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1 Introduction

Many authors have considered the problem of conditioning a Markov process with a potentially
finite life-time to live forever (see, for example: Bertoin and Doney [1], Breyer and Roberts
[3], Roberts [18] and [19], Roberts and Jacka [20], Roberts, Jacka and Pollett [21], Pinsky [16],
Jacka and Roberts [10] and [11], and Pollak and Siegmund [17]). This problem is closely related
to that of the existence of quasi-stationary distributions (see, for example: Coolen-Schrijner,
Hart and Pollett [6], Darroch and Seneta [7], Seneta and Vere-Jones [24], Gibson and Seneta [9],
Karlin and McGregor [12], Breyer and Hart [4] and Seneta [23]).

Almost all the examples we are aware of have the property that the sequence of laws of the
process conditioned to survive until at least time T converges to an honest limit (except for
Bertoin and Doney [1]), in other words, the limiting conditioned process has an infinite lifetime,
or equivalently P∞ = P h, where h is P -harmonic, and P and P∞ are, respectively, the transition
kernels of the original and limiting processes respectively. In this paper we present two examples
where this is not true. In the first, described in §3, we show that the law of a symmetric Markov
chain on Z+ with a certain transition structure (the infinite star or Kolmogorov K2 chain (see
Kendall and Reuter [13]), when conditioned to survive for large times, converges vaguely to a
defective (substochastic) law (corresponding to the limit of the conditioned processes having
a finite lifetime). We also show that the laws converge weakly (in the Skorokhod topology
derived from the Martin topology), but to a non-Markovian limit. In the second counterexample,
described in §4, we show that the conditioned laws of another symmetric Markov chain, living
on two copies of Z+ (the double infinite star) are tight (in the Skorokhod topology derived
from the Martin topology) but have multiple limit points, showing that weak convergence fails
altogether.

Our understanding of why the examples produce such behaviour can be summarised as follows.
Because of the structure of the examples, essentially the only way the processes can survive for
a time T is to jump to a large state and wait there for a time S ∼ T . In the first example
this means that ‘in the limit the process has to make an infinite jump’, which, thanks to the
form of the Martin compactification, corresponds to the behaviour outlined above. To establish
this we require only very moderate constraints on the jump rates of the process. In the second
example the same situation pertains, but the transition structure subdivides the large states
into two classes (with odd and even numbering respectively). By making strong assumptions on
the transition rates we obtain extraordinarily tight estimates on the eigenvalues of the Q-matrix
which enable us to show that, for suitable times Tn, survival for time Tn ‘requires’ jumping to
state n and waiting there for time S ∼ Tn. Thus as T →∞, the requirement to make an ‘infinite
jump’ cycles between ‘infinite even states’ and ‘infinite odd states’; behaviours which, thanks to
the Martin compactification, can be distinguished in the corresponding limit laws.

2 Preliminaries on evanescent chains and the Martin topology

2.1 Evanescent chains Recall that a Markov chain X, on a state space E, with law P and
transition kernel P is said to be evanescent if P is dishonest and ζ, the lifetime of X, is almost
surely finite.
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For each T > 0, we define PT by

PT (A) = P(A|ζ > T ).

It is shown in Jacka and Roberts [11] that if PT converges weakly to an honest limit P∞, then
P∞ must be the law of a time-homogeneous Markov chain with transition kernel P∞, and P∞

is the Doob h- transform of P by some (space-time) P -harmonic function h(t, x), of the form
eλtβ(x).

The probability measure PT is the law of a time-inhomogeneous Markov chain with the same
initial law as P and with transition matrix P T (·, ·) given by

P T
i,j(s, t) = Pi,j(t− s)sj(T − t)/si(T − s),

where s is the survival function:

si(t) = Pi(ζ > t) =
∑

j

Pi,j(t).

So, to examine convergence of the PT s it is obviously of interest to consider convergence of
si(T − t)/sj(T ). It is worth noting at this point that, for any fixed i0, the function si(t)/si0(t)
is superharmonic.

2.2 The Martin topology The set of (non-negative) superharmonic functions on E is (as a subset
of RE) a convex cone. The set S, consisting of functions h in this cone which are normalised so
that h(0) = 1, is a section through this cone. According to the theory of Martin boundary (see
Williams [25] or Meyer [14]), any h ∈ S can be written as a unique convex combination of the
extremal elements of S, which are denoted Se. Thus

h(i) =
∫

Se

ξ(i)dν(ξ),

where ν is a probability measure on Se.

Elements of Se are of two types. Firstly they can arise by normalising the Green’s functions,
Γi,j

def
= Ei(

∫∞
0 1(Xt=j)dt), i.e. for some j ∈ E:

ξ(i) =
Γi,j

Γi0,j

def
= κ(i, j)

(where i0 is a fixed reference point and we assume that Γi0,j > 0 for all j ∈ E), or, alternatively,
ξ is a harmonic function, which may be obtained as a pointwise limit of extreme points of the
first kind. The collection of points of the first kind, together with all limit points is (using the
identification of j ∈ E with κ(·, j)) the Martin compactification, Ē, of E; whilst in our examples
below (but not in general) we shall see that there are no harmonic h and so, in these cases, Se

may be identified with E.

Whenever this happens Se is a compact subset of RE endowed with the topology of pointwise
convergence and this determines a topology for E (sometimes called the Martin topology):

jn ∈ E : jn
n−→∞−→ j iff κ(i, jn) n−→∞−→ κ(i, j) for each i ∈ E. (2.2.1)
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In general, for every (positive) superharmonic function h : E → R, there is a unique Choquet-
Martin representation of h, of the form:

h(·) =
∫

Se

κ(·, ξ)dνh(ξ),

and the representing (probability) measure νh lives on Se ⊆ Ē.

