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Abstract

Fractal subsets of Rn with highly regular structure are often constructed as

a limit of a recursive procedure based on contractive maps.

The Hausdorff dimension of recursively constructed fractals is relatively easy

to find when the contractive maps associated with each recursive step satisfy

the Open Set Condition (OSC). We present a class of random recursive

constructions which resemble snowflake structures and which break the OSC.

We calculate the associated Hausdorff dimension and conjecture that an a.s.

deterministic exact Hausdorff function does not exist.
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1 Introduction

A recursive construction is defined as the limit of a sequence of sets, each

of which is derived from its predecessor in the sequence by a simple step

or rule. When the recursive step is deterministic, the resulting construc-

tion will often be self-similar, such as the Sierpinski gasket or carpet. The

recursive step may, however, contain some randomisation. If the randomisa-

tion is conducted in a certain way, the resulting construction can be called

statistically self-similar (see [12] for details).

Mandelbrot [16] pointed out the use of such sets as models of naturally

occurring phenomena, such as snowflake crystals.

Restricting our attention to Rn from now on, in its simplest form the recur-

sive step may be formulated in terms of a set of contractive maps {φi}i∈I . If

we begin the recursion with a non-empty, compact set K we can write each

step in the construction as

Kj =
⋃

i∈{1,···,n}j
φi(K) (1)

where φ(i1,i2,···,ij) = φij ◦φij−1 ◦· · ·◦φi1 . Hence the limiting set can be written

as

K =
∞⋂
j=1

Kj

The OSC is of great use when calculating the Hausdorff dimension of the

limiting set, see [7] for examples.

2



The Hausdorff dimension of deterministic OSC recursive constructions was

calculated by Hutchinson [14] and a good description of the exact Hausdorff

functions was obtained by, for example, Graf in [12].

In Mauldin and Williams [18] (also in [13]) the recursive step is randomised

in a heterogeneous way. That is a random (according to a law µ say) i.i.d.

selection of contractive maps (satisfying the OSC) is applied to each scaled

copy of the original set in every recursive step. Here it is possible to ensure

the a.s. existence not only of the Hausdorff dimension α but also of a

(deterministic) exact Hausdorff function h for the resulting set F where α

and h satisfy

∫ ∑
i

Lip(φi)αdµ = 1

and

h(t) = tα(log | log(t)|)θ

with θ ≤ 1− α
n < 1.

In Sec. 4 we introduce a collection of homogeneous random recursive models

for snowflake crystals which breaks the OSC. Homogeneous refers to the

application of the same random selection of contractive maps to each copy

of the original set at each recursive step. Recursive constructions of a related

homogeneous type were studied by Bedford in [3].

No general theory exists for finding the Hausdorff dimension of non-OSC

constructions. We use special properties of the collection to find a random
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exact Hausdorff function. We can then use this function to calculate the

Hausdorff dimension.

In Sec. 5 a condition is given (the rotation or R-condition) which splits

the class into those models for which we can find the Hausdorff dimension

explicitly and those for which we cannot. Under the condition, the Hausdorff

dimension is found to be

E(B1) + 1

where Bi is a random variable associated with the number of contractive

maps in the selection for stage i.

We then use a triangle covering approach to refine the proof of the above

result to apply to those models which break the condition. The Hausdorff

dimension of these models is given by the largest characteristic exponent of

a random matrix product.

In sec. 7 we comment that the given results are in some sense strong, that

is they do not depend on any nice properties of the random sequence of

recursive steps (independence, stationarity, etc) but merely on the sequence

itself. We also comment on other similar models which break the OSC and

conjecture that no similar results are possible.
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2 Hausdorff dimension and exact Hausdorff func-

tion

Let U ⊆ Rn. If {Ui}i≥1 is a countable (or finite) collection of sets then we

say that {Ui}i≥1 is a δ-cover of U if

U ⊂
⋃
i

Ui and |Ui| ≤ δ for all i ≥ 1

where |Ui| = diam(Ui) using the usual metric on Rn. Let s > 0 and define

Hs
δ (U) = inf{

∑
i

|Ui|s : {Ui} is a δ-cover of F}.

Now set

Hs(U) = lim
δ→0

Hs
δ (U).

