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Abstract We show that the problem of pricing the American put is equivalent
to solving an optimal stopping problem. The optimal stopping problem gives rise to a
parabolic free-boundary problem. We show there is a unique solution to this problem
which has a lower boundary. We identify an integral equation solved by the boundary
and show that it is the unique solution to this equation satisfying certain, natural,
additional conditions. The proofs also give a natural decomposition of the price of the
American option as the sum of the price of the European option and an ‘American
premium’.
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§1 Introduction

This paper concerns itself with the problem of pricing the basic American put
option. The option confers the right to sell a unit of stock at any time up to the time
horizon T . We assume that the stock pays no dividends during the lifetime of the option
and that the stock price at time t, Xt, is an exponential Brownian motion:

Xt = X0exp(σBt + (µ− 1/2σ2)t)

where (Bt; t ≥ 0) is canonical Brownian motion. Thus Xt is the unique (strong) solution
to the stochastic differential equation:

dXt = σXtdBt + µXtdt

with fixed initial value X0. We also assume that cash generates interest at a fixed rate
α(> 0).

This paper establishes, using elementary techniques, the ‘well-known’ result that
the fair price for the option, regarded as a function of the present stock price and the
time horizon, is the (essentially) unique solution to a parabolic free-boundary problem;
Theorem 4.2.1 (see, for example, McKean (1965) and Van Moerbeke (1976). We estab-
lish certain basic properties of the (lower) free boundary b(t); and show that b(t) is the
unique left-continuous solution of a convolution-type integral equation; Theorem 4.2.2.



2

The result that the option price is the solution to an optimal stopping problem
— generalising the Black-Scholes option pricing formula (Black and Scholes (1973)) —
is proved in Karatzas (1987) but we give a summary in section 3 for the sake of com-
pleteness. For a summary of the hedging portfolio technique for pricing options see
the excellent introduction in Harrison and Pliska (1981). The main contribution of this
paper is the verification of the essential uniqueness of the solution to the free bound-
ary problem and the identification of the integral equation satisfied by the stopping
boundary, which may prove numerically more tractable than the original free boundary
problem.

Similar results are presented in Kim (1990) and Carr,Jarrow and Myneni (1990):
Kim (1990) discusses numerical approaches to solving the integral equation for the
stopping boundary, Carr, Jarrow and Myneni (1990) discuss analytic approximations
and comparative statics.

The techniques developed in this paper are applied to more general optimal stopping
problems in Jacka and Lynn (1990).

§2 The optimal stopping problem

2.1 In this section we shall consider the problem of optimally stopping e−αtXt before
time T—that is, to find

f(x, t)
def
= sup

τ≤t
Ex[e−ατXτ ].

We work throughout this section with the martingale measure P (the measure P is the
one which makes the discounted stock price — e−αtXt— a martingale). We shall show
that the form of the solution is to stop (i.e. exercise the option), the first time that Xs,
the price of the underlying stock, falls below the moving boundary b(T − s) (T is, as
before, the original time to expiry of the option), we shall also deduce some properties
of b(·) as we proceed.

Under the measure P, Xt satisfies the SDE:

Xt(x) = x+
∫ t

0

σXs(x)dBs +
∫ t

0

αXs(x)ds,

where B is a P-Brownian motion, so that

Xt(x) = x exp(σBt + (α− 1/2σ2)t) (2.1.1)

Theorem 2.1.1 The optimal payoff from the stopping problem is a function only of
the present price of the stock and of the time to expiry of the option:

vT = f(X0, T );

the function f is continuous; f(x, t) ≥ (c − x)+; and the optimal stopping time τ is
given by

τ = inf{s : f(Xs, T − s) = (c−Xs)+}.
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Proof: The result follows immediately from Theorems 3.1.8 and 3.1.10 of Krylov
(1980) �

It is immediate from Theorem 2.1.1 that the optimal stopping time τ is given by

τ = inf{t ≥ 0 : (Xt, T − t) /∈ D}

where D, given by

D = {(x, t) ∈ R+ ×R+ : f(x, t) > g(x) ≡ (c− x)+},

is the continuation region for the stopping problem.