Lemma 2.2.1 Suppose that (hn)n≥0 is a sequence of superharmonic functions on E, with
hn(i0) = 1 for all n and Ē = E. Then a necessary and sufficient condition for pointwise
convergence of the (hn) is the weak convergence (in the Martin topology) of the representing
measures νhn.

Proof: Notice that hn ∈ S for all n, so the νhn exist.

(⇐) Notice that for each i, κ : j 7→ κ(i, j) is continuous (and thus bounded) on Ē (see (2.2.1))
so weak convergence immediately implies pointwise convergence of the (hn).

(⇒) Suppose hn → h. Since E is compact by assumption, the νhn are tight and so, given
any subsequence νhnk

, there is a further subsequence νhnkl
which converges weakly to a limit

ν. Thus h =
∫
E κ(·, j)dν(j), and it follows from the uniqueness of the representation that

ν is independent of the subsequence. Weak convergence of the νhn then follows from the
subsequential characterisation of weak convergence �

Corollary 2.2.2 For each t, the function ht(·) = s·(t)/si0(t) is in S, and hence the sequence ht

converge pointwise iff their representing measures converge weakly.

Proof: From Lemma 2.2.1 we need only prove that ht is superharmonic, and this follows
immediately from the fact that

∑
j Pi,j(u)sj(t) = si(t + u) ≤ si(t) �

Since we shall need to study the convergence of the normalised survival functions, Corollary
2.2.2 shows that it is of interest to study their representing measures, and we shall do so in §3
and again in §4.

2.3 Notation, reminders and the canonical setup Recall that a sequence of probability measures
(Pn) on (the Borel sets of) a topological space (E, E) is said to converge vaguely to a limit measure
L if, for every continuous, compactly supported function f : E → R (denoted f ∈ Cκ(E)),∫

E
fdPn →

∫
E

fdL;

we denote this by Pn
v⇒ L. We denote weak convergence by w⇒. We introduce some more

notation here: if P is a measure on (Ω,F) and ρ : Ω → R+ is measurable then ρ ·P denotes the
measure Q on (Ω,F) such that dQ

dP = ρ.

As announced earlier, the type of convergence we get for the (PT )s depends on which topology
we use on our state space, E. In order to render P honest, we extend our initial state space Z+
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by adding an isolated cemetery state ∂ so that E∂ def
= Z+ ∪ {∂}. We shall be concerned with

the Skorokhod spaces of cadlag paths on E∂ :

D(R+, (E∂ , E)) and D(R+, (E∂ ,M)),

(where M denotes the Martin topology of E∂ , or more precisely, the topology on E∂ obtained
by taking the Martin topology on Z+ and expanding it by adding back in the isolated cemetery
state ∂) which we shall denote by DE(R+) and DM(R+) respectively.

Similarly, we define
DE([0, t])

def
= D([0, t], (E∂ , E))

and
DM([0, t])

def
= D([0, t], (E∂ ,M)).

For our probabilistic setup we shall take Ω = DE(R+); F is taken to be the Borel σ-algebras
of DE(R+) (under the Skorokhod J1 metric) and (Ft) is π−1

t (B(DE([0, t]))), where πt is the
restriction map: πt : ω → (ωs : s ≤ t).

For our Markov process, X, we shall take the canonical process:

X : R+ ×DE(R+) → E∂

given by
X(t, ω) ≡ Xt(ω) = ωt,

so that, since DE(R+) is separable, Ft = σ(Xs : s ≤ t).

Our probability measure P has an arbitrary initial distribution (on Z+) and has a transition
kernel P on R+ × Z+ × Z+ which is Feller minimal. We then make the standard extension of
P to P ∂ by setting

P ∂
i,∂(t) = 1−

∑
Z+

Pi,j(t) = 1− si(t)

and
P ∂

∂,j(t) = δ∂,j .

We denote the lifetime of X by ζ, i.e.

ζ(ω) = inf{t : ωt = ∂}.

We denote the restriction of any (sub-)probability measure Q on F to Ft by Qt.

The following lemma also demonstrates why the Martin compactification is helpful when con-
sidering weak convergence of the PT s:

Lemma 2.3.1 Suppose that X is an evanescent chain on a countable state space, with law P
and bounded Q-matrix Q (so qi ≤ q < ∞ for all i). Then the collection (PT )T≥0 are tight in
DM(R+).

Proof: It follows from Theorems 3.7.2, 3.8.8 and Remark 3.8.9 (b) of Ethier and Kurtz [8] (see
also Billingsley [2]) that we need only establish that
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for every η > 0 and rational t ≥ 0 there exists a compact set Γ in Ē such that

inf
T

PT (Xt ∈ Γ) > η (2.3.1)

and

there exist ε, C, θ > 0 such that for all 0 < h ≤ t and for all λ > 0

sup
T

PT (d(Xt−h, Xt) ∧ d(Xt+h, Xt) > λ) ≤ Cλ−εh1+θ, (2.3.2)

where d is the metric on Ē (which may be taken to be any metric corresponding to pointwise
convergence, and hence may be assumed bounded by 1).

Since Ē is compact, (2.3.1) follows automatically. To prove (2.3.2) we may clearly restrict
attention to the case where t + h ≤ T and λ < 1. Now, for any λ > 0,

PT (d(Xt−h, Xt) ∧ d(Xt+h, Xt) > λ) ≤ PT (Xt−h 6= Xt 6= Xt+h)

≤ sup
i

sup
t

(1− P T
i,i(t, t + h))2

= sup
i

sup
t

(1− si(T − t− h)
si(T − t)

Pii(h))2

≤ (1− e−qh)2,

and hence (2.3.2) holds for any ε > 0 �

3 Convergence of the star process

3.1 The infinite star The (evanescent) Markov chain we consider in this section is the infinite
star (or Kolmogorov K2 chain). The state space is Z+ and the (symmetric) Q-matrix for the
chain is

Q =


−(q + δ) q1 q2 q3 . . .

q1 −q1 0 0 . . .
q2 0 −q2 0 . . .
q3 0 0 −q3 . . .
...