It is easily shown that the limit exists and also that Hs(·) is indeed a measure

(Hausdorff s-measure).

For a set U ⊂ Rn define the Hausdorff Dimension to be the unique number

dimH(U) such that

Hs(U) =


∞ s < dimH(U)

0 s > dimH(U)

The definition of Hausdorff measure above can be generalized to include any

positive increasing function f : [0,∞) → [0,∞), (rather than just powers)

of the diameters of the covering sets with the property that f(x) → 0 as

x→ 0;
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Hf
δ (U) = inf{

∑
i

f(|Ui|) : {Ui} is a δ-cover of U}

The analogue of the dimension here is an exact Hausdorff function, a func-

tion h such that

0 < Hh(U) <∞

The theory of these measures (which are in general non σ-finite) has pro-

ceeded largely due to the work of A. S. Besicovitch and his students. A fine

technical work on the theory of Hausdorff measures is Rogers [23].

The contractive maps most commonly used in the formulation of recursive

constructions are called similitudes, essentially just scaled isometries.

(Similitude) A function S : X → X on a metric space (X, d) is called a

similitude if d(S(x), S(y)) = rd(x, y) for all x, y ∈ X and for some fixed r.

3 Random Recursions

In this sec. we will outline the formulation of a homogeneous random recur-

sion.

Let S = (Si)Ni=1 be a set of similitudes on RM , let µ be a probability measure

on the power set of {1, . . . , N} and let K be a non-empty, compact subset

of RM with a non-empty interior. We specify the construction as follows;

K0 = K, now we choose an subset T1 ⊆ {1, . . . , N} according to µ and set
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K1 =
⋃
j∈T1

Sj(K0)

Now choose another set T2 ⊆ {1, . . . , N} according to µ and independently

of T1, we can now write

K2 =
⋃
l∈T2

⋃
j∈T1

Sl(Sj(K0))

Continuing the recursion yields a sequence of sets (Kn)n≥1 and we may

define our recursive construction to be F where

F = lim supKn =
⋂
n≥1

⋃
j≥n

Kj .

4 A class of random recursive constructions

Let H be a regular hexagon of radius 1, let D be its ‘diameter’ and v1, . . . , v6

its vertices as shown in Fig 1. Define the similitudes φ1, . . . , φ6 by requiring

that φi maps H to Hi as shown in Fig 1.

Figure 1 here

We will call a random recursive construction procedure a GH (general hexag-

onal) procedure if (in the notation of the previous Sec.);

1. K is the unit hexagon H centred at the origin

2. the set of similitudes is {φ1, . . . , φ6}:
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3. the selection law satisfies µ({1, 2} ⊆ Ti) = 1.

Figure 2 here

An example of a GH construction appears in Fig. 2. The associated selection

law µ is given by

µ({1, 2}) = 1− µ({1, 2, 3, 6}) = p

for 0 < p < 1. We refer to this particular model as SH (special hexagonal).

Despite the simplicity of this model, simulations produce snowflake-like fig-

ures of great variety and complexity. Some examples are shown in Fig. 3.

Figure 3 here

In fact, simulations from any model in the class GH, even one with asymmet-

ric replacements, appear to produce snowflake-like figures. Fig. 4 contains

simulations from different models within the GH class.

Figure 4 here

Let F (H) be the limiting set obtained using a particular GH procedure as

given above and let F (D) be the closure of the limiting set obtained using

the identical procedure applied to an initial set K = D, the diameter of the

hexagon H.

Lemma 4.1 (Equivalence lemma)

F (H) = F (D)
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Proof

Clearly D ⊂ H and F (H) is closed hence

F (D) ⊆ F (H).

Conversely if x ∈ F (H) take i1, · · · , in such that ij ∈ Tj for 1 ≤ j ≤ n

and x ∈ φin ◦ φin−1 · · ·φi1(H) Now d(x, φin ◦ φin−1 · · ·φi1(0)) ≤ 2−n and

the origin 0 ∈ D. Since x is arbitrary in F (H) and F (D) is closed then

x ∈ F (D) and hence F (D) = F (H).

For convenience we will use the initial set D in all subsequent constructions.