Lemma 2.1.2: The payoff f(x, t) > 0 for all x ≥ 0, t > 0.

Proof: Note that g(x) > 0 for all x < c; for x ≥ c and t > 0

f(x, t) ≥ c/2Exe
−ατc/2I(τc/2 < t) > 0

where
τc/2 = inf{s ≥ 0 : Xs ≤ c/2} ∧ t �

We can now establish the crucial result:

Proposition 2.1.3: For each t > 0, the t section of D is given by

Dt ≡ {x : (x, t) ∈ D} = (b(t),∞), (2.1.2)

for some b(t) satisfying c > b(t) > 0.

Proof: All we need to do is to prove that (x ∈ Dt) ⇒ (y ∈ Dt) for any y > x, since
0 is clearly not in Dt. To do this we use a pathwise comparison result based on (2.1.1).
Suppose x ∈ Dt, y > x, and let τ = inf{s ≥ 0 : (Xs(x), T − s) /∈ D} (τ is the optimal
stopping time for Xs(x)); then

f(y, t)− f(x, t)
= f(y, t)−Ee−ατ (c−Xτ (x))+ (since τ is optimal for X.(x))
≥ E(e−ατ{(c−Xτ (y))+ − (c−Xτ (x))+}) (since τ is feasible for X.(y))
= E[e−ατ{(c−Xτ (y))− (c−Xτ (x))}]

+
E[e−ατ{(c−Xτ (y))− − (c−Xτ (x))−}] (2.1.3)

Now from the pathwise solution given in (2.1.1), Xτ (y) ≥ Xτ (x) so that the second
term on the right-hand side of (2.1.3) is non-negative so we see that

f(y, t)− f(x, t) ≥ E{e−ατ (Xτ (x)−Xτ (y))}
= (x− y)E exp(σBτ − 1/2σ2τ)
= x− y (2.1.4)
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since exp(σBt − 1/2σ2t) is a martingale started at 1 and τ is a bounded stopping time.
Thus f(y, t) ≥ (x − y) + f(x, t) and so since f(x, t) > (c − x)+ (by virtue of the fact
that x ∈ Dt) we see that

f(y, t) > (x− y) + (c− x)+ ≥ (c− y)

moreover, from Lemma 2.1.2, f(y, t) > 0 (∀t > 0) so

f(y, t) > (c− y)+ �

Note that b(t) ≤ c for all t > 0 since if x > c, (c− x)+ = 0 whilst f(x, t) > 0

2.2 We shall now establish some of the properties of the boundary b.

Lemma 2.2.1

(i) f(·, t) is decreasing for each t.

(ii) f(x, ·) is increasing for each x.

Proof:

(i) this follows immediately from (2.1.1).

(ii) this follows immediately from the fact that if τ is admissible for the optimal stopping
problem with horizon t it is admissible for the problem with horizon s for any s ≥ t
�

Proposition 2.2.2 The boundary b is decreasing in t and bounded above by c.

Proof: By lemma 2.2.1, f(x, ·) is increasing, so for any t > 0; s ≥ 0, ε > 0

f(b(t) + ε, t+ s) ≥ f(b(t) + ε, t)
> g(b(t) + ε) (since b(t) + ε ∈ Dt)

and so for any ε > 0, s > 0, b(t) + ε ∈ Dt+s thus

b(t+ s) ≤ b(t)

and b is decreasing.

Finally note that g vanishes on [c,∞) whilst if x ≥ c, t > 0 then, from Lemma 2.1.2
f(x, t) > 0 so that b(t) < c ∀t > 0 �

We can now discern the limiting behaviour of b(t).