...
...

...
. . .

 ,

where q =
∑

i qi < ∞, the qis are strictly decreasing and δ > 0.

Our results on the infinite star are as follows:

Theorem 3.1.1 Define
L0(t) = sup{s ≤ t : Xs 6= 0} ∧ t

and
ρt = 1(ζ>t)

(
1 +

δ

q + δ
(e(q+δ)(t−L0(t)) − 1)

)
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for each t > 0 . Then we may define P∞, a probability measure on F , by Pt
∞ = ρt · Pt, and

then, for each t ≥ 0
PT

t
v⇒ Pt,

in the original Skorokhod topology, DE([0, t]), while

PT w⇒ P∞,

in DM(R+).

Remark: The existence and uniqueness of P∞ follows from the fact that the (Pt
∞) are consistent

(see §3.4) and the existence and uniqueness of a projective limit (see Parthasarathy [15]).

Remark: As we shall see later, P∞ is a non-Markovian law which corresponds to the process
”sticking in 0”.

Remark: It is clear that PT cannot converge weakly to P in DE(R+) since (ζ < t) is open in
DE(R+) but PT (ζ < t) T−→∞−→ 0 while P(ζ < t) > 0, contradicting the open sets characterisation
of weak convergence.

The rest of this section is taken up with a lengthy proof of Theorem 3.1.1, but it seems appro-
priate to sketch the proof here, since parts of it are (we believe) rather novel.

Sketch of proof of Theorem 3.1.1 We first prove that sj(t)/si(t)
t−→∞−→ 1 for all i, j ∈ Z+. We do

this via the method indicated in §2 (showing weak convergence of the representing probability
measures). We then show that sj(T − t)/sj(T ) T−→∞−→ 1 for each t and j. This establishes

that sj(T − t)/si(T ) T−→∞−→ 1 for each i, j and t. From this we can deduce directly the vague

convergence by identifying the limiting behaviour of dPT
t

dPt
. We also use this result to deduce

the weak convergence of the finite dimensional distributions in the Martin topology and then
establish the weak convergence on path space by Lemma 2.3.1.

3.2 The Martin topology of the infinite star First note that Γ, the Green’s kernel corresponding
to the infinite star is given by:

Γ(i, j) =

{
δ−1 : if i 6= j or if i = 0,
δ−1 + q−1

i : if i = j > 0,

so that, taking 0 as our reference state,

κ(i, j) =

{
1 : if i 6= j or if i = 0,

1 + δq−1
i : if i = j > 0.

Now if κ(·, ξn) → κ(·, ξ) pointwise, then either ξn → i ∈ Z+, in which case κ(·, ξn) → κ(·, i), or
ξn →∞, in which case κ(·, ξn) → κ(·, 0). It follows immediately from this fact that the Martin
boundary is empty, that Ē = E = Se and that the Martin topology, which we shall denote by
M, is characterised as follows:

f : Z+ → R is continuous in the Martin topology iff lim
n→∞

f(n) = f(0).
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3.3 Weak convergence of the representing measure As we noted in §2.2, the function ht, defined
by ht(i) = si(t)/s0(t) is superharmonic, and hence has a representing measure νt. We want to
show that νt ⇒ ∂0, where ∂i denotes the (unit) point mass at i. Given the structure of M, it is
clearly sufficient to show that νt(n) → 0, for each n ≥ 1. We achieve this with the help of the
eigenfunction expansion of Pi,j(t). We may find such an expansion by virtue of:

Lemma 3.3.1 Q is a compact, normal operator on l2(Z+), so that

Pi,j(t) =
∑

n

e−λntβ̄n(i)β̄n(j), (3.3.1)

where λn and β̄n are respectively the (negative of the) eigenvalues and the eigenfunctions
(l2-normalised) of Q.

Proof: Set Q(n) to be the approximation of Q obtained by setting all the rows of Q after the nth
to 0, then Q(n) has finite dimensional range and it is easy to check that ||Q−Q(n)||2

n−→∞−→ 0, so
by Theorem 4.18, part (c) of Rudin [22] Q is a compact operator. It thus possesses (by part (c)
of Theorem 4.25 of Rudin [22]) a countable spectrum and, being self-adjoint, it follows, by part
(d) of Theorem 12.29 of Rudin [22], that the eigenfunctions of Q can be chosen to be a complete
orthonormal basis for l2. Since P (t) = eQt, the representation of Pi,j(t) follows �

It is easy to check that, normalising so that βn(0) = 1,

βn(i) =
qi

qi − λn
, (3.3.2)

and the eigenvalue equation is
S(λ) + λ = q + δ, (3.3.3)

where

S(λ) =
∞∑
i=1

q2
i

qi − λ
.

Since S(qn−) = ∞, S(qn+) = −∞ and S is continuous and increasing on (qn+1, qn) and on
(q1,∞), it follows that

λ0 > q1 > λ1 > q2 > λ2 > . . . . (3.3.4)

Lemma 3.3.2 For n > i, βn(i) > 0 and for each i and j βn(i)
βn(j)

n−→∞−→ 1.

Proof: The result follows from (3.3.2) and (3.3.4) �

In a moment we shall need the following lemma:

Lemma 3.3.3 Suppose that (an)n≥0 and (bn)n≥0 are two sequences with an > 0 and bn > 0 for
sufficiently large n and that an

bn

n−→∞−→ 1; then if (λn)n≥0 is a strictly decreasing positive sequence
with

∑
n≥0 e−λntan and

∑
n≥0 e−λntbn convergent for t > 0, we have that∑

n≥0

e−λntan/
∑
n≥0

e−λntbn
t−→∞−→ 1.
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Proof: Given ε > 0 take N such that min(an, bn) > 0 and an/bn < 1 + ε for all n ≥ N . Now
take T such that

∑
n<N e−λnt|an| < εe−λN taN and

∑
n<N e−λnt|bn| < εe−λN tbN for all t ≥ T

then, for t ≥ T : ∑
n≥0

e−λntan/
∑
n≥0

e−λntbn ≤
(1 + ε)

∑
n≥N e−λntan

(1− ε)
∑

n≥N e−λntbn
≤ (1 + ε)2

1− ε
.