5 A covering using triangles

The most important consideration in calculating the Hausdorff dimension

of a recursive construction is keeping track of the number of scaled copies of

the original set (D) that are present in any particular stage. This is simple

when the OSC holds as no elements in any stage overlap. In a general GH

model there is non-trivial overlapping of the form shown in Fig. 5 for the

SH model.

Figure 5 here

However, with this particular model the largest number of copies of D (lines)

which may overlap (coincide) is 2. In fact there is a condition which identifies

this property in GH models.
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A GH construction is said to satisfy the R-condition if no replacement used

in the construction overlaps with its image under a rotation of π about its

centre, except at the line being replaced.

Under the R-condition the maximum overlap (coincidence) of elements (lines)

is 2, without the R-condition the maximum overlap is unbounded.

We will now introduce a method to keep track of the total number of ele-

ments (lines) present at any particular stage based on covering with trian-

gles.

We will use triangles of side length 2−n to cover Dn (the nth stage in the re-

cursive construction with initial set D), in which the elements are themselves

of length 2−n. Note the following facts

1. elements of Dn will fill the edges of each covering triangle

2. all future branching from the elements in a triangle will clearly not be

contained within the triangle, but

3. the future branching within a particular triangle is dependent on the

composition of the edges of that triangle and no other

The possible arrangements of elements of Dn on the edges of an appropri-

ately sized triangle (up to rotation and reflection) are shown in Fig. 6.

Figure 6 here

Note that at each stage each covering triangle generates at most 4 covering

triangles of the next stage. The types of the new triangles depend only on
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the previous triangle type and the form of the replacement. Note that we

ignore any ‘empty’ triangles that may be generated.

Also, in any particular GH procedure certain configurations of line segments

may never occur. For instance in the SH example the triangles numbered

20 through to 23 are never needed to cover a part of any structure which

may occur. In such a case, to simplify the notation, we assume the list

of triangle types and the ‘transition’ matrices below are trimmed so that

redundent types are omitted.

We may now analyse each Dn, calculating for example the number of ele-

ments or the number of directed elements (counting 2 or more for an over-

lapped element), just by counting the numbers of each type of covering

triangle at each stage. These are dependent only on the initial distribution

of triangle types1 and the sequence of choices of contractive maps (be it

deterministic or random).

Figure 7 here

If we let tn be the column vector of counts of each (non-redundant) triangle-

type needed to cover Dn in the method described above then

tn = Mnt0

where Mn = P TnP Tn−1 · · ·P T1 and P Ti
k,l is the number of triangles of type k

generated from a single triangle of type l by the application of the similitudes
1For a GH procedure the initial distribution is given by the vector (1, 1, 0, · · · , 0)
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indexed by Ti.

Using this cover, the number of triangles required at stage n is 1tMnt0.

For example in the SH model, the number of lines, counting each overlapped

line as two, grows exactly as 2n+Xn where Xn is the number of times the

4-line replacement is used up to stage n. If we let π be the fixed vector

listing the number of edges in each triangle type (counting multiplicity),

πt = (1, 1, 2, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 3, 3, 6, 4, 3, 3, 4, 4)

it is clear that πtMnt0 = 2n+Xnπtt0 and that

πtMnt0
6

≤ 1tMnt0 ≤ πtMnt0

Hence the number of triangles of diameter 2−n required to cover Dn, and

hence the number of lines contained in Dn, grows as 2(2−p)n+o(n). It follows

immediately that (2−p) is an upper bound for the Hausdorff dimension any

realisation of the SH model.

Figure 8 here

6 Exact Hausdorff function for SH

Theorem 6.1 If F is a recursive construction formed via the SH model and

we denote by Xn the number of times the set {1, 2, 3, 6} is chosen up to stage

n then the function φ, given by

φ(2−n) = 2−(n+Xn)
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(φ(x) being obtained by interpolation whenever 2−n < x < 2−n+1), is an

exact Hausdorff function.

Proof

Lower bound

Consider a set U ∈ R2 of diameter d with

2−(n+1) < d ≤ 2−n

By considering all the hexagons of diameter 2−(n+1) which can intersect U ,

we can see (Fig. 8) that the most line segments of length 2−(n+2) in Dn+2

which can be killed (i.e. they are covered and all their ‘decendents’ are

covered) by U is 154.