Proposition 2.2.3 Let (F, b) be the unique solution, with F ∈ C1, to

1/2σ2x2F ′′(x) + αxF ′(x)− αF = 0 : x ≥ b

F (x) = c− x : x < b

}
(2.2.1)



5

then

(i) b = 2δ
1+2δ c

F (x) =
{

(c− b)( b
x )2δ : x ≥ b

c− x : x < b

where δ = α/σ2 and F (x) ≡ supτ Exe
−ατg(Xτ )

(ii) limt→∞ f(x, t) = F (x)

(iii) limt→∞ b(t) = b

Proof:

(i) is a well-known result and may be proved directly from Theorem 2.1.1.

(ii) It is clear that f(x, t) ≤ F (x) ∀t; conversely, let τ = inf{t ≥ 0 : Xt ≤ b} then
F (x) = Ee−ατg(Xτ ) and if we define τt = τ ∧ t then for x > b

f(x, t) ≥ Exe
−ατtg(Xτt

)
≥ (c− b)Exe

−ατI(τ ≤ t)
t−→ (c− b)Exe

−ατ ≡ F (x)

(since e−αt is a bounded continuous function on R+ and τt
a.s.−→ τ). For x ≤ b,

f(x, t) ≥ g(x) = F (x).

(iii) Given x > b, F (x) > (c− x)+ so, letting ε = F (x)− (c− x)+, if we take T (ε) such
that

F (x)− f(x, t) ≤ ε/2 ∀t ≥ T (ε)

we see that
f(x, t) > (c− x)+

for t ≥ T (ε) so we conclude that limt→∞ b(t) ≤ b. Conversely if x < b then

(c− x)+ = F (x) ≥ f(x, t)

so x ≤ b(t) ∀t �

Proposition 2.2.4 The boundary b is left-continuous.

Proof: Both f and g are continuous so, since D = {(x, t) : f − g > 0}, D is open,
and thus Dc is closed. Since Dc is closed, if we take a sequence {tn} ↑↑ t we see that
(b(tn), tn) ∈ Dc ∀n so that b(t−) ≤ b(t) giving us left-continuity of b, by virtue of the
decreasing nature of b �

Proposition 2.2.5 The boundary b is right-continuous, and thus, by virtue of Propo-
sition 2.2.4, continuous.

We defer the proof of this until section 2.4.
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2.3 We now establish the relationship between f and a free boundary problem.

Proposition 2.3.1 The payoff function f is the unique solution to the initial value
problem:

Lφ = 0 : x > b(t)
φ(b(t), t) = c− b(t) : t ≥ 0
φ(x, 0) = (c− x)+

φ(x, t) x→∞−→ 0 uniformly on compact sets

 (2.3.1)

where L is the parabolic operator

1/2σ2x2 ∂
2

∂x2
+ αx

∂

∂x
− α− ∂

∂t

Proof: We first establish that f satisfies (2.3.1). Take (x, t) ∈ D, since D is open we
may take an open rectangle R = (x1, x2) × (t1, t2) with (x, t) ∈ R ⊆ D. Now consider
the initial value problem

Lφ = 0 : (x, t) ∈ R
φ(x, t) = f(x, t) : (x, t) ∈ ∂R\(x1, x2)× {t2}

}
,

the existence (and uniqueness) of a solution to this initial value problem is given by
Theorem 3.6 of Friedman (1975). Let us define

N t
s = e−αsφ(Xs(x), t− s).

It follows immediately from Itô’s formula that Ns∧τ , where

τ = inf{s ≥ 0 : (Xs, t− s) /∈ R}

is a bounded martingale, so that

φ(x, t) = N t
0 = EN t

τ = Ee−ατf(Xτ , t− τ) = f(x, t)

the last equality following from the fact that τ is bounded above by the first exit time of
(Xs(x), t− s) from D.Thus f satisfies Lf = 0 in D. The boundary conditions in (2.3.1)
are clearly satisfied by f ;the fact that f(x, t) x→∞−→ 0 uniformly on compact sets follows
from the fact that f(x, t) x→∞−→ 0 for each t (0 < f(x, t) ≤ cP(τc(X.(x)) ≤ t) for x > c

and τc(X.(x))
x→∞−→ ∞ a.s.) and f is increasing in t.