Similarly, we may deduce the same inequality with the roles of an and bn reversed and, since ε
is arbitrary we deduce the required convergence �

The following lemma is the penultimate step in the argument in this section:

Lemma 3.3.4 For each i, j, k, l, Pi,j(t)
Pk,l(t)

t−→∞−→ 1.

Proof: By virtue of Lemma 3.3.2, we may apply Lemma 3.3.3 to the sequences (βn(i)βn(j))
and (βn(k)βn(l)) and deduce the result from (3.3.1) �

We are now in a position to prove the weak convergence of νt.

Lemma 3.3.5 The representing measures, νt, satisfy

νt(ξ) =
Pξ,0(t)
s0(t)

(3.3.5)

and
νt({n, n + 1, . . . } t−→∞−→ 1, for each n,

so that
νt ⇒ ∂0,

in the martin topology.

Proof: Since νt is the unique probability measure such that

ht(i) =
∑

ξ

κ(i, ξ)νt(ξ) for each i ∈ Z+, (3.3.6)

to prove (3.3.5) we need only check that the proposed solution satisfies (3.3.6) and is a probability
measure. Summing the right hand side of (3.3.5) gives 1, whilst if we recall that Γ commutes
with P we see that∑

ξ

κ(i, ξ)
Pξ,0(t)
s0(t)

=
∑

ξ

Γi,ξ

Γ0,ξ

Pξ,0(t)
s0(t)

=
∑

ξ

δΓi,ξ
Pξ,0(t)
s0(t)

=δ
(ΓP (t))i,0

s0(t)
= δ

(P (t)Γ)i,0

s0(t)
=

∑
ξ

δ
Pi,ξ(t)Γξ,0

s0(t)

=
∑

ξ

Pi,ξ(t)
s0(t)

= ht(i).
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If we now apply Lemma 3.3.4, we see that

νt(i)
νt(j)

t−→∞−→ 1 for each i, j.

It follows from this that, for any n and for any i ≤ n:

lim sup
t

νt(i) ≤ lim
t

νt(i)
νt({1, . . . , n})

= 1/n,

and hence, since n is arbitrary, that limt νt(i) = 0. As we remarked earlier, this is sufficient to
establish the convergence of νt to the point mass at 0 �

3.4 Weak convergence of the finite dimensional distributions We first prove that the family
(Pt

∞)t≥0 are consistent.

Lemma 3.4.1 The process ρt is a non-negative P-martingale with ρ0 = 1.

Proof: The process ρ is clearly a finite variation process and, setting

Zt = e(q+δ)(t−L0(t)),

we see that

dρt =δZt−1(Xt−=Xt=0)dt

− (1 +
δ

q + δ
(Zt− − 1))1(Xt−=0,Xt=∂)

− δ

q + δ
(Zt− − 1)1(Xt−=0,Xt∈Z+\{0}).

It follows immediately from the characterisation of Q that the dual previsible projection of ρ is∫ t

0
1(Xt−=0)

(
δZt− − δ(1 +

δ

q + δ
(Zt− − 1))− q

δ

q + δ
(Zt− − 1)

)
dt

= 0,

and the martingale property is now immediate �

Remark: Since ρ is a non-negative martingale with initial value 1, P∞ is a probability measure.
Moreover, since EP[ρt|F0] = 1 it follows that

1 = EP[ρt|F0] =EP[1(ζ>t)|F0] + EP[(ρt − 1)1(Xt=0)|F0]

=sX0(t) + EP[(ρt − 1)1(Xt=0)|F0],

and hence
EP[(ρt − 1)1(Xt=0)|F0] = 1− sX0(t).

It follows from this that

EP∞ [f(Xt)|F0] = EP[f(Xt)1(ζ>t)|F0] + EP[f(Xt)(ρt − 1)1(Xt=0)|F0]
= (P (t)f)(X0) + (1− sX0(t))f(0)
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This justifies the remark after Theorem 3.1.1.

We now prove:

Lemma 3.4.2 The finite dimensional distributions of PT converge to those of P∞.

Proof: As we observed in §2, P T is given by

P T
i,j(s, t) =

sj(T − t)
si(T − s)

Pi,j(t− s). (3.4.2)

Given the Markov property of the P T it is clearly sufficient to show convergence of the condi-
tional one-dimensional distributions. Now, given an f , continuous (and bounded) in the Martin
topology, then if P T

i,j(s, t)
T−→∞−→ Pi,j(t− s), for each i, j, s, t, we can conclude that

P T
i,·(s, t)f

T−→∞−→ Pi,·(t− s)f + lim
n

lim
T

(1−
∑
j≤n

P T
i,j(s, t)) lim

n
f(n)

= Pi,·(t− s)f + (1− si(t− s))f(0) = E
P
∞ [f(Xt−s)|(X0 = i)]

(the last equality following from (3.4.1)), in other words that the finite dimensional distributions
converge.

