t→∞−→ 0.

Lemma 3.2. If X and Y are independent, Y is lighter tailed than X and X has a
subexponential tail then X + Y has a subexponential tail and

FX+Y (t) ∼ FX(t).

Lemma 3.3. If X and Y are independent and subexponential and tail-equivalent with

FY (t) ∼ cFX(t),

then X + Y is subexponential and

FX+Y (t) ∼ (1 + c)FX(t).

This generalises to the following random case:

Lemma 3.4. Suppose that N is a geometric r.v. and X1, . . . are iid with common d.f
F which is subexponential, then if

S
def
=

N∑
1

Xi,

then S is subexponential and

FS(t) ∼ (EN)FX(t).

Finally, we have the following

Lemma 3.5. Suppose that X1, . . . are independent and tail-equivalent with

FXi
def
= Fi,

and J is an independent random variable taking values in N. Let

Y = XJ ,

(so that Y is a mixture of the Xis) and denote its distribution function by F (so
F (t) =

∑
i∈N P(J = i)Fi(t)).

Now suppose that
Fi(t) ∼ aiF1(t) :

if the collection {FJ (t)

F1(t)
; t ≥ 0} are uniformly integrable then,

(3.3) F (t) ∼ (EcJ)F1(t).

In particular, if J is a bounded r.v. then (3.3) holds.
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Proof. It follows from the assumptions that

FJ(t)

F1(t)

t→∞−→ cJ a.s.

Thus if the collection is u.i. then convergence is also in L1 and so, since EFJ(t) = F (t),
we see that

F (t)

F1(t)

t→∞−→ EcJ .

In particular, if J ≤ n a.s. then

lim sup
t→∞

FJ(t)

FX1(t)
≤ max

1≤i≤n
ci a.s.,

and so the collection is indeed u.i. �

3.3. Results for heavy tails. Suppose first that 0 = φ < µC .

Theorem 3.6. If 0 = φ < µC and τ is subexponential, then si(t−v)
sj(t)

t→∞−→ 1 for all v ≥ 0

and s(0,u)(t− v)/s(0,0)(t)
t→∞−→ 1−e−q0(1−u)

1−e−q0 .

Proof. Notice first that, since µC > 0, Pi(τ0 > t) ≤ kie
−µCt/2, so that τ i0 has a lighter

tail than τ so, by Lemma 3.2,

si(t− v) = P(0,0)(τ
i
0 + τ > t− v) ∼ P(0,0)(τ > t− v) ∼ P(0,0)(τ > t) = s(0,0)(t).

Similarly,

s(0,u)(t− v) =

∫ 1−u

0

q0e
−q0wP(R1 + τ > t− v − w)dw ∼ (1− e−q0(1−u))P(R1 + τ > t)

and so s(0,u)(t− v)/s(0,0)(t) converges to the desired limit. �

It is easy to see that h, defined by hi = 1, for i ∈ C and h(0,u) = 1−e−q0(1−u)

1−e−q0 is strictly

P̂ - superharmonic and is harmonic on C: the following theorem then follows easily
from a mild adaptation of Theorem 4.1.1 of [9].

Theorem 3.7. Under the conditions of Theorem 3.6, the restriction of the law of X̃T

to Fs converges vaguely to that of X∞ restricted to Fs, where P∞ is the (substochastic)

h-transform of P̃ (which dies from state (0, u) with hazard rate λ(u) = q0e−q0

1−e−q0(1−u) ).

Example 3.8. Consider the case where
∑

j∈C q0,jFj,0(λ) = ∞ for all λ > 0 but
µC > 0. For example, we may take the nearest-neighbour random walk on N with
up-jump rate b and down-jump rate d (with b < d) and then set

q0 = 1; q0,i =
6

π2i2
for i ∈ N.

It is well-known that
µC = b+ d− 2

√
bd,

and
Fi,0(λ) = γiλ,

where

γλ =
b+ d− λ−

√
(b+ d− λ)2 − 4bd

2b
> 1

for 0 < λ ≤ µC. So, for any λ > 0,
∑

i∈N q0,iFi,0(λ) = EeλR1
=∞ and hence φ = 0.
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Now we consider the case where µC = 0 (and hence φ = 0 also).

Theorem 3.9. Suppose that τ (i) have comparable heavy tails, so that P(τ (i) > t) =

Pi(τ > t) ∼ ciP(τ (0) > t) = P(0,0)(τ > t) and Pi(τ>t+s)
Pi(τ>t)

t→∞−→ 1, then, defining

hi = ci, for i ∈ S
and

h(0,u) =
1− e−q0(1−u)

1− e−q0
,

(3.4)
sj(t− v)

si(t)

t→∞−→ cj
ci

for all v ≥ 0 and for all i, j ∈ Ŝ.

In particular, if the τ
(i)
0 ’s have comparable subexponential tails, with

P(τ
(i)
0 > t) = Pi(τ0 > t) ∼ aiP(τ

(1)
0 > t) = aiP1(τ0 > t)

and
q0,i = 0 for i > n,

then, defining a0 = 0, m =
∑

i∈C q0,iai/q0,

hi = 1 +
ai

(eq0 − 1)m
, for i ∈ S

and

h(0,u) =
1− e−q0(1−u)

1− e−q0
,

we have that
sj(t− v)

si(t)

t→∞−→ hj
hi

for all v ≥ 0 and for all i, j ∈ Ŝ.