To establish uniqueness suppose that φ is a solution to (2.3.1); clearly, for any
T , φ is bounded on R+ × [0, T ] (we extend the definition of φ in the obvious way:
φ(x, t) = (c− x) for x ≤ b(t)). Now look at

MT
t = e−α(t∧τ)φ(Xt∧τ , T − (t ∧ τ))

where
τ = inf{s ≥ 0 : Xs = b(s)}
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and
X0 = x ≥ b(T ).

It is immediate from Itô’s formula and (2.3.1) that MT
t is a bounded martingale and so

MT
0 ≡ φ(x, T ) = EMT

T = Ee−α(τ∧T )g(Xτ∧T )
= f(x, T ) ∀T ∈ R+

(since we know τ ∧ T is optimal for the T -horizon problem) �

Proposition 2.3.2 The pair (f, b) are a solution pair (φ, h) to the free boundary
problem:

Lφ = 0 : x > h(t)
φ(h(t), t) = c− h(t)
φx(h(t), t) = −1
φ(x, 0) = (c− x)+ : x ≥ h(0)

φ(x, t) x→∞−→ 0 uniformly on compact sets


(2.3.2)

and f is maximal.

We shall need the following Proposition to prove Proposition 3.3.2.

Proposition 2.3.3 The function f is C1 in x.

Proof: Define

Ms ≡ tMf
s

def
= e−αsf(Xs, t− s) + αc

∫ s

0

e−αuI(Xu ≤ h(t− u))du,

It follows from Theorem 5 and Corollary 6 of Jacka (1989) that, since
∂D = {(b(s), s); s ≥ 0} has zero (two-dimensional ) Lebesgue measure and the de-
creasing component of the semi-martingale decomposition of (e−αtg(Xt)) is absolutely
continuous with respect to Lebesgue measure, tMf

s is a martingale. Thus

f(x, t) = M0 = EMt = K(x, t) + αc

∫ t

0

e−αuψ(x, b(t− u), u)du (2.3.3)

where K(x, t) = Ee−αt(c−Xt(x))+ [the price of the European option]
ψ(x, y, t) = P(Xt(x) ≤ y)

From this representation it follows that

fx(x, t) = αc

∫ t

0

e−αsψx(x, b(t− s), s)ds + Kx(x, t) Lebesgue a.e.

Thus we need only establish that r(x, t)
def
=

∫ t

0
e−αsψx(x, b(t − s), s)ds is continuous.

Since b is bounded and Borel-measurable it is sufficient to show that, for any Borel
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measurable c, d given by

d(x, t) =
∫ t

0

e−αsn(x− c(s), σ2s)ds

(where n(x, v) is the density at x of a normal random variable with mean zero and

variance v), is continuous in x. If we note that |nx| ≤
(

e
2π

)1/2 /(σ2t) and 0 < n <
1

σ(2πt)
1/2

then we see that

|d(x, t)− d(y, t)| ≤
∫ δ

0

ds

σ(2πs)
1/2

+
∫ t

δ

|x− y|
( e

2π

)1/2
/(σ2s)ds

=
2
√
δ

σ
√

2π
+ |x− y|

( e

2π

)1/2
ln(t/δ)/σ2.

Thus, setting δ = (x− y)2, we see that

|d(x, t)− d(y, t)| ≤ Kt|x− y|(1 + |ln|x− y||)

so that d is locally Hölder continuous. �

Proof of Proposition 2.3.2: The fact that (f, b) satisfy (2.3.2) follows immediately
from Propositions 2.3.1 and 2.3.3.