So, it being sufficient to show that P T
i,j(s, t)

T−→∞−→ Pi,j(t − s), for each i, j, t, it is clear from
(3.4.2) that we only need to show that

sj(T − t)
si(T )

T−→∞−→ 1, for each i, j, t. (3.4.3)

Now, since s·(t)
s0(t) =

∑
ξ κ(·, ξ)νt(ξ) and κ(i, ·) is continuous in M (by definition) and bounded, it

follows from Lemma 3.3.6 that si(t)
s0(t)

t−→∞−→
∑

ξ κ(i, ξ)∂0(ξ) = κ(i, 0) = 1. Thus, to prove (3.4.3),
we need only show that

s0(t + u)
s0(t)

t−→∞−→ 1, for all u > 0. (3.4.4)

Now

s0(t + u)
s0(t)

=(P (u)ht(·))0

=
∑

ξ

(P (u)κ)0,ξνt(ξ) =
∑

ξ

(P (u)Γ)0,ξ

Γ0,ξ
νt(ξ)

=
∑

ξ

(ΓP (u))0,ξ

Γ0,ξ
νt(ξ), (3.4.5)

since Γ and P (u) commute. So, since (ΓP (u))0,ξ =
∑

j Γ0,jPj,ξ(u) ≥ Γ0,ξPξ,ξ(u), it follows from
(3.4.5) that

1 ≥ s0(t + u)
s0(t)

≥
∑

ξ

Pξ,ξ(u)νt(ξ).

11



But Pξ,ξ(u) ≥ e−qξu and the (qn) are decreasing so

1 ≥ s0(t + u)
s0(t)

≥
∑
ξ≥n

Pξ,ξ(u)νt(ξ) ≥ e−qnuνt({n, n + 1, . . . }). (3.4.6)

To conclude the proof, simply observe that νt({n, n+1, . . . }) t−→∞−→ 1 for each n and qn
n−→∞−→ 0,

so letting first t and then n tend to infinity in (3.4.6) gives (3.4.4) �

3.5 Weak and vague convergence of the conditioned laws We shall use the following lemma:

Lemma 3.5.1 Suppose that Q is a finite measure on an arbitrary topological measure space
(E,B(E)), that (ρn)n≥1 are positive, and that ρn

n−→∞−→ ρ Q a.e., with ρ ∈ L1(Q). Then,
defining ρ∗ = supn ρn, if ρ∗1K ∈ L1(Q) for all compact K, then

ρn ·Q v⇒ ρ ·Q.

Proof: For f ∈ Cκ, with support K:

|
∫

fd(ρn ·Q)−
∫

fd(ρ ·Q)| ≤
∫

1K |f ||ρn − ρ|dQ.

Now 1K |f ||ρn − ρ| ≤ c1K(ρ∗ + ρ), where c = supK |f |, so

|
∫

fd(ρn ·Q)−
∫

fd(ρ ·Q)| n−→∞−→ 0,

by dominated convergence and the assumption on ρ∗ �

Proof of vague convergence It follows from the Markov property and the form of P T that PT
t =

( sXt (T−t)

sX0
(T ) ) ·Pt. Now it is clear that if K is compact in DE([0, t]) then supω∈K sups≤t Xs(ω) < ∞

and, since sj(T−t)
si(T ) ≤ (Pi,j(t))−1 and infi,j≤n Pi,j(t) > 0 (by irreducibility), we obtain the vague

convergence by Lemma 3.5.1 and (3.4.3) �
To conclude the proof of Theorem 3.1.1 we simply apply Lemma 2.3.1.

4 Limit points of conditioned laws on the double star

4.1 The double star The (evanescent) Markov chain we consider in this section is two copies
of the infinite star of §3, linked at their centres. For ease of notation we denote the states in
the first star by the even integers in Z+ (with 0 the centre), whilst the states in the second star
are denoted by the odd integers (with 1 as the centre). Thus the Q-matrix for the double star

12



process is:

Q =



−(p0 + δ0 + r) r q2 0 q4 0 . . .
r −(p1 + δ1 + r) 0 q3 0 q5 . . .
q2 0 −q2 0 0 0 . . .
0 q3 0 −q3 0 0 . . .
q4 0 0 0 −q4 0 . . .
0 q5 0 0 0 −q5 . . .
...

...
...

...
...

...
. . .


where p0 =

∑
i≥1 q2i < ∞, p1 =

∑
i≥1 q2i+1 < ∞ and δ0 > 0, δ1 > 0.

We shall assume that each qi is strictly positive and that qn
n−→∞−→ 0. The following additional

assumptions will be needed:

r ≥ max(p0 + q3, p1 + q2) (4.1.1)

qn+1 ≤
1
2
qn for each n (4.1.2)

qn+1

qn

n−→∞−→ 0 (4.1.3)

(1− ε)
qn−1

qn
− 2 log n + log qn

n−→∞−→ ∞ for some ε > 0. (4.1.4)

Note that if qn = 2−2n
for each n, r = 1 and δ0 = δ1 = δ > 0 then all our assumptions are

satisfied.

Our results on the double star are as follows:

Theorem 4.1.1 Define hα : Z+ → R+ by

hα(i) = ακ(i, 0) + (1− α)κ(i, 1),

where κ is the normalised Green’s function for the double star then,

(i) for each α ∈ [0, 1], there exist sequences (sα
n)n≥1 such that for each t ≥ 0, in the original

Skorokhod topology, DE([0, t]),

Psα
n

t
v⇒ (

hα(Xt)
hα(X0)

1(ζ>t)) · Pt.

(ii) Define
Li(t) = sup{s ≤ t : Xs 6= i} ∧ t,

δα
0 = δ0 + r(1− hα(1)

hα(0)
), δα

1 = δ1 + r(1− hα(0)
hα(1)

),

qα
i = pi + r + δα

i for i = 0, 1

and Pα by Pα
t = ρα

t · Pt, with

ρα
t = 1(ζ>t)

hα(Xt)
hα(X0)

(
1 +

δα
0

qα
0

(eqα
0 (t−L0(t)) − 1) +

δα
1

qα
1

(eqα
1 (t−L1(t)) − 1)

)
.
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Then the collection (PT )T≥0 is tight in DM(R+) and the collection of limit laws is

{Pα : α ∈ [0, 1]}.