In general a must be P̃ -superharmonic. If a is P̃ -harmonic then h is P̂ -harmonic, so
that, in this case, the restriction of the law of X̃T to Fs converges weakly to that of
X∞ restricted to Fs, where P∞ is the (stochastic) h-transform of P̃ .

Proof. The first claim is essentially a restatement of the conditions for convergence in
(3.4).

To prove the second statement, first notice that we may write

τ (i) = τ
(i)
0 + 1 +

N∑
n=1

(H̃n +Rn),

where (H̃n)n≥1 are a sequence of iid random variables with distribution that of the
holding time in 0 conditioned on its lying in (0,1), N is a Geometric(e−q0) r.v. and
the Rn’s are as in section 2 and all are independent.

Now each Rn is a mixture of τ
(i)
0 s, so, by Lemma 3.5,

P(Rn ≥ t) =
∑
i∈C

q0,i
q0

P(τ
(i)
0 ≥ t) ∼

∑
i∈C

q0,i
q0
aiP(τ

(1)
0 ≥ t) = mP(τ

(1)
0 ≥ t).

Now it follows from Lemma 3.2 that (H̃n + Rn) is tail equivalent to Rn and is
subexponential and then we deduce, from Lemmas 3.3 and 3.4 that P(τ (i) > t) ∼
(ai + m(eq0 − 1))P(τ

(1)
0 ≥ t) = m(eq0 − 1)hiP(τ

(1)
0 ≥ t). The last statement follows
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from the fact that X̃ is non-explosive and it is then easy to check (by considering the

chain at the epochs when it leaves and returns to 0) that then h is P̂ -harmonic if a is
P̃ -harmonic �

Theorem 3.10. Suppose that X̃ is a recurrent birth and death process on Z+ and,

for some i, τ
(i)
0 is subexponential, then P(τ

(j)
0 > t) ∼ βj

βi
P(τ

(i)
0 > t), where β is the

unique P̃ harmonic function on N with β1 = 1.

Proof. Notice that, since τ
(i)
0 is subexponential, it follows that µC = 0 and hence, by

Theorem 5.1.1 of [10], there is a unique P̃ - harmonic β. It follows that for any n, σn,
the first exit time of X from the set {1, . . . , n− 1} has an exponential tail (i.e its tail
decreases to 0 at an exponential rate) and the exit is to n with probability βi/βn if X
starts in i.

It follows that for each j ≤ i,

P(τ
(j)
0 > t) ∼ βj

βi
P(τ

(i)
0 > t).

Similarly, for i < n, τ
(i)
0 = σn + 1Aτ

(n)
0 , where A =(X exits {1, . . . , n − 1} to n), so

that

P(τ
(i)
0 > t) ∼ P(A)P(τ

(n)
0 > t) =

βi
βn

P(τ
(n)
0 > t).

�

The following is an immediate consequence of Theorems 3.9 and 3.10.

Corollary 3.11. If X̃ is a birth and death process on Z+ and, for some i, τ
(i)
0 is

subexponential, and for some n q0,j = 0 for j > n then the conclusion of Theorem 3.9
holds.

Remark 3.12. If µC = 0 and the process conditioned on not hitting 0 until time T

converges vaguely, then the τ
(i)
0 ’s must have comparable heavy tails. If, in fact the

convergence is weak (i.e. to an honest process) then the vector a must be harmonic
for P̃ .

Remark 3.13. Suppose that X is a birth and death process, with birth rates bi equal

to the corresponding death rates. If the rates are decreasing in i, then τ
(1)
0 is subexpo-

nential.

To see this, first observe that, by conditioning on the first jump, we obtain that

P(τ
(1)
0 > t) =

1

2
P(E1 > t) +

1

2
P(E1 + τ

(2)
0 > t),

where E1 is the first waiting time in state 1. Now, since

τ
(2)
0 = τ

(2)
1 + τ

(1)
0

and since τ
(2)
1 stochastically dominates τ

(1)
0 , we obtain the desired result that

lim sup
t→∞

F (2)(t)

F (t)
≤ 2,

where F is the distribution function of τ
(1)
0 . The result now follows by (3.2).
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4. Some concluding remarks

Sigman [18] gives some conditions which ensure that a random variable has a subex-
ponential tail.

Many obvious examples exist of the α-recurrent case. We have exhibited a few exam-
ples in the α-transient case always assuming that C is irreducible. If it is not, then in
principle we can divide C into communicating classes {Cl : l ∈ L}, where L is some
countable or finite index set. It is easy to show that

φ ≤ inf
l∈L

µCl .

By adapting the proof of Theorem 3.6, it is easy to see that if τ is subexponential

but µCl > 0 for some l ∈ L, then si(t−v)
sj(t)

t→∞−→ 1 for i, j ∈ Cl ∪ {{0} × [0, 1) and so,

as in Theorem 3.7, weak convergence of the conditioned chains is not possible if each
µCl > 0. Conversely, if min

l∈L
µCl = µCl∗ and X restricted to Cl∗ is α-recurrent then

φ = µCl∗ and a suitably adapted version of Theorem 1.2 and Corollary 1.4 will apply.
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