To show that f is maximal; suppose that (φ, h) is a solution pair to (2.3.2) then by
the same argument as that used in the proof of Proposition 2.3.1

φ(x, t) ≤ Ee−α(τh∧t)g(Xτh∧t) (since g(x) ≥ c− x)

where
τh = inf{s ≥ 0 : Xs = h(t− s)},

thus
φ(x, t) ≤ f(x, t) = sup

τ≤t
Ee−ατg(Xτ ) �

2.4 We return now to the proof of the continuity of b.

Proof of Proposition 2.2.4: Recall that Lf = 0 in D so that, since ∂f
∂t ≥ 0 and

∂f
∂x ≤ 0,

1/2σ2x2 ∂
2f

∂x2
≥ αf

in D. Thus, defining Dn def
= D ∩ [0, c]× [n−1, n],

inf
(x,t)∈Dn

1/2σ2x2 ∂
2f

∂x2
≥ εn > 0,

since f > 0 in cl(Dn) and is continuous, while cl(Dn) is compact.
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Now, given t > 0 take N : t ≥ N−1, then for any s with N ≥ s > t and any
x ∈ [b(t+) + η, c] :

f(x, s)− g(x, s) =
∫ x

b(s)

1/2σ2x2 ∂
2f

∂x2
(u, s)− 1/2σ2x2 ∂

2g

∂x2
(u, s)du

≥ ηεn ,

since 1/2σ2x2 ∂2g
∂x2 vanishes on [0, c]×R+,f and g agree on b up to first derivatives and b

is decreasing. Thus, taking a sequence (sn) decreasing strictly to t, it follows from the
continuity of f − g that

f(b(t+) + η, t)− g(b(t+) + η, t) ≥ ηεN > 0,

and hence that (b(t+) + η) ∈ Dt for all η > 0, implying that b(t+) ≥ b(t). Right-
continuity of b now follows from the fact that b is decreasing �

Remark The representation (2.3.3) is similar to one obtained, in a more general
context, in El Karoui and Karatzas (1989). We thank an anonymous referee for pointing
out this reference.

§3 Pricing the option

We now show the connection between the optimal stopping problem of section 2
and the option pricing problem.

We are confronted with the problem of pricing an option to sell, at any time before
T , one unit of the underlying stock at a fixed price c (an American put option). Harrison
and Pliska (1981) have shown how to solve this, and many other, problems when the
option is European, i.e. the right to sell may only be exercised at time T . Bensoussan
(1984) and Karatzas (1987) have generalised their arguments to the case of American
options but for the sake of completeness we shall run through the argument here.

We assume that the underlying stock-price is given by

dXt = σXtdBt + µXtdt

where B is a Brownian motion, and that interest on cash holdings is paid at a fixed rate
α, and that the stock generates no dividends.

Theorem 3.1 Let
dX ′

t = σX ′
tdBt + αX ′

tdt

with
X ′

0 = X0

and let
f(x, t) = sup

τ≤t
Exe

−ατ (c−X ′
τ )+ as in section 2
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be the optimal payoff from the problem of optimally stopping the process e−αs(c−X ′
s)

+.
Then there is a self-financing portfolio of stock and cash, ((Ys, Zs); 0 ≤ s ≤ t), with Y
and Z adapted, whose value at time s, Vs, satisfies

Vs ≡ (XsYs + Zs) ≥ (c−Xs)+

and such that if τ is the optimal stopping time corresponding to the payoff f(X0, t)
then

Vτ = (c−Xτ )+

so that X0Y0 + Z0 ≡ f(X0, t) is the fair price for the option.†

Proof: we have shown in section 2 that the optimal policy for the stopping problem
with horizon t is to exercise whenX ′

s falls below b(t−s), and that moreover f is piecewise
C2 in x, C1 in t, with

d(e−αsf(X ′
s, t− s)) = e−αsfx(X ′

s, t− s)σX ′
sdBs − αce−αsI(X ′

s ≤ b(t− s))ds

so that

df(X ′
s, t− s) = αf(X ′

s, t− s) + fx(X ′
s, t− s)σX ′

sdBs − αcI(X ′
s ≤ b(t− s)).