Remark: As we shall see later, ( hα(Xt)
hα(X0)1(ζ>t)) · Pt is a dishonest law, corresponding to the hα

Doob transform of P, which just ”loses the process when it dies”. For each α, Pα is a non-
Markovian law, which coincides with Phα

up to the ”disappearance time” and which then makes
the process ”die to 0 or 1, rather than disappearing”.
We outline the differences between the proof of Theorems 4.1.1 and 3.1.1:
Sketch of proof of Theorem 4.1.1 We first identify the set of limit functions for sj(t)/si(t) (by
identifying the set of weak limits for the representing probability measures).
The task is then very similar to that confronted in §3.
4.2 The Martin topology of the double infinite star Notice first that Γ, the Green’s kernel
corresponding to the double infinite star is given, for j even, by

Γ(i, j) =


r

δ0δ1+r(δ0+δ1) : if i is odd,
(r+δ1)

δ0δ1+r(δ0+δ1) : if i is even and either i 6= j or j = 0,

q−1
j + (r+δ1)

δ0δ1+r(δ0+δ1) : if i = j > 0

and, for j odd, by

Γ(i, j) =


r

δ0δ1+r(δ0+δ1) : if i is even,
(r+δ0)

δ0δ1+r(δ0+δ1) : if i is odd and either i 6= j or j = 1,

q−1
j + (r+δ0)

δ0δ1+r(δ0+δ1) : if i = j > 1.

It follows that, taking 0 as our reference state, κ is given, for j even, by

κ(i, j) =


r

(r+δ1) : if i is odd,

1 : if i is even and either i 6= j or j = 0,
1 + δ0δ1+r(δ0+δ1)

qj(r+δ1) : if i = j > 0,

and, for j odd, by

κ(i, j) =


1 : if i is even,
r+δ0

r : if i is odd and either i 6= j or j = 1,
r+δ0

r + δ0δ1+r(δ0+δ1)
qjr : if i = j > 1.

Now it is clear that if κ(·, ξn) → κ(·, ξ) pointwise, then either ξn → i ∈ Z+, in which case
κ(·, ξn) → κ(·, i), or ξn → ∞ with ξn even for large n, in which case κ(·, ξn) → κ(·, 0), or
ξn → ∞ with ξn odd for large n, in which case κ(·, ξn) → κ(·, 1). It follows immediately from
this fact that the Martin boundary is empty and the Martin topology, which we shall again
denote by M, is characterised as follows:

f : Z+ → R is continuous in the Martin topology

iff

lim
n→∞

f(2n) = f(0) and lim
n→∞

f(2n + 1) = f(1).
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4.3 Bounding the eigenvalues of P As before, ht(·) has a representing measure νt. We want to
show that L, the set of weak limits of (νt)t≥0, is of the form

L = {α∂0 + (1− α)∂1 : 0 ≤ α ≤ 1}. (4.3.1)

We proceed in a similar fashion to that in §3.3. Note first that the proof of lemma 3.3.1 applies
in the case of the double star so that

Pi,j(t) =
∑

n

e−λntβ̄n(i)β̄n(j), (4.3.2).

Some elementary calculations establish that, with the normalisation βn(0) = 1, the eigenfunction
equation is

βn(i) =

{
qi

qi−λn
: if i is even,

qi

qi−λn
βn(1) : if i is odd,

(4.3.3)

with βn(1) = r
T (λn) , where

S(λ) = −λ + (p0 + r + δ0))−
∑
i≥1

q2
2i

q2i − λ

and

T (λ) = −λ + (p1 + r + δ1))−
∑
i≥1

q2
2i+1

q2i+1 − λ
,

and that the (residual) eigenvalue equation is S(λ)T (λ)− r2 = 0.

We now need some bounds on the eigenvalues: Lemma 4.3.1 Numbering from 1, the eigenvalues

satisfy
λ1 > q2 > λ2 > q3 > λ3 > . . .

and
q2n − λ2n

q2
2n

n−→∞−→
(
δ0 + r − r2

(δ1 + r)
)−1 def

= c0,

while
q2n+1 − λ2n+1

q2
2n+1

n−→∞−→
(
δ1 + r − r2

(δ0 + r)
)−1 def

= c1. (4.3.4)

Proof: First, notice that S is decreasing and continuous on each interval of the form (q2n+2, q2n),
and on (q2,∞), with S(q2n+) = ∞ and S(∞) = S(q2n−) = −∞, while T is decreasing and
continuous on (q2n+1, q2n−1) and on (q3,∞), with T (q2n+1+) = ∞ and T (∞) = T (q2n+1−) =
−∞.
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Now

T (q2n) = p1 + δ1 + r − q2n −
∑
i≥1

q2
2i+1

q2i+1 − q2n

≥ p1 + δ1 + r − q2n −
∑

i≤n−1

2q2i+1 since qn+1 ≤ 1
2qn by (4.1.2)

≥ δ1 (since r ≥ q2 + p1 = q2 +
∑

q2i+1 by (4.1.1)),

and we may deduce in a similar fashion that

S(q2n+1) ≥ δ0.

It follows that ST − r2 has a unique zero on (q2,∞) and on (qn+1, qn), for each n ≥ 2.

Now, for any c > 0, there exists a C such that for large n,

| q2
i

qi − qn + cq2
n

| ≤ Cqi, for all i 6= n

(since qn+1

qn

n−→∞−→ 0 by (4.1.3) and qn
n−→∞−→ 0), so that

S(q2n+1 − cq2
2n+1) = −q2n+1 + cq2

2n+1 + (p0 + r + δ0))−
∑
i≥1

q2
2i

q2i − q2n+1 + cq2
2n+1

n−→∞−→ δ0 + r

(by dominated convergence, since qn
n−→∞−→ 0).

Whilst

T (q2n+1 − cq2
2n+1) =

− q2n+1 + cq2
2n+1 + (p1 + r + δ1))−

∑
i6=n

q2
2i+1

q2i+1 − q2n+1 + cq2
2n+1

− 1
c

n−→∞−→ δ1 + r − 1
c
.