Now suppose that (Ui)i∈I is a δ-cover of F with 2−(N+1) < δ ≤ 2−N and let

n0 = min{n : ∃i ∈ I with 2−(n+1) < diam(Ui) ≤ 2−n}.

Now define ni recursively by

ni+1 = min{n > ni : ∃i ∈ I with 2−(n+1) < diam(Ui) ≤ 2−n}.

Let π0 be the proportion of line segments of length 2−(n0+2) in D(n0+2)

killed by sets in the cover with diameters in the range (2−(n0+1), 2−n0 ], then

it follows that the number of such sets in the cover is at least

2(n0+2)+X(n0+2)π0

154
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Define π1 as the proportion of those line segments of length 2−(n1+2) in

D(n1+2) which have not already been killed by covering sets of diameter

> 2−n1 but which are killed by sets of diameter in the range (2−(n1+1), 2−n1 ]

The remaining number of lines not covered at stage n1 is

(1− π0)2(n0+2)+Xn0+22(n1−n0)+(Xn1+2−Xn0+2).

Using the same arguments, the number of covering sets in the range (2−(n1+1), 2−n1 ]

is at least

2(n1+2)+Xn1+2 π̃1

154

where π̃1 = (1 − π0)π1 and 0 ≤ π1 ≤ 1. Continuing for n2 < n3 < · · · we

obtain

Hδ
φ(F ) ≥ lim infN→∞ inf π̃((2

(n0+2)+Xn0+2

154 π̃0φ(2−(n0+1)))+

(2
(n1+2)+Xn1+2

154 π̃1φ(2−(n1+1))) + · · ·)

where the infimum is taken over π̃ = (π̃0, π̃1, π̃2, · · ·) such that Σiπ̃i = 1 and

each π̃j ≥ 0.

Clearly, for any ε > 0 there will be a k ∈ N such that

Hδ
φ(F ) ≥ 2(nk+2)+Xnk+2

154
φ(2−(nk+1))− ε

Since nk is bounded below by N which tends to ∞ as δ → 0,

Hφ(F ) ≥ lim inf
n→∞

2n+Xnφ(2−n)/154
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Upper bound

By considering the simple coverings of F given by placing a regular hexagon

of diameter 2−n over each line segment at stage n, it is clear that

Hφ(F ) ≤ lim inf
n→∞

2n+Xnφ(2−n)

Hence to identify an exact Hausdorff function φ it is enough to ensure that

0 < lim inf
n→∞

2n+Xnφ(2−n) <∞ (2)

Now notice that this may be guaranteed by setting

φ(2−n) = 2−(n+Xn)

and interpolating for φ(x) when 2−n < x < 2−n+1. This completes the proof

of Theorem 6.1. �

We can now obtain dimH(F ) via the exact Hausdorff function φ in Theorem

6.1, using the facts that,

xr

φ(x)
→∞ as x→ 0⇒ dimH(F ) ≥ r

and

xr

φ(x)
→ 0 as x→ 0⇒ dimH(F ) ≤ r

Corollary 6.2

dimH(F ) = 2− p
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Proof

Let r < 2− p. Using the above remark we simply require that

(2−n)r

φ(2−n)
→∞.

but

(2−n)r

φ(2−n)
= 2−(n(r−1)−Xn)

and the Strong Law of Large Numbers states that Xn
n → 1− p with proba-

bility 1. Hence

2−(n(r−1)−Xn) ∼ 2−n(r−1−1+p) = 2n(r−(2−p)) →∞

as n → ∞. Hence r is a lower bound for dimH for any r < 2 − p. The

reverse follows similarly.

Hausdorff Dimension for GH

Theorem 6.3 If F is a set constructed by a GH scheme satisfying the R-

condition then an exact Hausdorff function, h, is given by

h(2−n) = R−1
n

and h(t) is calculated by linear interpolation for 2−n ≥ t > 2−(n+1) where

Rn is the number of distinct lines at stage n of the construction.
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Proof

We simply mimic the proof of Theorem 6.1.