Setting Ys = fx(Xs, t− s)
Zs = f(Xs, t− s)−Xsfx(Xs, t− s) + eαsαc

∫ s

0
e−αuI(Xu ≤ b(t− u))du

and Vs ≡ XsYs + Zs = f(Xs, t− s) + αceαs
∫ s

0
e−αuI(Xu ≤ b(t− u))du(2.1)

we see that

dVs =αf(Xs, t− s)ds+ σfx(Xs, t− s)XsdBs

+(µ− α)fx(Xs, t− s)Xsds+ α
(
eαsαc

∫ s

0

e−αuI(Xu ≤ b(t− u)du
)
ds

=YsdXs + αZsds

so that V is the value of a self-financing portfolio (since Ys, Xs, and Zs are continuous
so dVs = Ys−dXs + αZs−dXs which is the ‘instantaneous return’ on a portfolio of Ys−
shares and Zs− cash); whilst, from (2.1), Vt ≥ (c−Xt)+ since f(x, t) ≥ (c− x)+.

§4 An integral transform of the stopping boundary

4.1 We first establish a martingale result.

† As is demonstrated in the proof, if someone writes the option and sells it for V0

and then purchases the portfolio (X0, Y0) and operates it in the prescribed manner then
they will not lose money and will make money unless (essentially) the purchaser uses
the option optimally — this is what we mean by V0 being the fair price for the option.
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Theorem 4.1.1: Let (φ, h) be a solution pair to the free-boundary problem (2.3.2);
then, extending the definition of φ in the obvious way and defining

Ms ≡ tMφ
s

def
= e−αsφ(Xs, t− s) + αc

∫ s

0

e−αuI(Xu ≤ h(t− u))du, (4.1.1)

(Ms : 0 ≤ s ≤ t) is a martingale.

Proof: From Itô’s formula,

dMs =e−αs(Lφ)(Xs, t− s)ds+ αce−αsI(Xs ≤ h(t− s))ds
+ e−αsφx(Xs, t− s)σXsdBs,

since φ is C1 and piecewise C2 in x, and piecewise C1 in t, but

(Lφ)(x, s) =
{

0 : x > h(s)
−αc : x < h(s)

so M is a local martingale. Since φ(x, u) → 0, uniformly for u in a compact set, as
x → ∞, and φ is C1 in x, φ is bounded on R+ × [0, t] so M is, in fact, a martingale.
�

4.2 We may now show that (f, b) are essentially the unique solution pair to (2.3.2):

Theorem 4.2.1: The pair (f, b) are the unique solution pair (φ, h) (with h Lebesgue-
measurable) to (2.3.2) satisfying h(t) > 0 infinitely often.

Proof: We have already established in Proposition 3.3.2 that (f, b) satisfy (2.3.2). Now
suppose (φ, h) are another solution pair to (2.3.2) with h(t) > 0, then define M0

s (x) and
M1

s (x) by

M0
s = e−αsf(Xs(x), t− s) + αc

∫ s

0

e−αuI(Xu(x) ≤ b(t− u))du

M1
s = e−αsφ(Xs(x), t− s) + αc

∫ s

0

e−αuI(Xu(x) ≤ h(t− u))du

Now fix t > 0 and consider
x < b(∞) ∧ h(t)
≤ b(t) ∧ h(t)

Since x < b(t) ∧ h(t),
f(x, t) = φ(x, t) = g(x),

and so, defining M = M0 −M1,M0 = 0. Now define

τ = inf{s ≥ 0 : Xu(x) > b(t− u)} ∧ t
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then EMτ∧s = M0 = 0 but

Mτ∧s =e−ατ∧s(f(Xτ∧s(x), t− τ ∧ s)− φ(Xτ∧s, t− τ ∧ s))
+

αc

∫ τ∧s

0

e−αuI(Xu(x) > h(t− u))du (4.2.1)

(since, on [0, τ) Xu(x) ≤ b(t−u)), and since each term on the right hand side of (4.2.1)
is non-negative (since f is maximal) we conclude that

X·∧τ∧s(x) ≤ h(t− · ∧ τ)(Lebesgue × Pa.e.)

and
φ(Xs∧τ (x), t− s) = f(Xs∧τ (x), t− s)

= g(Xs∧τ (x))(Pa.s.)
so that we may conclude that h(s) ≥ b(s) Lebesgue a.e.(s ≤ t).