Taking c−1 respectively greater than and less than δ1+r− r2

(δ0+r) we obtain the second convergence
in (4.3.4); in a similar fashion, we deduce that

S(q2n − cq2
2n) n−→∞−→ δ0 + r − 1

c

and
T (q2n − cq2

2n) n−→∞−→ δ1 + r,

and we obtain the first convergence in (4.3.4) �

In the next section we shall need some estimates on the l2-normalised eigenvectors, which we
collect together in the following lemma:
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Lemma 4.3.2 The β̄n’s satisfy:

β̄n(i)β̄n(j)
β̄n(k)β̄n(l)

n−→∞−→ ci,j,k,l ∀ i, j, k, l (4.3.5)

with 0 < c2
−1 ≤ ci,j,k,l ≤ c2 < ∞.

β̄n(n) n−→∞−→ 1 (4.3.6)

β̄n(i) = O(qn) for each fixed i (4.3.7)

for a suitable c3 ∑
i6=n

β̄k(i) ≤ c3kqk + 1(k 6=n) (4.3.8)

∑
k>n

kqkβ̄k(0) = o(qn) (4.3.9)

Proof: Notice first that (4.3.3) and Lemma 4.3.1 imply that

βn(2i) n−→∞−→ 1 (4.3.10)

and
βn(2i + 1)/βn(1) n−→∞−→ 1, (4.3.11)

for each i.
We may also deduce from Lemma 4.3.1 that

β2n+k(1) n−→∞−→ lk for k = 0, 1

for suitable non-zero limits l0 and l1. Equation (4.3.5) now follows from (4.3.10) and (4.3.11).
It follows from (4.3.3) and (4.3.4) that

β2n+k(2n + k)q2n+k
n−→∞−→ mk for k = 0, 1, (4.3.12)

for suitable non-zero limits m0 and m1.
Notice also that, since λn < qn ≤ qi/2, for any i < n, we may deduce from (4.3.3) that

|βn(i)| ≤ c for all i < n, (4.3.13)

for a suitable c and hence ∑
i<n

βn(i)2 ≤ c2n. (4.3.14)

On the other hand, given ε > 0, there exist c and n(ε) such that, for i > n > n(ε),

|βn(i)| ≤ cqi/qn ≤ εi−n (4.3.15)

(since qn+1/qn
n−→∞−→ 0 and λn/qn

n−→∞−→ 1).
Equation (4.3.6) now follows from (4.3.12), (4.3.14) and (4.3.15), and we may then immediately
deduce (4.3.7) from (4.3.10), (4.3.11) and (4.3.12).
Equation (4.3.8) follows from (4.3.6), (4.3.13) and (4.3.15).
Finally, (4.3.9) follows from (4.3.7), the fact that nqn

n−→∞−→ 0 and the second inequality in
(4.3.15) �
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4.4 Limit points of the representing measure We propose to show now that:

Lemma 4.4.1 For all i, j, k, l,

lim sup
t

Pi,j(t)/Pk,l(t) ≤ c2, (4.4.1)

with c2 = (max(1 + δ0
r , 1 + δ1

r ))2, and there is an increasing sequence of times (tn)n≥1 such that
for all s ≥ 0,

P0,n(tn − s)
s0(tn − s)

n−→∞−→ 1

and (4.4.2)
P1,n(tn − s)
s1(tn − s)

n−→∞−→ 1. (4.4.3)

Proof: Since Pi,j(t) =
∑

n e−λntβ̄n(i)β̄n(j), (4.4.1) follows from (a minor modification of)
Lemma 3.3.3, on observing that, by virtue of (4.3.5), lim supn

β̄n(i)β̄n(j)

β̄n(k)β̄n(l)
≤ c2.

Setting tn
def
= (λn)−1, since s0(t) =

∑
i P0,i(t) we shall prove the first convergence in (4.4.2) by

showing that ∑
i6=n

P0,i((λn)−1 − s)
P0,n((λn)−1 − s)

n−→∞−→ 0. (4.4.3)

Now, it follows from (4.3.6) and (4.3.7) that

lim inf
n

P0,n((λn)−1 − s)/qn > 0.

Thus, to establish (4.4.3), we need only prove that∑
i6=n

P0,i((λn)−1 − s)/qn =
∑
i6=n

∑
k

e−
λk
λn

+λksβ̄k(0)β̄k(i)/qn
n−→∞−→ 0. (4.4.5)

Now, ∣∣∣∣∑
i6=n

∑
k

e−
λk
λn

+λksβ̄k(0)β̄k(i)/qn

∣∣∣∣
≤

∑
k

e−
λk
λn

+λks|β̄k(0)|(c3kqk + 1(k 6=n))/qn (by (4.3.8))

≤
(∑
k<n

(c3kqk + 1)β̄k(0)
)
e−

λn−1
λn

+λ1s/qn +
∑
k>n

eλksc4|β̄k(0)|/qn + c3neλns−1|β̄n(0)|

(since the λs are decreasing and kqk → 0)

≤ c5(n + 1)e−
λn−1

λn
+λ1s/qn + eλnso(qn)/qn + nO(qn), (4.4.6)

the last inequality following from the fact that |β̄k(0)| ≤ 1, that
∑

k kqk < ∞, that∑
k>n |β̄k(0)| = o(qn) (by (4.3.9)) and that |βn(0)| = O(qn) (by (4.3.7)).
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Now λn
qn

n−→∞−→ 1 (by 4.3.4), so that the first term on the RHS of (4.4.6) converges to zero by

virtue of the assumption that (1 − ε) qn−1

qn
− 2 log n + log qn

n−→∞−→ ∞ (assumption (4.1.4)), the

second converges to 0 because λn
n−→∞−→ 0 and the third does so because nqn

n−→∞−→ 0 (by virtue
of (4.1.2)).