Theorem 6.4 If F is a set constructed by a GH scheme satisfying the R-

condition

dH(F ) = E(B) + 1

where B is a random variable whose distribution is given by

B =


0 w.p. p2

log(3)/ log(2)− 1 w.p. p3

1 w.p. p4

and p2, p3, p4 are the probabilities of choosing replacements with 2, 3 or 4

lines respectively.

Proof

Notice that we can write

Rn = 2n+
∑n

i=1Bi

where the Bi are i.i.d. random variables each distributed as B. The result

now follows in a similar manner to corollary 6.2.

6.1 Outside the R-Condition

When a GH construction breaks the R-condition, it is easy to see that the

argument for the exact Hausdorff function is still valid with the number of
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lines at stage n, (2n+Xn), replaced by Rn (just defined to be the random

number of distinct line segments, overlapped or not, at each stage n).

Using the triangle covering we can express Rn simply as

πMnx

where Mn is a random product of the branching matrices associated with

each replacement. To assure the existence of a power law governing the

limiting behaviour of this product we will employ a version of Oseledec’s

theorem (first seen in [22]) as given in an excellent review of the topic in

[15].

Theorem 6.5 (Theorem 3.1 of [15]) Consider a random stationary se-

quence {An : n ≥ 0} of d × d real-valued matrices (on a probability space

(Ω,F ,P)) and form the product

A(n) = An−1 · · ·A0.

There exist positive constants µ1 > µ2 > · · · > µr and, for each ω ∈ Ω, an

ordered decomposition of Rd into subspaces of strictly decreasing dimension

Rd = V 1
ω ⊃ V 2

ω ⊃ · · ·V r
ω = {0}

such that for 1 ≤ j ≤ r − 1 and v ∈ V j
ω \ V j+1

ω we have

lim
n→∞

1
n

log ||A(n)
ω v|| = µj
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Theorem 6.6 If F is formed using a GH procedure then dimH(F ) is almost

surely constant and is given by log2 µ1 where µ1 is defined as in the previous

theorem.

Proof

Using the identities from Sec. 5 and Theorem 6.5 it is clear that Rn grows

as 2n log2 µ1+o(n) and so again mimicking the proofs of 6.1 and 6.2, it is clear

the Hausdorff dimension can be derived from one of the exponents µi of

Theorem 6.5. To show the correct exponent is µ1 we must show that the

starting vector of triangle types t0 (= (1, 1, 0, · · · , 0) for GH constructions

as given in Sec. 4) is in V 1
ω \ V 2

ω .

As the decomposition of Rd in theorem 6.5 is into subspaces there must

exist i ∈ N such that the vector corresponding to one triangle type i, bi =

(0, · · · , 0, 1, 0, · · · , 0) ∈ V 1
ω \ V 2

ω .

However, each triangle type can be considered as the superposition of up to

3 rotated copies of a type 1 and 3 rotated copies of type 2, hence

6πtMnt0 ≥ πtMnbi

for any i and so t0 ∈ V 1
ω \ V 2

ω .

We can generalise the argument further since the exact Hausdorff function

is given by h(2−n) = R−1
n regardless of the scheme employed for choosing

the form of the recursive step.
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In particular we can calculate the Hausdorff dimension of any GH model

(explicitly under the R-condition) with a deterministic recursive step or a

deterministically repeating sequence of recursive steps.

7 Further comments

The models in GH are based on the radii of a regular hexagon. It is natural

to ask whether it is possible to extend the earlier results to models based on

the regular 2n-agon for n > 3.

A simple argument show that this is not possible for constructions based

on 4n-agons with n ≥ 2. In these cases no fixed upper bound exists for the

number of stage n elements a set of diameter close to 2−n can cover. We

conjecture that the same problem persists for any construction based on a

2n-agon with n > 3.

It is thought that because of the simple form of the matrix product Mn

used to calculate Rn in Theorem 6.6, we may be able to evaluate (or closely

bound) the exponent µ1.

We also conjecture that no a.s. deterministic exact Hausdorff function exists

due to the homogeneous randomisation in GH models. This method of

randomisation does not produce enough ‘averaging’ in the long run to be

able to apply the same arguments as those in [13].
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