However, if we consider Mt:

Mt = cα

∫ t

0

e−αs{I(Xs(x) ≤ b(t− s))− I(Xs(x) ≤ h(t− s))}ds

(because φ(x, 0) = f(x, 0) = g(x)), we see that the integrand is non-positive but EMt =
M0 = 0 so that the integrand is (Lebesgue × P)a.e. zero: we may now conclude that
b = h lebesgue a.e. (on [0, t]). Finally (taking an arbitrary x and s ≤ t)

φ(x, s) = sM1
0 = E sM1

s = E sM0
s = sM0

0 = f(x, s)

so that φ = f and hence h ≤ b everywhere on [0 ≤ s ≤ t] (since f > g on D); this implies
that h = b since Lf 6= 0 on Dc Note that the argument fails if ∃t : h(s) ≡ 0,∀s ≥ t. �

Remark: A close analysis shows that the case where h(s) = 0 for all s > t corresponds
to the case of prohibited stopping before horizon t.

Theorem 4.2.2: The boundary b(·) is the unique left-continuous solution h(·) satis-
fying c > h > 0 ∀t > 0 of the integral equation:

(c− x) = K(x, t) + αc

∫ t

0

e−αsψ(x, h(t− s); s)ds ∀x ≤ h(t) (4.2.2)

where, as before

K(x, t) = Ee−αt(c−Xt(x))+ [the price of the European option]
ψ(x, y, t) = P(Xt(x) ≤ y)

Proof: the fact that b satisfies (4.2.2) follows immediately from the fact that

(M0
s : s ≤ t) ≡ e−αsf(Xs(x), t− s) + αc

∫ s

0

e−αuI(Xu(x) ≤ b(t− u))du
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is a martingale, started at c− x, if x ≤ b(t).

If we now suppose that h solves (4.2.2) and define

φ(x, t) = K(x, t) + αc

∫ t

0

e−αsψ(x, h(t− s), s)ds

then it is clear that

M1
s ≡ e−αsφ(Xs(x), t− s) + αc

∫ s

0

e−αuI(Xu(x) ≤ h(t− u))du

is a (σ(Bu : u ≤ s); s ≤ t) martingale for every choice of (x, t) ∈ R2
+. The proof now

follows along the same lines as that of Theorem 4.2.1. Firstly note that, defining

τ = inf{s ≥ 0 : Xs(x) ≤ h(t− s) ∧ t}

we see that for x > h(t):

φ(x, t) ≡M1
0 = Ee−ατφ(Xτ , t− τ)

= Ee−ατg(Xτ )

so that for x ≥ h(t), φ ≤ f , whilst, from (4.2.2), φ = g ≤ f for x ≤ h(t).

Secondly we see, on taking 0 < x ≤ h(t) ∧ b(t) and setting

τ ′ = inf{s ≥ 0 : Xs(x) ≥ b(t− s)} ∧ t,

that

0 = f(x, t)− φ(x, t) =Ee−ατ ′(f(Xτ ′, t− τ ′)− φ(Xτ ′, t− τ ′))
+

Eαc
∫ τ ′

0

e−αuI(Xu > h(t− u))du (4.2.3)

and, since both the terms on the right of (4.2.3) are non-negative we conclude that h ≥ b
(Lebesgue a.e.), but this implies that φ ≥ f , so φ = f and so (by left continuity) h = b
�
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