This establishes the first convergence in (4.4.2). The second convergence in (4.4.2) is established
in a similar fashion �

It is easy to check, by the same arguments as in the proof of Lemma 3.3.5, that

νt(ξ) = ctΓ0,ξ(δ0P0,ξ(t) + δ1P1,ξ(t)), (4.4.7)

with
(ct)−1 = δ0(ΓP (t))0,0 + δ1(ΓP (t))0,1,

so that t 7→ ct is continuous.

Using (4.4.7) and Lemma 4.4.1 we may conclude:

Lemma 4.4.2 For each i, νt(i)
t−→∞−→ 0, whilst for each s ≥ 0, νtn−s(n) n−→∞−→ 1.

We are now in a position to prove

Lemma 4.4.3 The collection L of weak limits of the νt is given by (4.3.1).

Proof: Since νt(i)
t−→∞−→ 0 for each i, it follows from the form of the Martin topology M that

the only possible weak limits are those in L. Lemma 4.4.2 shows that the extreme laws in L are
limit laws (νt2n ⇒ ∂0 and νt2n+1 ⇒ ∂1), so it only remains to establish that for each α ∈ (0, 1)

there exists a sequence sα
n such that νsn ⇒ α∂0 +(1−α)∂1. Now, since νt(i)

t−→∞−→ 0, it is clearly
sufficient to exhibit (sn) such that νsn(2Z+) n−→∞−→ α.

Notice that
νtf = ct(δ0(P (t)fΓ)(0) + δ1(P (t)fΓ)(1)),

where fΓ : i 7→ Γ0,if(i). Now if f is bounded and continuous then so is fΓ and hence the weak
continuity of t 7→ νt follows from that of P (t), which in turn is an immediate consequence of the
Feller property (limt→0 P (t)f = f for bounded continuous f).

To find a sequence (sα
n): given an α, take ε < min(α, 1 − α) then it follows from Lemma 4.4.1

that, for large n, νt2n(2Z+) ≥ 1 − ε and νt2n+1(2Z+) ≤ ε so, since νt(2Z+) is continuous in t
(this follows from the open and closed sets characterisations of weak convergence and by virtue
of the fact that 2Z+ is both open and closed in M), it follows from the intermediate value
theorem that there exists sn ∈ (t2n, t2n+1) with νsn(2Z+) = α �

4.5 Limit laws for the finite dimensional distributions We shall show first:

Lemma 4.5.1 For all s ≥ 0,
si(t− s)

si(t)
t−→∞−→ 1. (4.5.1)

Proof: So far we have used 0 as the reference state for the normalised Green’s function κ and
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for the corresponding representing measures νt. Irreducibility means that we could have used
any state l. The corresponding representing measures ν

(l)
t will satisfy

ν
(l)
t (ξ) ∝ Γl,ξ(δ0P0,ξ(t) + δ1P1,ξ(t)). (4.5.2)

It follows from this and the fact that Γl,· is bounded and bounded away from zero that (just as
in the proof of Lemma 4.4.1)

ν
(l)
t (i) t−→∞−→ 0 for all i. (4.5.3)

Now we mimic exactly the proof of (3.4.4) �

Now, since P T
i,j(t) = sj(T−t)

si(T ) Pi,j(t) and (4.5.1) holds it is clear that the only possible limits for
the FDDs correspond to limit points of the function ht.

Lemma 4.5.2 The limit points of the FDDs are precisely the corresponding FDDs of the Pαs

Proof: We may prove that Pα
t s are consistent just as in Lemma 3.4.1. Since

ht(i) = si(t)
s0(t) =

∫
κi,·dνt and κi,· is bounded and continuous (in M) it follows from Lemma 4.4.3

that the set of possible pointwise limits of ht(·) is {ακ(·, 0) + (1 − α)κ(·, 1) : α ∈ [0, 1]}, which
corresponds precisely to the Pαs. The fact that the corresponding FDDs are in fact limit points
follows from the form of the Martin topology as in the proof of Lemma 3.4.2 �

4.6 Identifying the limit points of the conditioned laws We may now complete the proof of
Theorem 4.1.1.

Proof of vague convergence It is clear from the analysis in §3.5 that all we need show is that

sj(sα
n − t)

si(sα
n)

n−→∞−→ hα(j)
hα(i)

for all t ≥ 0. This follows from Lemma 4.5.1 and the proof of Lemma 4.5.2 �

To conclude the proof of Theorem 4.1.1 we just apply Lemma 2.3.1.

5 Concluding remarks

The study of the (space-time) Martin boundary and its relation to questions of conditioning in
a general setting seems to have been initiated by Breyer [5]. In this paper we’ve been able to
establish results about weak-convergence of conditioned processes solely by studying the spatial
Martin boundary, which is somewhat more “accessible”. It may be of relevance that the two
processes studied have no space-time harmonic functions. It might be possible to construct an
example of an evanescent chain with multiple limit points which are space-time harmonic (which
might then give examples of more complex limit behaviour than that in Jacka and Roberts [11]).

The authors speculate that the sequence PT should be tight in the Martin topology without the
condition that Q is bounded.
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We have not explored the issue of the existence of quasistationary distributions in relation to
our examples; it seems fairly clear, however, that these do not exist.

We think of the behaviour we have described above as corresponding to different behaviours of
the chain on an infinite set of different timescales, and believe that this situation is present in
more general classes of Markov chains, however our method of proof, which requires detailed
knowledge of the eigenvalues of the chain’s Q-matrix, means that we need to make very strong
assumptions as to the form of Q in the second example. It would be nice to obtain substantially
weaker conditions on Q which ensure the behaviour described in §4.

Acknowledgements We are grateful to Chris Rogers and Phil Pollett for pointing out that
the infinite star is also known as the Kolmogorov K2 chain.
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